Contents

List of Figures ix
List of Tables xvii
Acknowledgements xxi
Preface xxiii

1. Introduction 1
 1.1 Relay Feedback Method 1
 1.2 Identification by Symmetric Relay Feedback Method 3
 1.3 Identification using Asymmetrical Relay 4
 1.4 Identification of Unstable Processes 5
 1.5 Autotuning of Cascade Control System 6
 1.6 Relay Tuning of Multivariable System 7
 1.7 PI/PID Controller Design 8

2. Improved Autotune Identification Methods 12
 2.1 Introduction 12
 2.2 Estimation of Time Delay 13
 2.3 Method for Considering Higher Order Harmonics 15
 2.4 Simulation Study 20
 2.5 Modified Asymmetrical Relay Method for Improved System Identification 22
 2.6 Method 23
 2.7 Simulation Results 25
 2.8 Conclusions 29

3. Cascade Controllers Tuning by Relay Autotune Method 30
 3.1 Introduction 30
 3.2 Method 1 31
 3.3 Method 2 35
 3.4 Parallel Cascade Controllers 38
3.5 Method 1 for Parallel Cascade Control Systems 38
3.6 Method 2 for Parallel Cascade Control Systems 41
3.7 Conclusions 42

4. Simultaneous Relay Autotuning of Cascade Controllers
4.1 Introduction 43
4.2 Method for Series Cascade Control Systems 44
4.3 Method for Parallel Cascade Control Systems 49
4.4 Simulation Study 50
4.5 Higher Order Harmonics in both the Loops 52
4.6 Conclusions 56

5. A Simple Method of Tuning Cascade Controllers
5.1 Introduction 57
5.2 Method for Series Cascade Control Systems 58
5.3 Simulation Results 60
5.4 Stability Analysis 70
5.5 Method for Parallel Cascade Control Systems 71
5.6 Simulation Results for Parallel Cascade Controllers 73
5.7 Conclusions 78

6. Improved Saturation Relay Test for Systems with Large
 Dead Time
6.1 Introduction 79
6.2 Importance of Saturation Relay Slope 80
6.3 Method 1 80
6.4 Method 2 82
6.5 Simulation Study 83
 6.5.1 Case study 1 83
 6.5.2 Effect of noise 85
 6.5.3 Case study 2 86
 6.5.4 Case studies 3 and 4 87
6.6 Non-Relay Identification Methods 89
6.7 Conclusions 91

7. Identification of FOPTD Model using Single Symmetrical
 Relay Test
7.1 Introduction 93
7.2 Problem Description 94
7.3 Relay Test 94
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>Estimation of k_p, D and τ</td>
<td>94</td>
</tr>
<tr>
<td>7.5</td>
<td>Simulation Study</td>
<td>97</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Case study 1</td>
<td>97</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Case study 2</td>
<td>99</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Case study 3</td>
<td>100</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Case study 4</td>
<td>101</td>
</tr>
<tr>
<td>7.6</td>
<td>Conclusions</td>
<td>104</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>105</td>
</tr>
<tr>
<td>8.2</td>
<td>Problem Description</td>
<td>107</td>
</tr>
<tr>
<td>8.3</td>
<td>Consideration of Higher Order Harmonics</td>
<td>107</td>
</tr>
<tr>
<td>8.4</td>
<td>Estimation of k_p, D and τ</td>
<td>110</td>
</tr>
<tr>
<td>8.5</td>
<td>Simulation Study</td>
<td>111</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Case study 1</td>
<td>111</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Case study 2</td>
<td>113</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Effect of measurement noise on identification</td>
<td>115</td>
</tr>
<tr>
<td>8.5.4</td>
<td>Effect of load on model parameter identification</td>
<td>116</td>
</tr>
<tr>
<td>8.6</td>
<td>Simulation Study of an Unstable Non-linear Bioreactor</td>
<td>117</td>
</tr>
<tr>
<td>8.7</td>
<td>Conclusions</td>
<td>119</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>120</td>
</tr>
<tr>
<td>9.2</td>
<td>Problem Description</td>
<td>121</td>
</tr>
<tr>
<td>9.3</td>
<td>Consideration of Higher Order Harmonics</td>
<td>122</td>
</tr>
<tr>
<td>9.4</td>
<td>Estimation of k_p, D and τ using k_u</td>
<td>127</td>
</tr>
<tr>
<td>9.5</td>
<td>Simulation Study</td>
<td>128</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Case study 1</td>
<td>128</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Case study 2</td>
<td>131</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Case study 3</td>
<td>133</td>
</tr>
<tr>
<td>9.5.4</td>
<td>Effect of measurement noise on identification</td>
<td>135</td>
</tr>
<tr>
<td>9.5.5</td>
<td>Effect of load on model parameter identification</td>
<td>135</td>
</tr>
<tr>
<td>9.6</td>
<td>Simulation Study of a Non-linear Bioreactor System</td>
<td>136</td>
</tr>
<tr>
<td>9.7</td>
<td>Estimation of k_p, D and τ without using k_u</td>
<td>139</td>
</tr>
<tr>
<td>9.8</td>
<td>Simulation Study</td>
<td>140</td>
</tr>
<tr>
<td>9.9</td>
<td>Conclusions</td>
<td>142</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>143</td>
</tr>
</tbody>
</table>

