
An Introduction to Sparse Stochastic Processes

Providing a novel approach to sparsity, this comprehensive book presents the theory of
stochastic processes that are ruled by linear stochastic differential equations and that
admit a parsimonious representation in a matched wavelet-like basis.

Two key themes are the statistical property of infinite divisibility, which leads to two
distinct types of behavior – Gaussian and sparse – and the structural link between linear
stochastic processes and spline functions, which is exploited to simplify the mathemati-
cal analysis. The core of the book is devoted to investigating sparse processes, including
a complete description of their transform-domain statistics. The final part develops prac-
tical signal-processing algorithms that are based on these models, with special emphasis
on biomedical image reconstruction.

This is an ideal reference for graduate students and researchers with an interest in
signal/image processing, compressed sensing, approximation theory, machine learning,
or statistics.
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“Over the last twenty years, sparse representation of images and signals became a very
important topic in many applications, ranging from data compression, to biological
vision, to medical imaging. The book Sparse Stochastic Processes by Unser and Tafti is
the first work to systematically build a coherent framework for non-Gaussian processes
with sparse representations by wavelets. Traditional concepts such as Karhunen-Loéve
analysis of Gaussian processes are nicely complemented by the wavelet analysis of Levy
Processes which is constructed here. The framework presented here has a classical feel
while accommodating the innovative impulses driving research in sparsity. The book
is extremely systematic and at the same time clear and accessible, and can be recom-
mended both to engineers interested in foundations and to mathematicians interested in
applications.”

David Donoho, Stanford University

“This is a fascinating book that connects the classical theory of generalised functions
(distributions) to the modern sparsity-based view on signal processing, as well as sto-
chastic processes. Some of the early motivations given by I. Gelfand on the importance
of generalised functions came from physics and, indeed, signal processing and sam-
pling. However, this is probably the first book that successfully links the more abstract
theory with modern signal processing. A great strength of the monograph is that it consi-
ders both the continuous and the discrete model. It will be of interest to mathematicians
and engineers having appreciations of mathematical and stochastic views of signal pro-
cessing.”

Anders Hansen, University of Cambridge
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Preface

In the years since 2000, there has been a significant shift in paradigm in signal proces-
sing, statistics, and applied mathematics that revolves around the concept of sparsity
and the search for “sparse” representations of signals. Early signs of this (r)evolution
go back to the discovery of wavelets, which have now superseded classical Fourier
techniques in a number of applications. The other manifestation of this trend is the
emergence of data-processing schemes that minimize an �1 norm as opposed to the
squared �2 norm associated with the traditional linear methods. A highly popular
research topic that capitalizes on those ideas is compressed sensing. It is the quest for
a statistical framework that would support this change of paradigm that led us to the
writing of this book.

The cornerstone of our formulation is the classical innovation model, which is equi-
valent to the specification of stochastic processes as solutions of linear stochastic diffe-
rential equations (SDE). The non-standard twist here is that we allow for non-Gaussian
driving terms (white Lévy noise) which, as we shall see, has a dramatic effect on the
type of signal being generated. A fundamental property, hinted in the title of the book,
is that the non-Gaussian solutions of such SDEs admit a sparse representation in an
adapted wavelet-like basis. While a sizable part of the present material is an outgrowth
of our own research, it is founded on the work of Lévy (1930) and Gelfand (arguably,
the second most famous Soviet mathematician after Kolmogorov), who derived general
functional tools and results that are hardly known by practitioners but, as we argue in
the book, are extremely relevant to the issue of sparsity. The other important source
of inspiration is spline theory and the observation that splines and stochastic processes
are ruled by the same differential equations. This is the reason why we opted for the
innovation approach which facilitates the transposition of analytical techniques from
one field to the other. While the formulation requires advanced mathematics that are
carefully explained in the book, the underlying model has a strong engineering appeal
since it constitutes the natural extension of the traditional filtered-white-noise interpre-
tation of a Gaussian stationary process.

The book assumes that the reader has a good understanding of linear systems
(ordinary differential equations, convolution), Hilbert spaces, generalized functions
(i.e., inner products, Dirac impulses, linear operators), the Fourier transform, basic
statistical signal processing, and (multivariate) statistics (probability density and cha-
racteristic functions). By contrast, there is no requirement for prior knowledge of
splines, stochastic differential equations, or advanced functional analysis (function

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-05854-5 - An Introduction to Sparse Stochastic Processes
Michael Unser and Pouya D. Tafti
Frontmatter
More information

http://www.cambridge.org/9781107058545
http://www.cambridge.org
http://www.cambridge.org


xiv Preface

spaces, Bochner’s theorem, operator theory, singular integrals) since these topics are
treated in a self-contained fashion.

