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1 Overview of Optimization Models

Optimization is the process of finding the best way of making decisions that

satisfy a set of constraints. In mathematical terms, an optimization model is a

problem of the form

min
x

f(x)

s.t. x ∈ X ,
(1.1)

where f : Rn → R and X ⊆ R
n.

Model (1.1) has three main components, namely the vector of decision vari-

ables x :=
[

x1 · · · xn

]T

∈ R
n; the objective function f(x); and the constraint

set or feasible region X . The constraint set is often expressed in terms of equalities

and inequalities involving additional functions. More precisely, the constraint set

X is often of the form

X = {x ∈ R
n : gi(x) = bi, for i = 1, . . . ,m, and hj(x) ≤ dj , for j = 1, . . . , p},

(1.2)

for some gi, hj : Rn → R, i = 1, . . . ,m, j = 1, . . . , p. When this is the case, the

optimization problem (1.1) is usually written in the form

min
x

f(x)

s.t. gi(x) = bi, for i = 1, . . . ,m

hj(x) ≤ dj , for j = 1, . . . , p,

or in the more concise form

min
x

f(x)

s.t. g(x) = b

h(x) ≤ d.

We will use the following terminology. A feasible point or feasible solution to

(1.1) is a point in the constraint set X . An optimal solution to (1.1) is a feasible

point that attains the best possible objective value; that is, a point x∗ ∈ X

such that f(x∗) ≤ f(x) for all x ∈ X . The optimal value of (1.1) is the value

of the objective function at an optimal solution; that is, f(x∗) where x∗ is an

optimal solution to (1.1). If the feasible region X is of the form (1.2) and x ∈ X ,

the binding constraints at x are the equality constraints and those inequality

constraints that hold with equality at x. The term active constraint is also often

used in lieu of “binding constraint”. The problem (1.1) is infeasible if X = ∅. On
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4 Overview of Optimization Models

the other hand, (1.1) is unbounded if there exist xk ∈ X , k = 1, 2, . . . , such that

f(xk) → −∞.

1.1 Types of Optimization Models

For optimization models to be of practical interest, their computational tractabil-

ity, that is, the ability to find the optimal solution efficiently, is a critical issue.

Particular structural assumptions on the objective and constraints of the problem

give rise to different classes of optimization models with various degrees of

computational difficulty. We should note that the following is only a partial classi-

fication based on the current generic tractability of various types of optimization

models. However, what is “tractable” in some specific context may be more

nuanced. Furthermore, tractability evolves as new algorithms and technologies

are developed.

Convex optimization: These are problems where the objective f(x) is a con-

vex function and the constraint set X is a convex set. This class of

optimization models is tractable most of the time. By this we mean that

a user can expect any of these models to be amenable to an efficient algo-

rithm. We will emphasize this class of optimization models throughout

the book.

Mixed integer optimization: These are problems where some of the variables

are restricted to take integer values. This restriction makes the con-

straint set X non-convex. This class of optimization models is somewhat

tractable a fair portion of the time. By this we mean that a model of this

class may be solvable provided the user does some judicious modeling

and has access to high computational power.

Stochastic and dynamic optimization: These are problems involving ran-

dom and time-dependent features. This class of optimization models

is tractable only in some special cases. By this we mean that, unless

some specific structure and assumptions hold, a model of this class

would typically be insoluble with any realistic amount of computational

power at our disposal. Current research is expected to enrich the class

of tractable models in this area.

The modeling of time and uncertainty is pervasive in almost every financial

problem. The various types of optimization problems that we will discuss are

based on how they deal with these two issues. Generally speaking, static models

are associated with simple single-period models where the future is modeled as

a single stage. By contrast, in multi-period models the future is modeled as a

sequence, or possibly as a continuum, of stages. With regard to uncertainty,

deterministic models are those where all the defining data are assumed to be

known with certainty. By contrast, stochastic models are ones that incorporate

probabilistic or other types of uncertainty in the data.
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1.1 Types of Optimization Models 5

A good portion of the models that we will present in this book will be convex

optimization models due to their favorable mathematical and computational

properties. There are two special types of convex optimization problems that we

will use particularly often: linear and quadratic programming, the latter being an

extension of the former. These two types of optimization models will be discussed

in more detail in Chapters 2 and 5. We now present a high-level description

of four major classes of optimization models: linear programming, quadratic

programming, mixed integer programming, and stochastic optimization.

