Contents

Preface

Preface
page xvii

List of abbreviations

List of abbreviations
xx

Part I Motivations, definitions, and principles

1 Motivations

1.1 Linearity and linearization
1.2 Reliability improvement
1.3 High peak-to-average power signal types
1.4 Energy efficiency
1.5 Efficiency improvement vs. signal PAPR
1.6 References

2 Definitions

2.1 Physical foundations
2.1.1 Maxwell’s equations
2.1.2 Ohm’s Law
2.2 Supply vs. bias definitions
2.3 Linear vs. polar circuitry
2.4 Gain when in compression
2.4.1 Slope gain
2.4.2 Ratiometric gain
2.4.3 Power transfer function and RF waveforms
2.5 Power supply rejection
2.6 Dynamic range
2.6.1 Signal envelope
2.6.2 Power control
2.6.3 Total dynamic range
2.7 Bandwidth expansion
2.8 References
3 Dynamic power supply common principles

3.1 Top principle: PA efficiency visibility to top supply 32
3.2 General (shared) architecture 33
3.3 Power dissipations 34
 3.3.1 Conservation of energy (CoE) relationship 35
 3.3.2 Temperature vs. heat 37
 3.3.3 Thermal paths vs. signal paths 37
3.4 DPST node voltages and currents 38
3.5 Cost and architectures 39
3.6 DPS bandwidth 42
3.7 Reference 43

4 Linear power amplifiers

4.1 Overview 44
 4.1.1 Bias classes and their waveforms 47
 4.1.2 Linearity goals 51
 4.1.3 IV curve model (load line) 54
 4.1.4 Power series models 55
 4.1.5 Four gain definitions 55
 4.1.6 Variable supply behaviors 61
4.2 Linearity/energy efficiency trade-off 68
4.3 Stability 71
 4.3.1 Circuit stability 71
 4.3.2 Thermal stability 72
 4.3.3 Manufacturing stability 73
4.4 Major distortion mechanisms 73
 4.4.1 AM-AM 74
 4.4.2 AM-PM 74
4.5 Gain and linearization principles 75
4.6 Supply noise suppression 76
4.7 References 77

