
Chapter 1

Review of Continuous-Time
Signals and Systems

This chapter reviews the basics of continuous-time (CT) signals and systems. Although the reader is
expected to have studied this background as a prerequisite for this course, a thorough yet abbreviated
review is both justified and wise since a solid understanding of continuous-time concepts is crucial
to the study of digital signal processing.

Why Review Continuous-Time Concepts?

It is natural to question how continuous-time signals and systems concepts are relevant to digital
signal processing. To answer this question, it is helpful to first consider elementary signals and
systems structures.

In the most simplistic sense, the study of signals and systems is described by the block diagram
shown in Fig. 1.1a. An input signal is fed into a system to produce an output signal. Understanding
this block diagram in a completely general sense is quite difficult, if not impossible. A few well-chosen
and reasonable restrictions, however, allow us to fully understand and mathematically quantify the
character and behavior of the input, the system, and the output.

input system output

(a)

x(t) continuous-time system y(t)

(b)

x[n] discrete-time system y[n]

(c)

Figure 1.1: Elementary block diagrams of (a) general, (b) continuous-time, and (c) discrete-time
signals and systems.

Introductory textbooks on signals and systems often begin by restricting the input, the system,
and the output to be continuous-time quantities, as shown in Fig. 1.1b. This diagram captures the
basic structure of continuous-time signals and systems, the details of which are reviewed later in this
chapter and the next. Restricting the input, the system, and the output to be discrete-time (DT)
quantities, as shown in Fig. 1.1c, leads to the topic of discrete-time signals and systems.

Typical digital signal processing (DSP) systems are hybrids of continuous-time and discrete-time
systems. Ordinarily, DSP systems begin and end with continuous-time signals, but they process
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2 Chapter 1. Review of Continuous-Time Signals and Systems

signals using a digital signal processor of some sort. Specialized hardware is required to bridge
the continuous-time and discrete-time worlds. As the block diagram of Fig. 1.2 shows, general DSP
systems are more complex than either Figs. 1.1b or 1.1c allow; both CT and DT concepts are needed
to understand complete DSP systems.

x(t) continuous
to discrete

x[n] discrete-time
system

y[n] discrete to
continuous

y(t)

Figure 1.2: Block diagram of a typical digital signal processing system.

A more detailed explanation of Fig. 1.2 helps further justify why it is important for us to review
continuous-time concepts. The continuous-to-discrete block converts a continuous-time input signal
into a discrete-time signal, which is then processed by a digital processor. The discrete-time output
of the processor is then converted back to a continuous-time signal.† Only with knowledge of
continuous-time signals and systems is it possible to understand these components of a DSP system.
Sampling theory, which guides our understanding of the CT-to-DT and DT-to-CT converters, can
be readily mastered with a thorough grasp of continuous-time signals and systems. Additionally,
the discrete-time algorithms implemented on the digital signal processor are often synthesized from
continuous-time system models. All in all, continuous-time signals and systems concepts are useful
and necessary to understand the elements of a DSP system.

Nearly all basic concepts in the study of continuous-time signals and systems apply to the discrete-
time world, with some modifications. Hence, it is economical and very effective to build on the pre-
vious foundations of continuous-time concepts. Although discrete-time math is inherently simpler
than continuous-time math (summation rather than integration, subtraction instead of differentia-
tion), students find it difficult, at first, to grasp basic discrete-time concepts. The reasons are not
hard to find. We are all brought up on a steady diet of continuous-time physics and math since high
school, and we find it easier to identify with the continuous-time world. It is much easier to grasp
many concepts in continuous-time than in discrete-time. Rather than fight this reality, we might
use it to our advantage.

1.1 Signals and Signal Categorizations

A signal is a set of data or information. Examples include telephone and television signals, monthly
sales of a corporation, and the daily closing prices of a stock market (e.g., the Dow Jones averages).
In all of these examples, the signals are functions of the independent variable time. This is not
always the case, however. When an electrical charge is distributed over a body, for instance, the
signal is the charge density, a function of space rather than time. In this book we deal almost
exclusively with signals that are functions of time. The discussion, however, applies equally well to
other independent variables.

Signals are categorized as either continuous-time or discrete-time and as either analog or digital.
These fundamental signal categories, to be described next, facilitate the systematic and efficient
analysis and design of signals and systems.