Linear Programming

A linear programming model is an optimization problem where the objective is a

linear function and the constraint set is defined by finitely many linear equalities

and linear inequalities. In other words, a linear program is a problem of the form

min
x

cTx

s.t. Ax = b

Dx ≥ d

for some vectors c ∈ R
n,b ∈ R

m,d ∈ R
p and matrices A ∈ R

m×n,D ∈ R
p×n.

The term linear optimization is sometimes used in place of linear programming.

The wide popularity of linear programming is due in good part to the availability

of very efficient algorithms. The two best known and most successful methods

for solving linear programs are the simplex method and interior-point methods.

We briefly discuss these algorithms in Chapter 2.

Quadratic Programming

Quadratic programming, also known as quadratic optimization, is an extension

of linear programming where the objective function includes a quadratic term.

In other words, a quadratic program is a problem of the form

min
x

1
2x

TQx+ cTx

s.t. Ax = b

Dx ≥ d

for some vectors and matrices Q ∈ R
n×n, c ∈ R

n, b ∈ R
m, d ∈ R

p, A ∈ R
m×n,

D ∈ R
p×n. It is customary to assume that the matrix Q is symmetric. This

assumption can be made without loss of generality since

xTQx = xTQ̃x

where Q̃ = 1
2 (Q+QT), which is clearly a symmetric matrix.

We note that a quadratic function 1
2x

TQx + cTx is convex if and only if the

matrix Q is positive semidefinite (xTQx ≥ 0 for all x ∈ R
n). In this case the

above quadratic program is a convex optimization problem and can be solved
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6 Overview of Optimization Models

efficiently. The two best known methods for solving convex quadratic programs

are active-set methods and interior-point methods. We briefly discuss these algo-

rithms in Chapter 5.

Mixed Integer Programming

A mixed-integer program is an optimization problem that restricts some or all of

the decision variables to take integer values. In particular, a mixed integer linear

programming model is a problem of the form

min
x

cTx

s.t. Ax = b

Dx ≥ d

xj ∈ Z, j ∈ J

for some vectors and matrices c ∈ R
n, b ∈ R

m, d ∈ R
p, A ∈ R

m×n, D ∈ R
p×n

and some J ⊆ {1, . . . , n}.

An important case occurs when the model includes binary variables, that is,

variables that are restricted to take values 0 or 1. As we will see, the inclusion

of this type of constraint increases the modeling power but comes at a cost in

terms of computational tractability. It is noteworthy that the computational and

algorithmic machinery for solving mixed integer programs has vastly improved

during the last couple of decades. The main classes of methods for solving

mixed integer programs are branch and bound, cutting planes, and a combination

of these two approaches known as branch and cut. We briefly discuss these

algorithms in Chapter 8.

Stochastic Optimization

Stochastic optimization models are optimization problems that account for ran-

domness in their objective or constraints. The following formulation illustrates

a generic type of stochastic optimization problem

min
x

E(F (x, ω))

x ∈ X .

In this problem the set of decisions x must be made before a random outcome

ω occurs. The goal is to optimize the expectation of some function that depends

on both the decision vector x and the random outcome ω. A variation of this for-

mulation, that has led to important developments, is to replace the expectation

by some kind of risk measure ̺ in the objective:

min
x

̺(F (x, ω))

x ∈ X .

There are numerous refinements and variants of the above two formulations. In

particular, the class of two-stage stochastic optimization with recourse has been
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1.2 Solution to Optimization Problems 7

widely studied in the stochastic programming community. In this setting a set

of decisions x must be made in stage one. Between stage one and stage two

a random outcome ω occurs. At stage two we have the opportunity to make

some second-stage recourse decisions y(ω) that may depend on the random

outcome ω.