5 Envelope tracking principles

5.1 History of the technique 79
5.2 Power supply value tolerance 80
 5.2.1 Ideal case 81
 5.2.2 Finite output conductance case 82
 5.2.3 Measuring the supply variation to sideband conversion 84
5.3 Broadband output noise 88
 5.3.1 Noise figure x gain 89
 5.3.2 Present whenever gain is active 89
5.4 Supply accuracy tolerance 90
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.1 Finite transistor output conductance</td>
<td>91</td>
</tr>
<tr>
<td>5.4.2 Supply voltage profile vs. envelope value</td>
<td>92</td>
</tr>
<tr>
<td>5.4.3 Minimum power supply value</td>
<td>95</td>
</tr>
<tr>
<td>5.5 DPS time alignment</td>
<td>96</td>
</tr>
<tr>
<td>5.6 Envelope waveform characteristics</td>
<td>98</td>
</tr>
<tr>
<td>5.7 Circuit model: CCS</td>
<td>101</td>
</tr>
<tr>
<td>5.8 Bias conditions</td>
<td>101</td>
</tr>
<tr>
<td>5.8.1 Easy: variable class with modulation</td>
<td>101</td>
</tr>
<tr>
<td>5.8.2 Harder: constant class with modulation</td>
<td>102</td>
</tr>
<tr>
<td>5.9 Low frequency stability</td>
<td>103</td>
</tr>
<tr>
<td>5.10 Load presented to the DPS by the ET PA</td>
<td>104</td>
</tr>
<tr>
<td>5.11 Energy efficiency effects/power dissipations</td>
<td>107</td>
</tr>
<tr>
<td>5.11.1 Referenced at the RF PA</td>
<td>107</td>
</tr>
<tr>
<td>5.11.2 Referenced at the power supply</td>
<td>108</td>
</tr>
<tr>
<td>5.11.3 Limit on maximum available efficiency</td>
<td>109</td>
</tr>
<tr>
<td>5.12 Achieving envelope zero values</td>
<td>110</td>
</tr>
<tr>
<td>5.13 TDM burst control</td>
<td>110</td>
</tr>
<tr>
<td>5.14 Reverse intermodulation</td>
<td>111</td>
</tr>
<tr>
<td>5.15 Output mismatch</td>
<td>112</td>
</tr>
<tr>
<td>5.16 Envelope tracking property summary</td>
<td>113</td>
</tr>
<tr>
<td>5.17 References</td>
<td>114</td>
</tr>
<tr>
<td>5.5 DPS time alignment</td>
<td>96</td>
</tr>
<tr>
<td>5.6 Envelope waveform characteristics</td>
<td>98</td>
</tr>
<tr>
<td>5.7 Circuit model: CCS</td>
<td>101</td>
</tr>
<tr>
<td>5.8 Bias conditions</td>
<td>101</td>
</tr>
<tr>
<td>5.8.1 Easy: variable class with modulation</td>
<td>101</td>
</tr>
<tr>
<td>5.8.2 Harder: constant class with modulation</td>
<td>102</td>
</tr>
<tr>
<td>5.9 Low frequency stability</td>
<td>103</td>
</tr>
<tr>
<td>5.10 Load presented to the DPS by the ET PA</td>
<td>104</td>
</tr>
<tr>
<td>5.11 Energy efficiency effects/power dissipations</td>
<td>107</td>
</tr>
<tr>
<td>5.11.1 Referenced at the RF PA</td>
<td>107</td>
</tr>
<tr>
<td>5.11.2 Referenced at the power supply</td>
<td>108</td>
</tr>
<tr>
<td>5.11.3 Limit on maximum available efficiency</td>
<td>109</td>
</tr>
<tr>
<td>5.12 Achieving envelope zero values</td>
<td>110</td>
</tr>
<tr>
<td>5.13 TDM burst control</td>
<td>110</td>
</tr>
<tr>
<td>5.14 Reverse intermodulation</td>
<td>111</td>
</tr>
<tr>
<td>5.15 Output mismatch</td>
<td>112</td>
</tr>
<tr>
<td>5.16 Envelope tracking property summary</td>
<td>113</td>
</tr>
<tr>
<td>5.17 References</td>
<td>114</td>
</tr>
<tr>
<td>6 Polar transmitter principles</td>
<td>115</td>
</tr>
<tr>
<td>6.1 History of the technique</td>
<td>115</td>
</tr>
<tr>
<td>6.1.1 Plate modulation (predates 1920)</td>
<td>115</td>
</tr>
<tr>
<td>6.1.2 EER by Kahn in 1952–1957</td>
<td>116</td>
</tr>
<tr>
<td>6.1.3 Resurgence in 1990s</td>
<td>117</td>
</tr>
<tr>
<td>6.2 Magnitude control mechanism</td>
<td>118</td>
</tr>
<tr>
<td>6.2.1 Measuring the supply-variation-to-sideband transfer function</td>
<td>122</td>
</tr>
<tr>
<td>6.2.2 Stage dynamic range</td>
<td>122</td>
</tr>
<tr>
<td>6.2.3 Transistor transconductance reduction</td>
<td>124</td>
</tr>
<tr>
<td>6.2.4 DPS output noise requirements</td>
<td>125</td>
</tr>
<tr>
<td>6.3 Broadband output noise characteristics</td>
<td>126</td>
</tr>
<tr>
<td>6.3.1 Phase noise dominates</td>
<td>126</td>
</tr>
<tr>
<td>6.3.2 Noise figure effect is suppressed</td>
<td>127</td>
</tr>
<tr>
<td>6.4 Supply accuracy requirements</td>
<td>127</td>
</tr>
<tr>
<td>6.5 DPS time alignment</td>
<td>128</td>
</tr>
<tr>
<td>6.6 Signal waveform characteristics</td>
<td>129</td>
</tr>
<tr>
<td>6.7 Circuit model: “switch”</td>
<td>132</td>
</tr>
<tr>
<td>6.7.1 Port “impedances”</td>
<td>132</td>
</tr>
<tr>
<td>6.7.2 Restricted ability to use s-parameters</td>
<td>132</td>
</tr>
<tr>
<td>6.7.3 Switch-based amplifier classes: D, E, F</td>
<td>133</td>
</tr>
</tbody>
</table>

