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The journey of a thousand miles begins with a single step. I have been offering a course 
on molecular biophysics to advanced master level students since 1992 (the students 
have a background of physics, physical chemistry, chemical engineering, etc.). These 
students have little exposure to biology and organic chemistry. However, research focus 
is shifting towards soft matter science which is highly interdisciplinary, and holds a 
promise of generating customized, smart and biocompatible materials. Therefore, the 
need for learning physics of polymers and biopolymers has increased many folds.  This 
course is taught with the objective to provide a robust background in these topics to 
students. I have converted my lecture notes into this publication. There are no textbooks 
in the market till date that cover the topics discussed herein in a single volume. The 
content has been used in a one semester course that I teach to MSc Physics students. 
The mathematical prerequisites for this book are modest.

Macromolecules in solutions can be distinctly characterized from their transport 
behaviour in the solution phase. The study of the transport processes yields coefficients 
like the diffusion coefficient, sedimentation coefficient, intrinsic viscosity, friction 
constant, etc. of the dissolved solute particles. These coefficients are dependent on two 
parameters. First is the size and shape of the solute particle. Second is the type of the 
solvent medium and its environment (pH, temperature, pressure, ionic strength, etc.). 
The solvent medium can force  diffusing particles to assume a special shape and/or to get 
distributed in a special fashion in space through solvent–solute interactions. At the same 
time, a pair of solute molecules also influence each other’s behaviour and/or physical 
shape and size. This process may or may not be mediated by the solvent. To account 
for all these mechanisms, we need to discuss the solute–solvent, solvent– solvent and 
solute–solute interactions. Interestingly enough, much of this information is contained 
in the transport coefficients of a solute and the physical parameters describing a solvent.

However, the question arises how to explicitly characterize the macromolecules from 
these data? We shall answer this question in this book. The answer lies in the physical 
interpretation of this data in the perspective of macromolecular transport phenomena 
occurring in a given system. This in turn is an interplay between thermodynamic and 
hydrodynamic forces active in a macromolecular solution. Apart from this, there can be 
external forces acting on the diffusing particles, like in electrophoresis experiments. In 
these situations, the diffusion process is very complex and depends on several physical 
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xx  |  Preface

parameters, like the pH, ionic strength, temperature, pressure, external force and the 
nature of solvent, etc. This book attempts to address these issues in a simple and lucid 
manner. No discussion on polymers is complete without reference to the salient features 
of biopolymers. This volume addresses some important issues and concepts related to 
proteins and nucleic acids. 

More precisely, we will be discussing the physical mechanisms of diffusion, 
viscosity, sedimentation, etc. of polymer solutions under different hydrodynamic and 
thermodynamic conditions. The important elucidation that we will be seeking all 
through the forthcoming discussions is how this information can be used to characterize 
the polymer molecules dispersed in a solvent.

The potential reader of this book may not necessarily be a physicist. Keeping this 
in mind, the presentation has been prepared to suit the requirements of readers with 
background in biological and interdisciplinary sciences. The mathematics in this book 
is presented from an experimentalist’s point of view, which is why following the text is 
easy. The rigors of mathematics has been avoided as far as possible and no special skill 
or knowledge is required to follow the mathematics described here. Nonetheless, the 
physical concepts have not been sacrificed and more often than not, more emphasis has 
been given on physical interpretation of the equations. 

We start the discussion from elementary thermodynamics, proceed to account 
for the static properties and continue onto the transport phenomena in solutions of 
macromolecules. Solutions are treated as isotropic and homogeneous. Different terms 
and concepts are introduced and defined, as these are encountered in the course of 
discussions. 

It is possible to cover all the material contained in this book in 40 lectures of 90 
minutes duration each.

Discovery is seeing what everybody sees, but learning what has not been taught. It 
is this unending thirst for discovery and knowledge that drives us forward towards a 
common goal—to understand our clandestine world. Our mind is our greatest tool, one 
that necessitates constant honing. So let us rise to the occasion and bring to light the 
enigma that is life in its entirety.

Humanity has never learnt how not to question. The answer might not always be 
as expected, but it does lead to something new. Humanity’s greatest forte has always 
been never to just scratch the surface but to constantly delve in deeper. The world we 
live in is complex in many ways but is simpler in so many more ways. Nature strives for 
simplicity and so does man. In this aspect, a man of science is quite similar to a spiritual 
man. Both seek to unveil the secrets of our world, one to satisfy the mind and the other 
the soul.

My lecture notes were converted into this book  due to the incessant persuasion of 
several batches of students, who took this course and received copy of the lecture notes, 
but could never find a textbook to fall back on. All of them deserve special thanks. I am 
thankful to Dr Kamla Rawat, my senior research student who painstakingly made all 
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the chemical structures with great care. Further, I acknowledge her support during the 
proofreading of various drafts of the manuscript which was done with much diligence. 
I am also deeply thankful to my wife, Dr Chetna and daughter, Dr Pareedhi for their 
encouragement and cooperation without which this endeavour would not have been 
successful.

This book is dedicated to the memory of my mother whom I owe everything.
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