The two-stage stochastic optimization problem with recourse can be formally

stated as

min
x

f(x) + E[Q(x, ω)]

x ∈ X .

The recourse term Q(x, ω) depends on the first-stage decisions x and the random

outcome ω. It is of the form

Q(x, ω) := min
y(ω)

g(y(ω), ω)

y(ω) ∈ Y(x, ω).

The second-stage decisions y(ω) are adaptive to the random outcome ω because

they are made after ω is revealed. The objective function in a two-stage stochastic

optimization problem contains a term for the stage-one decisions and a term for

the stage-two decisions where the latter term involves an expectation over the

random outcomes. The intuition of this objective function is that the stage-one

decisions should be made considering what is to be expected in stage two.

The above two-stage setting generalizes to a multi-stage context where the

random outcome is revealed over time and decisions are made dynamically at

multiple stages and can adapt to the information revealed up to their stage.

1.2 Solution to Optimization Problems

The solution to an optimization problem can often be characterized in terms of

a set of optimality conditions. Optimality conditions are derived from the math-

ematical relationship between the objective and constraints in the problem. Sub-

sequent chapters discuss optimality conditions for various types of optimization

problems. In special cases, these optimality conditions can be solved analytically

and used to infer properties about the optimal solution. However, in many cases

we rely on numerical solvers to obtain the solution to the optimization models.

There are numerous software vendors that provide solvers for optimization

problems. Throughout this book we will illustrate examples with two popular

solvers, namely Excel Solver and the MATLAB�-based optimization modeling

framework CVX. Excel and MATLAB files for the examples and exercises in the

book are available at:

www.andrew.cmu.edu/user/jfp/OIFbook/

Both Excel Solver and CVX enable us to solve small to medium-sized problems

and are fairly easy to use. There are far more sophisticated solvers such as the
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8 Overview of Optimization Models

commercial solvers IBM�-ILOG� CPLEX�, Gurobi, FICO� Xpress, and the ones

available via the open-source projects COIN-OR or SCIP.

Optimization problems can be formulated using modeling languages such as

AMPL, GAMS, MOSEL, or OPL. The need for these modeling languages arises

when the size of the formulation is large. A modeling language lets people use

common notation and familiar concepts to formulate optimization models and

examine solutions. Most importantly, large problems can be formulated in a

compact way. Once the problem has been formulated using a modeling language,

it can be solved using any number of solvers. A user can switch between solvers

with a single command and select options that may improve solver performance.

1.3 Financial Optimization Models

In this book we will focus on the use of optimization models for financial problems

such as portfolio management, risk management, asset and liability management,

trade execution, and dynamic asset management. Optimization models are also

widely used in other areas of business, science, and engineering, but this will not

be the subject of our discussion.

Portfolio Management

One of the best known optimization models in finance is the portfolio selection

model of Markowitz (1952). Markowitz’s mean–variance approach led to major

developments in financial economics including Tobin’s mutual fund theorem

(Tobin, 1958) and the capital asset pricing model of Treynor
1

, Sharpe (1964),

Lintner (1965), and Mossin (1966). Markowitz was awarded the Nobel Prize in

Economics in 1990 for the enormous influence of his work in financial theory and

practice. The gist of this model is to formalize the principle of diversification

when selecting a portfolio in a universe of risky assets. As we discuss in detail in

Chapter 6, Markowitz’s mean–variance model and a wide range of its variations

can be stated as a quadratic programming problem of the form

min
x

1
2γ · xTVx− µ

Tx

Ax = b

Dx ≥ d.

(1.3)

The vector of decision variables x in model (1.3) represents the portfolio holdings.