6 Polar transmitter principles

6.1 History of the technique

6.1.1 Plate modulation (predates 1920)

6.1.2 EER by Kahn in 1952–1957

6.1.3 Resurgence in 1990s

6.2 Magnitude control mechanism

6.2.1 Measuring the supply-variation-to-sideband transfer function

6.2.2 Stage dynamic range

6.2.3 Transistor transconductance reduction

6.2.4 DPS output noise requirements

6.3 Broadband output noise characteristics

6.3.1 Phase noise dominates

6.3.2 Noise figure effect is suppressed

6.4 Supply accuracy requirements

6.5 DPS time alignment

6.6 Signal waveform characteristics

6.7 Circuit model: “switch”

6.7.1 Port “impedances”

6.7.2 Restricted ability to use s-parameters

6.7.3 Switch-based amplifier classes: D, E, F
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7.4</td>
<td>P-mode: not a switch, but not linear (L-mode) either</td>
<td>133</td>
</tr>
<tr>
<td>6.7.5</td>
<td>Different design rules</td>
<td>133</td>
</tr>
<tr>
<td>6.8</td>
<td>Bias conditions</td>
<td>135</td>
</tr>
<tr>
<td>6.8.1</td>
<td>CCS modes: class A, B, C</td>
<td>135</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Class PFS</td>
<td>135</td>
</tr>
<tr>
<td>6.8.3</td>
<td>Dynamic bias with envelope variations</td>
<td>136</td>
</tr>
<tr>
<td>6.8.4</td>
<td>Drive with rectangular waveforms</td>
<td>139</td>
</tr>
<tr>
<td>6.8.5</td>
<td>Differences between bipolar and FET operation</td>
<td>139</td>
</tr>
<tr>
<td>6.9</td>
<td>Load presented to the DPS</td>
<td>141</td>
</tr>
<tr>
<td>6.9.1</td>
<td>Single stage polar operation</td>
<td>142</td>
</tr>
<tr>
<td>6.9.2</td>
<td>Multiple stage polar operation</td>
<td>143</td>
</tr>
<tr>
<td>6.9.3</td>
<td>Impact from output mismatch</td>
<td>144</td>
</tr>
<tr>
<td>6.10</td>
<td>Energy efficiency effects/power dissipations</td>
<td>145</td>
</tr>
<tr>
<td>6.10.1</td>
<td>Referenced at the RF PA</td>
<td>145</td>
</tr>
<tr>
<td>6.10.2</td>
<td>Overall power dissipation</td>
<td>146</td>
</tr>
<tr>
<td>6.10.3</td>
<td>Temperature rise</td>
<td>147</td>
</tr>
<tr>
<td>6.11</td>
<td>Cross modulation</td>
<td>149</td>
</tr>
<tr>
<td>6.11.1</td>
<td>DPS-AM distortion</td>
<td>149</td>
</tr>
<tr>
<td>6.11.2</td>
<td>DPS-PM mechanism</td>
<td>151</td>
</tr>
<tr>
<td>6.11.3</td>
<td>Desired input magnitude variations</td>
<td>154</td>
</tr>
<tr>
<td>6.11.4</td>
<td>Reverse intermodulation</td>
<td>155</td>
</tr>
<tr>
<td>6.12</td>
<td>RF output power control</td>
<td>155</td>
</tr>
<tr>
<td>6.12.1</td>
<td>High output powers</td>
<td>156</td>
</tr>
<tr>
<td>6.12.2</td>
<td>Low output powers</td>
<td>156</td>
</tr>
<tr>
<td>6.12.3</td>
<td>Very low output powers</td>
<td>157</td>
</tr>
<tr>
<td>6.12.4</td>
<td>Automatic low battery compensation (ALBC)</td>
<td>159</td>
</tr>
<tr>
<td>6.13</td>
<td>Handling a zero output (IQ origin crossing)</td>
<td>160</td>
</tr>
<tr>
<td>6.13.1</td>
<td>Forced zero output</td>
<td>161</td>
</tr>
<tr>
<td>6.13.2</td>
<td>Opposing phase offset</td>
<td>163</td>
</tr>
<tr>
<td>6.13.3</td>
<td>Opposing phase summing</td>
<td>164</td>
</tr>
<tr>
<td>6.13.4</td>
<td>High-level polar/low-level LINC (HLP/LLL)</td>
<td>166</td>
</tr>
<tr>
<td>6.13.5</td>
<td>Envelope flooring</td>
<td>169</td>
</tr>
<tr>
<td>6.13.6</td>
<td>Flooring and filling</td>
<td>171</td>
</tr>
<tr>
<td>6.13.7</td>
<td>Load impedance manipulation combining outphasing with polar (LIMOP)</td>
<td>172</td>
</tr>
<tr>
<td>6.13.8</td>
<td>Stop the AM</td>
<td>173</td>
</tr>
<tr>
<td>6.14</td>
<td>TDM burst control</td>
<td>174</td>
</tr>
<tr>
<td>6.15</td>
<td>Stability performance</td>
<td>175</td>
</tr>
<tr>
<td>6.15.1</td>
<td>Circuit stability</td>
<td>176</td>
</tr>
<tr>
<td>6.15.2</td>
<td>Inherent low frequency stability</td>
<td>176</td>
</tr>
<tr>
<td>6.15.3</td>
<td>Thermal stability</td>
<td>176</td>
</tr>
<tr>
<td>6.15.4</td>
<td>Manufacturing stability</td>
<td>177</td>
</tr>
<tr>
<td>6.15.5</td>
<td>Operating stability (ageing)</td>
<td>178</td>
</tr>
<tr>
<td>6.16</td>
<td>Limiters</td>
<td>179</td>
</tr>
</tbody>
</table>
Part II DPST circuit issues