†As we shall later see, the continuous-to-discrete block is typically comprised of a signal conditioning circuit
followed by a CT-to-DT converter and an analog-to-digital converter (ADC). Similarly, the discrete-to-continuous
block is typically comprised of a digital-to-analog converter (DAC) followed by a DT-to-CT converter and finally
another conditioning circuit.
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1.1. Signals and Signal Categorizations 3

1.1.1 Continuous-Time and Discrete-Time Signals

A signal that is specified for every value of time t is a continuous-time signal. Since the signal is
known for every value of time, precise event localization is possible. The tidal height data displayed
in Fig. 1.3a is an example of a continuous-time signal, and signal features such as daily tides as well
as the effects of a massive tsunami are easy to locate.

(a)
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Source: Hydrographic and Oceanographic Dept., Japan Coast Guard

tidal height [cm], Syowa Station, Antarctica, UTC+3, 2004
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(b)

NASDAQ composite index, first closing value each month

Internet/dot-com bubble

Figure 1.3: Examples of (a) continuous-time and (b) discrete-time signals.

A signal that is specified only at discrete values of time is a discrete-time signal. Ordinarily, the
independent variable for discrete-time signals is denoted by the integer n. For discrete-time signals,
events are localized within the sampling period. The technology-heavy NASDAQ composite index
displayed in Fig. 1.3b is an example of a discrete-time signal, and features such as the Internet/dot-
com bubble as well as the impact of the September 11 terrorist attacks are visible with a precision
that is limited by the one month sampling interval.

1.1.2 Analog and Digital Signals

The concept of continuous-time is often confused with that of analog. The two are not the same.
The same is true of the concepts of discrete-time and digital. A signal whose amplitude can take on
any value in a continuous range is an analog signal. This means that an analog signal amplitude can
take on an infinite number of values. A digital signal, on the other hand, is one whose amplitude
can take on only a finite number of values. Signals associated with typical digital devices take on
only two values (binary signals). A digital signal whose amplitudes can take on L values is an L-ary
signal of which binary (L = 2) is a special case.

The terms “continuous-time” and “discrete-time” qualify the nature of a signal along the time
(horizontal) axis. The terms “analog” and “digital,” on the other hand, qualify the nature of
the signal amplitude (vertical axis). Using a sinusoidal signal, Fig. 1.4 demonstrates the various
differences. It is clear that analog is not necessarily continuous-time and that digital need not be
discrete-time. Figure 1.4c shows, for example, an analog, discrete-time signal. We shall discuss later
a systematic procedure for A/D conversion, which involves quantization (rounding off), as explained
in Sec. 3.6.
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4 Chapter 1. Review of Continuous-Time Signals and Systems
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Figure 1.4: Examples of (a) analog, continuous-time, (b) digital, continuous-time, (c) analog,
discrete-time, and (d) digital, discrete-time sinusoids.

Signals in the physical world tend to be analog and continuous-time in nature (Fig. 1.4a). Digital,
continuous-time signals (Fig. 1.4b) are not common in typical engineering systems. As a result, when
we refer to a continuous-time signal, an analog continuous-time signal is implied.

Computers operate almost exclusively with digital, discrete-time data (Fig. 1.4d). Digital repre-
sentations can be difficult to mathematically analyze, so we often treat computer signals as if they
were analog rather than digital (Fig. 1.4c). Such approximations are mathematically tractable and
provide needed insights into the behavior of DSP systems and signals.

1.2 Operations on the Independent CT Variable

We shall review three useful operations that act on the independent variable of a CT signal: shifting,
scaling, and reversal. Since they act on the independent variable, these operations do not change the
shape of the underlying signal. Detailed derivations of these operations can be found in [1]. Although
the independent variable in our signal description is time, the discussion is valid for functions having
continuous independent variables other than time (e.g., frequency or distance).

1.2.1 CT Time Shifting

A signal x(t) (Fig. 1.5a) delayed by b > 0 seconds (Fig. 1.5b) is represented by x(t − b). Similarly,
the signal x(t) advanced by b > 0 seconds (Fig. 1.5c) is represented by x(t+ b). Thus, to time shift a
signal x(t) by b seconds, we replace t with t− b everywhere in the expression for x(t). If b is positive,
the shift represents a time delay; if b is negative, the shift represents a time advance by |b|. This
is consistent with the fact that a time delay of b seconds can be viewed as a time advance of −b
seconds.