Several people have had a crucial role in the genesis of this book. The idea of defi-
ning sparse stochastic processes originated during the preparation of a talk for Martin
Vetterli’s 50th birthday (which coincided with the anniversary of the launching of Sput-
nik) in an attempt to build a bridge between his signals with a finite rate of innovation
and splines. We thank him for his long-time friendship and for convincing us to under-
take this writing project. We are grateful to our former collaborator, Thierry Blu, for
his precious help in the elucidation of the functional link between splines and stochastic
processes. We are extremely thankful to Arash Amini, Julien Fageot, Pedram Pad, Qiyu
Sun, and John-Paul Ward for many helpful discussions and their contributions to mathe-
matical results. We are indebted to Emrah Bostan, Ulugbek Kamilov, Hagai Kirshner,
Masih Nilchian, and Cédric Vonesch for turning the theory into practice and for running
the signal- and image-processing experiments described in Chapters 10 and 11. We are
most grateful to Philippe Thévenaz for his intelligent editorial advice and his spotting of
multiple errors and inconsistencies, while we take full responsibility for the remaining
ones. We also thank Phil Meyler, Sarah Marsh and Gaja Poggiogalli from Cambridge
University Press, as well as John King for his careful copy-editing.

The authors also acknowledge very helpful and stimulating discussions with Ben
Adcock, Emmanuel Candès, Volkan Cevher, Robert Dalang, Mike Davies, Christine
De Mol, David Donoho, Pier-Luigi Dragotti, Michael Elad, Yonina Eldar, Jalal Fadili,
Mario Figueiredo, Vivek Goyal, Rémy Gribonval, Anders Hansen, Nick Kingsbury,
Gitta Kutyniok, Stamatis Lefkimmiatis, Gabriel Peyré, Robert Novak, Jean-Luc Stark,
and Dimitri Van De Ville, as well as a number of other researchers involved in the field.

The European Research Commission (ERC) and the Swiss National Science Founda-
tion provided partial support throughout the writing of the book.
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Notation

Abbreviations

ADMM Alternating-direction method of multipliers
AL Augmented Lagrangian
AR Autoregressive
ARMA Autoregressive moving average
AWGN Additive white Gaussian noise
BIBO Bounded input, bounded output
CAR Continuous-time autoregressive
CARMA Continuous-time autoregressive moving average
CCS Consistent cycle spinning
DCT Discrete cosine transform
fBm Fractional Brownian motion
FBP Filtered backprojection
FFT Fast Fourier transform
FIR Finite impulse response
FISTA Fast iterative shrinkage/thresholding algorithm
ICA Independent-component analysis
id Infinitely divisible
i.i.d. Independent identically distributed
IIR Infinite impulse response
ISTA Iterative shrinkage/thresholding algorithm
JPEG Joint Photographic Experts Group
KLT Karhunen–Loève transform
LMMSE Linear minimum-mean-square error
LPC Linear predictive coding
LSI Linear shift-invariant
MAP Maximum a posteriori
MMSE Minimum-mean-square error
MRI Magnetice resonance imaging
PCA Principal-component analysis
pdf Probability density function
PSF Point-spread function
ROI Region of interest
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xvi Notation

SαS Symmetric-alpha-stable
SDE Stochastic differential equation
SNR Signal-to-noise ratio
WSS Wide-sense stationary

Sets

N,Z+ Non-negative integers, including 0
Z Integers
R Real numbers
R+ Non-negative real numbers
C Complex numbers
Rd d-dimensional Euclidean space
Zd d-dimensional integers

Various notation

j Imaginary unit such that j2 = −1
�x� Ceiling: smallest integer at least as large as x
�x� Floor: largest integer not exceeding x
(x1 : xn) n-tuple (x1, x2, . . . , xn)

‖f‖ Norm of the function f (see Section 3.1.2)
‖f‖Lp Lp-norm of the function f (in the sense of Lebesgue)
‖a‖�p �p-norm of the sequence a
〈ϕ, s〉 Scalar (or duality) product
〈f, g〉L2 L2 inner product
f∨ Reversed signal: f∨(r) = f(−r)
(f ∗ g)(r) Continuous-domain convolution
(a ∗ b)[n] Discrete-domain convolution
ϕ̂(ω) Fourier transform of ϕ:

∫
Rd ϕ(r)e−j〈ω,r〉 dr

f̂ = F {f} Fourier transform of f (classical or generalized)
f = F−1{̂f} Inverse Fourier transform of f̂
F {f}(ω) = F {f}(−ω) Conjugate Fourier transform of f