7 Special linear PA circuit considerations for ET

7.1 Core principle: power supply value independence
7.2 Low frequency stability
 7.2.1 Problems with usual practice
 7.2.2 DPS output impedance requirements
 7.2.3 Alternative method to eliminate low frequency oscillation
7.3 Matching network complexity
 7.3.1 \(C_{in}(V) \): a problem for input and interstage matching networks
 7.3.2 \(C_{out}(V) \): a problem for output matching networks (OMN)
7.4 Gain flatness and control
 7.4.1 Across frequency
 7.4.2 Across \(P_{in} \) and \(V_{DPS} \)
 7.4.3 Gain control
7.5 Bias network dynamics – or not
 7.5.1 Bias impedance
 7.5.2 Impact on PA stability
7.6 Optimum DPS profiles for ET
7.7 PA operating voltage and energy efficiency
7.8 Noise figure and wideband PA noise
7.9 Alternative PA circuit architectures
 7.9.1 Cascode
 7.9.2 Stacked transistors
 7.9.3 Transformer combining
7.10 Output mismatch consequences
7.11 References

8 Intentional circuit compression

8.1 C-mode operating requirements
 8.1.1 Bias vs. power supply variation
 8.1.2 Drive into resistive operation
 8.1.3 FET or bipolar: behavior differences
8.2 Gain behavior in compression
8.3 IV characteristic impacts
 8.3.1 \(R_{ON} \) vs. \(R_{L} \) ratio
 8.3.2 Operation at high voltage is preferred
 8.3.3 Special dissipations in bipolar transistors
8.4 Device speed considerations

8.5 Envelope modulation accuracy
 8.5.1 Case when $V_{AMO} = 0$
 8.5.2 Differences when $V_{AMO} > 0$

8.6 Mode identification and model validation
 8.6.1 Test strategy to validate C-mode operation
 8.6.2 Power saturation
 8.6.3 Square-law power relationship
 8.6.4 Stage series resistance
 8.6.5 Power supply noise susceptibility
 8.6.6 Determining V_{AMO}
 8.6.7 Test strategy to validate P-mode operation

8.7 Impedance matching considerations
 8.7.1 Output matching networks (OMN)
 8.7.2 Input matching network (IMN)
 8.7.3 Transistor impact of output mismatch (VSWR)
 8.7.4 Multiband output capability