These holdings typically represent the percentages invested in each asset and

thus are often subject to the full investment constraint 1Tx = 1. Other common

constraints include the long-only constraint x ≥ 0, as well as restrictions related

to sector or industry composition, turnover, etc. The terms xTVx and µ
Tx in

the objective function are respectively the variance, which is a measure of risk,

1

“Toward a theory of market value of risky assets”. Unpublished manuscript, 1961.
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1.3 Financial Optimization Models 9

and the expected return of the portfolio defined by x. The risk-aversion constant

γ > 0 in the objective determines the tradeoff between risk and return of the

portfolio.

Risk Management

Risk is inherent in most economic activities. This is especially true of financial

activities where results of decisions made today may have many possible different

outcomes depending on future events. Since companies cannot usually insure

themselves completely against risk, they have to manage it. This is a hard task

even with the support of advanced mathematical techniques. Poor risk manage-

ment led to several spectacular failures in the financial industry in the 1990s

(e.g., Barings Bank, Long Term Capital Management, Orange County). It was

also responsible for failures and bailouts of a number of institutions (e.g., Lehman

Brothers, Bear Stearns, AIG) during the far more severe global financial crisis of

2007–2008. Regulations, such as those prescribed by the Basel Accord (see Basel

Committee on Banking Supervision, 2011), mandate that financial institutions

control their risk via a variety of measurable requirements. The modeling of reg-

ulatory constraints as well as other risk-related constraints that the firm wishes

to impose to prevent vulnerabilities can often be stated as a set of constraints

RM(x) ≤ b. (1.4)

The vector x in (1.4) represents the holdings in a set of risky securities. The

entries of the vector-valued function RM(x) represent one or more measures of

risk and the vector b represents the acceptable upper limits on these measures.

The set of risk management constraints (1.4) may be embedded in a more

elaborate model that aims to optimize some kind of performance measure such

as expected investment return.

In Chapter 2 we discuss a linear programming model for optimal bank planning

under Basel III regulations. In this case the components of the function RM(x)

are linear functions of x. In Chapter 11 we discuss more sophisticated risk

measures such as value at risk and conditional value at risk that typically make

RM(x) a nonlinear function of x.

Asset and Liability Management

How should a financial institution manage its assets and liabilities? A static

model, such as the Markowitz mean–variance portfolio selection model, fails

to incorporate the multi-period nature of typical liabilities faced by financial

institutions. Furthermore, it penalizes returns both above and below the mean.

A multi-period model that emphasizes the need to meet liabilities in each

period for a finite (or possibly infinite) horizon is often more appropriate. Since

liabilities and asset returns usually have random components, their optimal

management requires techniques to optimize under uncertainty such as stochastic

optimization.
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10 Overview of Optimization Models

We discuss several asset and liability management models in Chapters 3, 16,

and 17. A generic asset and liability management model can often be formulated

as a stochastic programming problem of the form

max
x

E(U(x))

Fx = L

Dx ≥ 0.

(1.5)

The vector x in (1.5) represents the investment decisions for the available assets

at the dates in the planning horizon. The vector L in (1.5) represents the

liabilities that the institution faces at the dates in the planning horizon. The

constraints Fx = L, Dx ≥ 0 represent the cash flow rules and restrictions

applicable to the assets during the planning horizon. The term U(x) in the

objective function is some appropriate measure of utility. For instance, it could

be the value of terminal wealth at the end of the planning horizon. In general,

the components F,L,D are discrete-time random processes and thus (1.5) is

a multi-stage stochastic programming model with recourse. In Chapter 3 we

discuss some special cases of (1.5) with no randomness.

1.4 Notes

George Dantzig was the inventor of linear programming and author of many

related articles as well as a classical reference on the subject (Dantzig, 1963). A

particularly colorful and entertaining description of the diet problem, a classical

linear programming model, can be found in Dantzig (1990).

Boyd and Vandenberghe (2004) give an excellent exposition of convex opti-

mization appropriate for senior or first-year graduate students in engineering.

This book is freely available at:

www.stanford.edu/~boyd/cvxbook/

Ragsdale (2007) gives a practical exposition of optimization and related

spreadsheet models that circumvent most technical issues. It is appropriate for

senior or Master’s students in business.
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