8. Autotuning of PID Controllers for Unstable FOPTD Systems

9. Autotuning of PID Controllers for Critically Damped SOPTD Systems

10. Estimation of SOPTD Transfer Function Model
Contents

10.2 Problem Description 144
10.3 Relay Test 144
10.4 Estimation of Process Gain 145
10.5 Estimation of θ, τ_1 and τ_2 145
10.6 Simulation Results 147
 10.6.1 Case study 1 147
 10.6.2 Case study 2 148
 10.6.3 Case study 3 149
 10.6.4 Case study 4 149
10.7 Conclusions 150

11. Estimation of Five Parameters of Unstable SOPTD Model with a Zero

11.1 Introduction 151
11.2 Problem Description 153
11.3 Relay Test 153
11.4 Parameter Estimation 153
11.5 Simulation Results 156
 11.5.1 Case study 1 156
 11.5.2 Case study 2 159
 11.5.3 Case study 3 160
11.6 Simulation Application to a Non-linear Continuous Stirred Tank Reactor (CSTR) 162
11.7 Conclusions 164

12. Identification of FOPTD Multivariable Systems

12.1 Introduction 165
12.2 Relay Identification 166
12.3 Estimation of Model Parameters (τ and θ) 168
12.4 Comparison of Closed Loop Performance 168
12.5 Examples 169
 12.5.1 Example 1 169
 12.5.2 Example 2 170
12.6 Conclusions 173

13. Identification of SOPTD Multivariable Systems

13.1 Introduction 174
13.2 Relay Identification 175
13.3 Estimation of Model Parameters 176
13.4 Comparison of Closed Loop Performance 177
13.5 Simulation Examples 177
13.6 Conclusions 180

14. Tuning of Multivariable Controllers for Non-Minimum Phase Systems
14.1 Introduction 183
14.2 Controller Design Methods 184
 14.2.1 Simple tuning method 184
 14.2.2 Decoupled internal model controller method 185
14.3 Comparison Criterion of Controllers Performance 187
14.4 Examples 187
 14.4.1 Example 1 187
 14.4.2 Example 2 191
 14.4.3 Example 3 192
14.5 Conclusions 193

15. Tuning of Multivariable Controllers by Genetic Algorithms
15.1 Introduction 195
15.2 Genetic Algorithms 196
15.3 Objective Function 196
15.4 Design Example 197
15.5 Decentralized Controllers 198
15.6 Centralized Controllers 202
15.7 Example 2: Niederlinski Model 203
15.8 Conclusions 205

16. Summary and Conclusions
16.1 Improved Autotune Identification Method 206
16.2 Series Cascade Controller Tuning 206
 16.2.1 Symmetric relay method 207
 16.2.2 Asymmetric relay method 207
 16.2.3 Simultaneous relay autotuning of cascade controllers 208
16.3 A Simple Method of Designing Cascade Controllers 209
16.4 Improved Saturation Relay Test for Systems with Large Dead Time 209
16.5 Model Parameters using Single Symmetrical Relay Test 210
 16.5.1 FOPTD systems 210
 16.5.2 Autotuning of unstable FOPTD system 210
 16.5.3 Autotuning of PID controllers for critically damped stable SOPTD system 210
Contents

16.6 Estimation of Model Parameters of SOPTD System 211
16.7 Identification of Five Parameters of Unstable SOPTD System 211
16.8 Identification of FOPTD Multivariable Systems 212
16.9 Identification of SOPTD Multivariable Systems 212
16.10 Comparison of Multivariable Controllers Tuning Methods 212
16.11 Tuning of Multivariable Controllers by Genetic Algorithm 213
16.12 Conclusions 213

Appendix A 215
Appendix B 220
Appendix C 230
Nomenclature 239
Problems 243
Suggestive Reading 247
References 249
Index 259