Notice that the time-shifting operation is on the independent variable t; the function itself remains
unchanged. In Fig. 1.5, the function x(·) starts when its argument equals T1. Thus, x(t − b) starts
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1.2. Operations on the Independent CT Variable 5

x(t)

x(t − b)

x(t + b)
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(a)

(b)

(c)

T1

T1 + b

T1 − b

Figure 1.5: Time shifting a CT signal: (a) original signal, (b) delay by b, and (c) advance by b.

when its argument t − b equals T1, or t = T1 + b. Similarly, x(t + b) starts when t + b = T1, or
t = T1 − b.

1.2.2 CT Time Scaling

A signal x(t), when time compressed by factor a > 1, is represented by x(at). Similarly, a signal time
expanded by factor a > 1 is represented by x(t/a). Figure 1.6a shows a signal x(t). Its factor-2 time-
compressed version is x(2t) (Fig. 1.6b), and its factor-2 time-expanded version is x(t/2) (Fig. 1.6c).
In general, to time scale a signal x(t) by factor a, we replace t with at everywhere in the expression
for x(t). If a > 1, the scaling represents time compression (by factor a), and if 0 < a < 1, the scaling
represents time expansion (by factor 1/a). This is consistent with the fact that time compression
by factor a can be viewed as time expansion by factor 1/a.

As in the case of time shifting, time scaling operates on the independent variable and does
not change the underlying function. In Fig. 1.6, the function x(·) has a maximum value when its
argument equals T1. Thus, x(2t) has a maximum value when its argument 2t equals T1, or t = T1/2.
Similarly, x(t/2) has a maximum when t/2 = T1, or t = 2T1.

. Drill 1.1 (CT Time Scaling)

Show that the time compression of a sinusoid by a factor a (a > 1) results in a sinusoid of the same
amplitude and phase, but with the frequency increased a-fold. Similarly, show that the time expansion
of a sinusoid by a factor a (a > 1) results in a sinusoid of the same amplitude and phase, but with the
frequency reduced by a factor a. Verify your conclusions by sketching the sinusoid sin(2t) and the same
sinusoid compressed by a factor 3 and expanded by a factor 2.

/

1.2.3 CT Time Reversal

Consider the signal x(t) in Fig. 1.7a. We can view x(t) as a rigid wire frame hinged at the vertical
axis. To time reverse x(t), we rotate this frame 180◦ about the vertical axis. This time reversal, or
reflection of x(t) about the vertical axis, gives us the signal x(−t) (Fig. 1.7b); whatever happens in
Fig. 1.7a at some instant t also happens in Fig. 1.7b at the instant −t. Thus, the mirror image of
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6 Chapter 1. Review of Continuous-Time Signals and Systems
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Figure 1.6: Time scaling a CT signal: (a) original signal, (b) compress by 2, and (c) expand by 2.

x(t) about the vertical axis is x(−t). Notice that time reversal is a special case of the time-scaling
operation x(at) where a = −1.

x(t) x(−t)

tt0 0

(a) (b)

T1

T2

−T1

−T2

Figure 1.7: Time reversing a CT signal: (a) original signal and (b) its time reverse.

1.2.4 Combined CT Time Shifting and Scaling

Many circumstances require simultaneous use of more than one of the previous operations. The
most general case is x(at− b), which is realized in two possible sequences of operations:

1. Time shift x(t) by b to obtain x(t − b). Now time scale the shifted signal x(t − b) by a (i.e.,
replace t with at) to obtain x(at − b).

2. Time scale x(t) by a to obtain x(at). Now time shift x(at) by b
a (i.e., replace t with [t− b

a ]) to

obtain x
(
a[t− b

a ]
)
= x(at− b).

For instance, the signal x(2t− 6) can be obtained in two ways. First, delay x(t) by 6 to obtain
x(t − 6) and then time compress this signal by factor 2 (replace t with 2t) to obtain x(2t − 6).
Alternately, we first time compress x(t) by factor 2 to obtain x(2t); next, replace t with t − 3 to
delay this signal and produce x(2t− 6).
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1.3. CT Signal Models 7

When a is negative, x(at) involves time scaling as well as time reversal. The procedure, however,
remains the same. Consider the case of a signal x(−2t + 3) where a = −2. This signal can
be generated by advancing the signal x(t) by 3 seconds to obtain x(t + 3). Next, compress and
reverse this signal by replacing t with −2t to obtain x(−2t+ 3). Alternately, we may compress and
reverse x(t) to obtain x(−2t); next, replace t with t − 3/2 to delay this signal by 3/2 and produce
x(−2[t− 3/2]) = x(−2t+ 3).