Signals, functions, and kernels

f, f(·), or f(r) Continuous-domain signal: function Rd → R

ϕ Generic test function in S (Rd)

ψL = L∗φ Operator-like wavelet with smoothing kernel φ

s, 〈ϕ, s〉 Generalized function S (Rd)→ R

μh Measure associated with h: 〈ϕ, h〉 =
∫
Rd ϕ(r)μh(dr)

δ Dirac impulse: 〈ϕ, δ〉 = ϕ(0)

δ(· − r0) Shifted Dirac impulse
βL Generalized B-spline associated with the operator L
ϕint Spline interpolation kernel
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Notation xvii

βn
+ = βDn+1 Causal polynomial B-spline of degree n

xn
+ = max(0, x)n One-sided power function

βα First-order exponential B-spline with pole α ∈ C

β(α1:αN) Nth-order exponential B-spline: βα1 ∗ · · · ∗ βαN

a, a[·], or a[n] Discrete-domain signal: sequence Zd → R

δ[n] Discrete Kronecker impulse

Spaces

X , Y Generic vector spaces (normed or nuclear)
L2(R

d) Finite-energy functions
∫
Rd |f(r)|2 dr <∞

Lp(R
d) Functions such that

∫
Rd |f(r)|p dr <∞

Lp,α(Rd) Functions such that
∫
Rd
∣∣f(r)(1 + |r|)α∣∣p dr <∞

D(Rd) Smooth and compactly supported test functions
D′(Rd) Distributions or generalized functions over Rd

S (Rd) Smooth and rapidly decreasing test functions
S ′(Rd) Tempered distributions (generalized functions)
R(Rd) Bounded functions with rapid decay
�2(Z

d) Finite-energy sequences
∑

k∈Zd |a[k]|2 <∞
�p(Z

d) Sequences such that
∑

k∈Zd |a[k]|p <∞

Operators

Id Identity
D = d

dt Derivative
Dd Finite difference (discrete derivative)
DN Nth-order derivative
∂n Partial derivative of order n = (n1, . . . , nd)

L Whitening operator (LSI)
L̂(ω) Frequency response of L (Fourier multiplier)
ρL Green’s function of L
L∗ Adjoint of L such that 〈ϕ1, Lϕ2〉 = 〈L∗ϕ1, ϕ2〉
L−1 Right inverse of L such that LL−1 = Id
h(r1, r2) Generalized impulse response of L−1

L−1∗ Left inverse of L∗ such that (L−1∗)L∗ = Id
Ld Discrete counterpart of L
NL Null space of L
Pα First-order differential operator: D− αId, α ∈ C

P(α1:αN) Differential operator of order N: Pα1 ◦ · · · ◦ PαN

�α First-order weighted difference
�(α1:αN) Nth-order weighted differences: �α1 ◦ · · · ◦�αN

∂
γ
τ Fractional derivative of order γ ∈ R+ and phase τ

(−�)
γ
2 Fractional Laplacian of order γ ∈ R+

Iγ ∗p Lp-stable left inverse of (−�)
γ
2
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xviii Notation

Probability

X, Y Generic scalar random variables
PX Probability measure on R of X
pX(x) Probability density function (univariate)
�X(x) Potential function: − log pX(x)
prox�X(x, λ) Proximal operator
pid(x) Infinitely divisible probability law
E{·} Expected value operator
mn nth-order moment: E{Xn}
κn nth-order cumulant
p̂X(ω) Characteristic function of X: E{ejωX}
f(ω) Lévy exponent: log p̂id(ω)

v(a) Lévy density
p(X1:XN)(x) Multivariate probability density function
p̂(X1:XN)(ω) Multivariate characteristic function
mn Moment with multi-index n = (n1, . . . , nN)

κn Cumulant with multi-index n
H(X1:XN) Differential entropy
I(X1, . . . , XN) Mutual information
D(p‖q) Kullback–Leibler divergence

Generalized stochastic processes

w Continuous-domain white noise (innovation)
〈ϕ, w〉 Generic scalar observation of innovation process
fϕ(ω) Modified Lévy exponent: log p̂〈ϕ,w〉(ω)

vϕ(a) Modified Lévy density
s Generalized stochastic process: L−1w
u Generalized increment process: Lds = βL ∗ w
W 1-D Lévy process with DW = w
BH Fractional Brownian motion with Hurst index H
P̂s(ϕ) Characteristic functional: E{ej〈ϕ,s〉}
Bs(ϕ1, ϕ2) Correlation functional: E{〈ϕ1, s〉〈ϕ2, s〉}
Rs(r1, r2) Autocorrelation function: E{s(r1)s(r2)}
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