Index

1 dB output compression point, 46
3-ports, 16, 61, 187, 200, 426

absolute resistance, 266
adjacent channel power, 51
AM sidebands, 21
AM-AM distortion, 74, 149
AM-PM distortion, 74, 152
amplitude vs. magnitude, 73
automatic low battery compensation, 160, 302
linear regulator application, 302
switching regulator application, 299
average power tracking, xx, 3, 10, 79, 272, 378
average to minimum power ratio, 24

bandwidth efficiency, 6
bandwidth expansion, 29
Barkhausen boundary, 417, 432
Barkhausen criteria, 71
bias, 15, 47
bias class, 47
bias network impedance, 206
bipolar transistors, 139, 257
additional power dissipation, 140, 237, 246
frequency dependent beta, 141, 199
near-origin distortion, 234
saturation delay, 232
thermal runaway, 233
Booth chart, 61, 135, 154, 157, 187, 200, 380
business. See cost
business considerations, 271
bypass capacitors, 72
cascading circuit, 216
CCS region, 81
charge pumps, 40, 281, 287
circuit stability, 71, 176, 187, 208, 262, 277, 384
class-G, 79
C-mode, 64, 121, 134, 152, 154, 203
C-mode operating quality, 226
C-mode validation, 247
complementary cumulative distribution function, 22
complex exponential, 13
conjugate matching, 14, 197, 252
conservation of energy, 35
constant power contour, 14
controlled current source, 44
Copernicus, 13
cost
circuit, 7, 40, 271, 283, 406
system, 5, 42, 70, 113, 298
crest-factor reduction, 170
cumulative distribution function, 22
DC-DC converter, 40, 281
Domino operation, 410
DPS to AM transfer gain, 85
DPS-AM distortion, 150
DPS-AM transfer linearity, 179
DPS-PM distortion, 152
driver leakage, 150, 152
dynamic power supply
bandwidth, 42, 382
envelope digital artifacts, 299
new interface, 34, 195, 300, 421
operating conversion efficiency, 32
output impedance, 195
PA load mismatch tracking, 305
port labels, 33
series filtering, 40, 273
shunt filtering, 41, 275
slew rate energy change, 269
stability not assured, 300
stand-alone tests, 422
visibility to top supply, 32
dynamic range, 21
dynamic resistance, 266
efficiency performance comparison, 147, 190
energy efficiency, 3
envelope dynamic range, 24
envelope elimination and restoration, 17, 116
envelope floor, 24
envelope flooring, 169
envelope flooring and filling, 171
envelope tracking
 core principle, 187, 190, 217
definition, 79
dynamic range, 189
everlope waveform distortion tolerance, 97
fixed bias PA, 101
gain control, 203
history, 79
 L-mode operation, 101
minimum power supply value, 95
output efficiency profiles, 189
output impedance mismatch, 112, 220
PA load to the DPS, 104
power dissipation reduction, 108
preferred transistor types, 373
property summary, 113
s-parameters, 101
supply accuracy tolerance, 90
supply voltage profile, 92
timing misalignment tolerance, 96
variable bias PA, 102
zero magnitude, 110
envelope waveform
 bandwidth expansion, 98
 ET distortion tolerance, 97
 error vector magnitude, 51, 128
 exponential DPS profile, 378
finite output conductance, 83, 91
gain, 378
 power-slope, 59
 ratiometric, 18
 ratiometric power, 59
 slope, 17
 gain collapse, 251, 380
 gain compression, 45, 74
 gain expansion, 45, 74, 189, 190
 gain measures, 55
 good enough, 5, 36, 39, 115, 117, 249
harmonic distortion, 51
heat flow diagrams, 70
heat vs. temperature, 37
 Ohm’s Law relationship, 37
high temperature operating life, 178
hybrid combinations
 different transfer functions, 377
 gain shift, 383
input matching network, 198, 256
interstage matching network, 199, 402
knee profile, 316
knee voltage, 69, 92, 147, 190, 210
 limiter, 179
 line of sight, 26
 linear amplifier, 44
 bias class, 47
 port based specification, 44
 push-pull, 47
 sinusoidal wave shape, 44
linear dynamic voltage regulator, 273, 275
 conversion efficiency, 277
 inductive output impedance, 279
 low dropout structure, 277
 output sinusoidal oscillation, 280
linear regulator
 conversion efficiency, 41
 linearity metrics
 adjacent channel power, 51
 error vector magnitude, 51
 harmonic distortion, 51
 linearity vs. efficiency trade-off, 68
 linearization, 5, 18, 46, 75, 154, 227
 L-mode, 63, 87
 load line, 54
 low frequency stability, 72, 103, 176, 192
manufacturing stability, 73, 134, 177
Maxwell’s equations, 12
negative dynamic resistance, 271, 400, 409
negative resistance, 72
noise figure, 88, 215
non line of sight, 27
Ohm’s Law, 12, 13, 41, 104, 190, 402
outphasing with polar modulation, 166, 172
output back-off, 47, 129
output matching network, 132, 199, 252
PA transistor characteristics
 avoid project doom, 308
 CMOS, 330
 GaAs EpiHEMT, 361
 GaAs HBT, 351
 GaAs MESFET, 348
 GaAs pHEMT, 356
 GaN E-HEMT, 371
 GaN HEMT, 365
 ideal, 309
 LDMOS, 334
 Si MESFET, 343
 SiGe HBT, 338
 silicon bipolar, 321
 partial gains, 378
 peak envelope power, 23, 46
 peak-to-average power, 6
 signal modulations, 7
 peak-to-average power ratio, 24
 plate modulation, 115
s-parameters, 101, 132	Taylor series, 55
square resistance profile, 231, 240, 283	temperature rise, 148
squegging, 176	thermal analysis, 37
stability	thermal paths, 37
circuit, 71, 176	thermal resistances, 38, 147
factor k, 72, 208	thermal stability, 72, 134, 177
low frequency, 72, 176, 192	time division multiplexing, 110, 174
manufacturing, 73, 177	transient spectrum behavior, 174
operating life, 178	transistor current transition time, 145
thermal, 177	transistor excess speed requirement, 244, 254, 283
stacked transistor circuit, 218	transistor mismatch ruggedizing, 258
stage series resistance, 249	transistor time constants, 241
supply, 15	uniform transfer boundary, 387
supply noise suppression, 76, 127	vector diagram, 23
supply noise to AM sideband conversion, 84, 122	vector summation parametric model, 150, 153
supply offset voltage, 3	voltage slew rate, 193, 269
supply RF isolation, 197	Volterra series, 55
supply stability, 194	waveform continuity, 171
switch impedance, 132	waveform curvature, 131
switch-mode power supply, 273	waveform fidelity, 294
conversion efficiency, 281	X-parameters, 132
frequency band splitting, 289	