. Drill 1.2 (Combined CT Operations)

Using the signal x(t) shown in Fig. 1.6a, sketch the signal y(t) = x(−3t − 4). Verify that y(t) has a
maximum value at t = T1+4

−3
.

/

1.3 CT Signal Models

In the area of signals and systems, the unit step, the unit gate, the unit triangle, the unit impulse,
the exponential, and the interpolation functions are very useful. They not only serve as a basis for
representing other signals, but their use benefits many aspects of our study of signals and systems.
We shall briefly review descriptions of these models.

1.3.1 CT Unit Step Function u(t)

In much of our discussion, signals and processes begin at t = 0. Such signals can be conveniently
described in terms of unit step function u(t) shown in Fig. 1.8a. This function is defined by

u(t) =





1 t > 0
1
2 t = 0

0 t < 0

. (1.1)

u(t) cos(2πt)u(t)

tt 00 −1−1 11

11

−1−1

· · ·

(a) (b)

Figure 1.8: (a) CT unit step u(t) and (b) cos(2πt)u(t).

If we want a signal to start at t = 0 and have a value of zero for t < 0, we only need to multiply
the signal by u(t). For instance, the signal cos(2πt) represents an everlasting sinusoid that starts at
t = −∞. The causal form of this sinusoid, illustrated in Fig. 1.8b, can be described as cos(2πt)u(t).
The unit step function and its shifts also prove very useful in specifying functions with different
mathematical descriptions over different intervals (piecewise functions).

A Meaningless Existence?

It is worth commenting that not everyone defines the point u(0) as 1/2. Some texts define u(0)
as 1, others define it as 0, and still others refuse to define it at all. While each definition has
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8 Chapter 1. Review of Continuous-Time Signals and Systems

its own advantages, u(0) = 1/2 is particularly appropriate from a theoretical signals and systems
perspective. For real-world signals applications, however, it makes no practical difference how the
point u(0) is defined as long as the value is finite. A single point, u(0) or otherwise, is just one among
an uncountably infinite set of peers. Lost in the masses, any single, finite-valued point simply does
not matter; its individual existence is meaningless.

Further, notice that since it is everlasting, a true unit step cannot be generated in practice. One
might conclude, given that u(t) is physically unrealizable and that individual points are inconse-
quential, that the whole of u(t) is meaningless. This conclusion is false. Collectively the points of
u(t) are well behaved and dutifully carry out the desired function, which is greatly needed in the
mathematics of signals and systems.

1.3.2 CT Unit Gate Function Π(t)

We define a unit gate function Π(x) as a gate pulse of unit height and unit width, centered at the
origin, as illustrated in Fig. 1.9a. Mathematically,†

Π(t) =





1 |t| < 1
2

1
2 |t| = 1

2

0 |t| > 1
2

. (1.2)

The gate pulse in Fig. 1.9b is the unit gate pulse Π(t) expanded by a factor τ and therefore can
be expressed as Π(t/τ). Observe that τ , the denominator of the argument of Π(t/τ), indicates the
width of the pulse.

Π(t) Π(t/τ)

tt τ
2

− τ
2

00− 1
2

1
2

11

(a) (b)

Figure 1.9: (a) CT unit gate Π(t) and (b) Π(t/τ).

. Drill 1.3 (CT Unit Gate Representations)

The unit gate function Π(t) can be represented in terms of time-shifted unit step functions. Determine
the value b that ensures u(t+ b)− u(t − b) is equal to Π(t). Next, represent Π(t) using only time-shifted
and reflected unit step functions.

/

1.3.3 CT Unit Triangle Function Λ(t)

We define a unit triangle function Λ(t) as a triangular pulse of unit height and unit width, centered
at the origin, as shown in Fig. 1.10a. Mathematically,

Λ(t) =

{
1− 2|t| |t| ≤ 1

2

0 |t| > 1
2

. (1.3)

†At |t| = 1
2
, we desire Π(t) = 0.5 because the inverse Fourier transform of a discontinuous signal converges to the

mean of the two values at either side of the discontinuity. As in the case of the unit step, the particular value assigned
to a point of discontinuity, while perhaps theoretically convenient, has little practical significance.
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1.3. CT Signal Models 9

The pulse in Fig. 1.10b is Λ(t/τ). Observe that here, as for the gate pulse, the denominator τ of
the argument of Λ(t/τ) indicates the pulse width.