8.8 Circuit stability demonstrations
 8.8.1 Reduce the slope gain
 8.8.2 Reverse intermodulation

8.9 Multistage issues

8.10 References

9 Dynamic power supplies

9.1 Power objectives
 9.1.1 Resistive current
 9.1.2 Reactive current
 9.1.3 Slew rate
 9.1.4 Power conversion

9.2 DPS application classes
 9.2.1 Mobile devices
 9.2.2 Infrastructure
 9.2.3 Common DPS architectures

9.3 Linear dynamic voltage regulators (LDVR): the simplest DPS
 9.3.1 LDVR design principles
 9.3.2 Efficiency effects
 9.3.3 Output impedance

9.4 Switching regulators
 9.4.1 Switching transistor characterization
 9.4.2 DC–DC is a current source
 9.4.3 Efficiency varies with load and output voltage
 9.4.4 Charge pump + SMPS
9.4.5 Combined Si–non-Si
9.5 Combined regulators within one DPS
 9.5.1 Series combination
 9.5.2 Shunt combination
 9.5.3 Hysteretic switching
9.6 DPS bandwidth
 9.6.1 Relation to signal bandwidth
 9.6.2 Signal slew rate: a brief survey
9.7 Conversion efficiency characteristics
9.8 DPS output noise
9.9 DPS output impedance
9.10 Output stability
 9.10.1 Load can be negative dynamic resistance
 9.10.2 Load impedance is widely varying for ET
9.11 Automatic low battery compensation operation
9.12 VSWR management (DP only)
9.13 Power control
9.14 References

10 Device technologies: special issues for DPS use

10.1 What do we really want?
 10.1.1 IV characteristic curves
 10.1.2 Transfer characteristic and g_m
 10.1.3 Parasitic and installed capacitance
 10.1.4 FET-action regions
10.2 Linearity and noise suppression for envelope tracking
 10.2.1 Transconductance (or β) uniformity
 10.2.2 Extent of the CCS region
 10.2.3 Transition between resistive and CCS regions
10.3 Switching characteristics for DP
 10.3.1 Resistive characteristics
 10.3.2 Voltage offset
 10.3.3 Comparisons across switching transistor technologies
10.4 Transistor technology survey
10.5 Silicon technologies
 10.5.1 Si bipolar
 10.5.2 CMOS
 10.5.3 LDMOS
 10.5.4 SiGe HBT
 10.5.5 Si MESFET
10.6 (III/V) gallium arsenide technologies
 10.6.1 GaAs MESFET

12.4 Power quadrature modulation (power-QM) 411
 12.4.1 Envelope tracking in each arm 412
 12.4.2 Direct polar in each arm 412
12.5 Higher output power 413
 12.5.1 Parallel polar modulation 414
 12.5.2 Series stacking for power 416
12.6 References 417

Part III Testing and manufacturability 419
13 Testing and calibration techniques 421
 13.1 Characterization planning 421
 13.2 DPS characterization 422
 13.2.1 List of DPS tests 422
 13.2.2 Conditions and sample results 425
 13.3 RF amplifier characterization 426
 13.3.1 List of 3-port RF PA tests 426
 13.3.2 Booth chart set 427
 13.3.3 Additional set of PA tests 440
 13.4 RF power transistor characterization 444
 13.4.1 List of transistor tests 444
 13.4.2 IV curve set 445
 13.4.3 Additional set of transistor tests 451
 13.5 Power supply interface characterization 453
 13.6 DPST full-up characterization 454
 13.6.1 Assurance of the operating mode(s) desired 455
 13.6.2 ACLR and EVM metrics 455
 13.6.3 DPS accuracy 455
 13.6.4 DPS time alignment 456
 13.6.5 Use of adaptive digital pre-distortion 456
 13.6.6 Wideband noise 457
 13.7 Calibration principles 457
 13.8 Calibration at design 459
 13.8.1 L-mode PA operation 459
 13.8.2 C-mode PA operation 460
 13.9 Production floor calibration 460
 13.10 Self-calibration 461
 13.11 References 462

Appendix Switching transistor evaluation metrics across technologies 463
Index 467