Λ(t) Λ(t/τ)

tt τ
2

− τ
2

00− 1
2

1
2

1
1

(a) (b)

Figure 1.10: (a) CT unit triangle Λ(t) and (b) Λ(t/τ).

1.3.4 CT Unit Impulse Function δ(t)

The CT unit impulse function δ(t) is one of the most important functions in the study of signals
and systems. Often called the Dirac delta function, δ(t) was first defined by P. A. M. Dirac as

δ(t) = 0 for t 6= 0

and∫∞
−∞ δ(t) dt = 1.

(1.4)

We can visualize this impulse as a tall, narrow rectangular pulse of unit area, as illustrated in
Fig. 1.11b. The width of this rectangular pulse is a very small value ε, and its height is a very large
value 1/ε. In the limit ε→ 0, this rectangular pulse has infinitesimally small width, infinitely large
height, and unit area, thereby conforming exactly to the definition of δ(t) given in Eq. (1.4). Notice
that δ(t) = 0 everywhere except at t = 0, where it is undefined. For this reason a unit impulse is
represented by the spear-like symbol in Fig. 1.11a.

δ(t)

tt

tt

(a)

00

00

1
ε

1
ε

− ε
2

ε
2

(b)

−ε ε

(c)

1
ε
√

2π
e−t2/(2ε2)

(d)

ε→ 0ε→ 0

ε→ 0

Figure 1.11: (a) CT unit impulse δ(t) and (b)–(d) visualizing δ(t) using various functions in the
limit ε→ 0.

Other pulses, such as the triangle pulse shown in Fig. 1.11c or the Gaussian pulse shown in
Fig. 1.11d, may also be used to develop the unit impulse function. The important feature of δ(t)
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10 Chapter 1. Review of Continuous-Time Signals and Systems

is not its shape but the fact that its effective duration (pulse width) approaches zero while its area
remains at unity. Both the triangle pulse (Fig. 1.11c) and the Gaussian pulse (Fig. 1.11d) become
taller and narrower as ε becomes smaller. In the limit as ε→ 0, the pulse height→∞, and its width
or duration → 0. Yet, the area under each pulse is unity regardless of the value of ε.

From Eq. (1.4), it follows that the function kδ(t) = 0 for all t 6= 0, and its area is k. Thus, kδ(t)
is an impulse function whose area is k (in contrast to the unit impulse function, whose area is 1).
Graphically, we represent kδ(t) by either scaling our representation of δ(t) by k or by placing a k
next to the impulse.

Properties of the CT Impulse Function

Without going into the proofs, we shall enumerate properties of the unit impulse function. The
proofs may be found in the literature (see, for example, [1]).

1. Multiplication by a CT Impulse: If a function φ(t) is continuous at t = 0, then

φ(t)δ(t) = φ(0)δ(t).

Generalizing, if φ(t) is continuous at t = b, then

φ(t)δ(t − b) = φ(b)δ(t− b). (1.5)

2. The Sampling Property: If φ(t) is continuous at t = 0, then Eqs. (1.4) and (1.5) yield

∫ ∞

−∞
φ(t)δ(t) dt = φ(0)

∫ ∞

−∞
δ(t) dt = φ(0).

Similarly, if φ(t) is continuous at t = b, then

∫ ∞

−∞
φ(t)δ(t − b) dt = φ(b). (1.6)

Equation (1.6) states that the area under the product of a function with a unit impulse is equal
to the value of that function at the instant where the impulse is located. This property is very
important and useful and is known as the sampling or sifting property of the unit impulse.

3. Relationships between δ(t) and u(t): Since the area of the impulse is concentrated at
one point t = 0, it follows that the area under δ(t) from −∞ to 0− is zero, and the area is
unity once we pass t = 0. The symmetry of δ(t), evident in Fig. 1.11, suggests the area is 1/2
at t = 0. Hence,

∫ t

−∞
δ(τ) dτ = u(t) =





0 t < 0
1
2 t = 0

1 t > 0

. (1.7)

From Eq. (1.7) it follows that

δ(t) =
d

dt
u(t). (1.8)

The Unit Impulse as a Generalized Function

The definition of the unit impulse function given in Eq. (1.4) is not rigorous mathematically, which
leads to serious difficulties. First, the impulse function does not define a unique function. For
example, it can be shown that δ(t) + δ̇(t) also satisfies Eq. (1.4). Moreover, δ(t) is not even a true
function in the ordinary sense. An ordinary function is specified by its values for all time t. The
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