Index

accelerometers, 206, 208, 223
acrylamide, 68
adaptive noise cancellation (ANC)
experiments for, 165–7
objects for, 167–8
principles of, 164–5
simulation of, 165
single moving objects for, 167–8
two moving objects in, 168
for wearable radar tag systems, 164–7
AICP implants. See analog intracranial pressure implants
air tests
for ICP implants, 62–5
in vitro tests and, 71
schematics for, 63
alcohol, 129–31
algorithms, for Doppler radar systems, 164–5
amplitude-shift keying (ASK) data, 14
amplitude-shift keying (ASK) modulation, 4–6, 11
analog intracranial pressure (AICP) implants
animal models and, 92
animal studies with, 95
dICP implants compared to, 92, 116–20
hydrostatic tests for, 95
pigs with, 92–4
in wireless ICP systems, 94–7
anatomy
ICP implants and, 77–8
monitoring and, 42–3
skull burr holes in, 61, 80–1
ANC. See adaptive noise cancellation
animal models
AICP implants and, 92
for in vivo experiments for, 73
for TBI assessment, 92
animal studies
with AICP implants, 95
schematics for, 94
for TBI assessment, 113–18
antenna motion
accelerometers for, 206, 208, 223
EMD for, 219–25
in experiments, 206–8, 222–5
measurements and, 206
in microwave Doppler radar systems, 203–8
219–25
motion sensors and, 203
signals in, 204–6
antennas
annular slot antennas, 107–8
antenna matching for, 108–10
block diagrams for, 222
chip antennas, 48, 51–2
for DICP implants, 106–8
for embedded wireless devices, 48–58
ERP for, 71–2
glometry for, 219–20, 252
imaging antennas, 251–4
monopole antennas, 193, 232, 235–7
251–2
PCBs and, 193
phantoms for, 48–9
simulation of, 253
slot antennas, 107–10, 250–4
ASK data. See amplitude-shift keying data
ASK modulation. See amplitude-shift keying
modulation
averaging errors, 83
Barrett’s esophagus, 7–8
batteries
battery life, 12
battery-based wireless and pH sensor capsules, 13–15
circuit loading and, 13
for DICP implants, 118–19
epoxy for, 112
technological advances for, 3
batteryless endoluminal sensing telemeter (BEST) system
block diagrams for, 17
data from, 25–6
in experiments, 23–6
for GERD, 16–18
batteryless wireless impedance and pH sensor capsules
integration in, 20–1
performance of, 21–6
power transfers for, 26–30
sensors for, 18–20
system architecture for, 16–18
wireless signal transduction for, 26–30
BEST system. See batteryless endoluminal sensing telemetry system
biocompatible coating, 60
biological processes, 147–8
biological samples, 128–9
biomatter, 124–5
biomedical applications
of Doppler radar systems, 239–43
of Gaussian signals, 232–5, 243, 251
of localization systems, 229–30
of monopole antennas, 193, 232, 235–7, 251–2
of Optotрак 3020, 235–9
of pulse radar, 250–4, 257–60
of slot antennas, 107–10, 250–4
of TDOA concepts, 229–31
UWB technology, 228, 260
of x-ray mammography, 250
biomedical imaging, 175–6
biomolecules, 131–7
biosensors. See microwave biosensors
blast injury studies, 84–5
block diagrams
for antennas, 222
for BEST system, 17
for breast cancer detection, 251
for chip integration, 190
for Doppler radar systems, 163
for ICP monitoring, 46
for instruments-based physiologic radar system, 178
for PCBs, 180
of pulse radar, 194, 196
for quadrature Doppler radar, 176–7
for radar systems, 197
for SFCW radar, 192
for two-frequency radar, 163
UWB technology, 251
Bluetooth, 180
board level radar, 178–9, 182–4
Boltzmann constant, 130
BRAVO devices
battery life for, 12
for implantable systems, 10–12
MII probes compared to, 11–12, 19–20, 22–3
for reflux monitoring, with endoluminal applications, 10–12
breast cancer detection
block diagrams for, 251
clutter in, 255–7
experiments for, 257–60
imaging antennas for, 251–4
numerical simulation in, 257–9
UWB technology for, 250–60
breath-rate sensing, 197
broadband spectroscopy for chemicals, 128
lymphoma cells in, 147–8
calibration approaches, for radar systems, 255–7
camino catheters, 61–3, 73–6, 78–83
camino probes, 96, 116
cancer
breast cancer detection, 250–60
esophageal cancer, 7
tumor tissues, 253
canines. See dogs
capacitive pressure-sensing elements, 47
catheters, 43–4, 61–3, 73–6, 78–83
cell detection
in cellular investigations, 140–3
electromagnetic wave penetration for, 141
microwave frequencies for, 129–31
radiofrequencies in, 129
traditional culture mediums for, 140–3
cell proliferation, 139–40
cell quantification, 143–5
cells measurement, 143–5
cellular analysis
lymphoma cells in, 143–6
microwave dielectric spectroscopy for, 142–3, 148–9
noninvasive investigations and, 125–8
single-cell analysis, 143–5
technological advances in, 127–8
yeast viability in, 146
cellular investigations, 139
cell detection in, 140–3
real time monitoring in, 147–8
RF signatures in, 145–7
cerebral perfusion pressure (CPP), 119–20
cerebrospinal fluid (CSF) catheters for, 43
ICP and, 40–1, 43–4
chemicals, 128
chip antennas, 48, 51–2
chip development. See physiologic radar sensor chip development
chip integration
block diagrams for, 190
for CW radar, 187–93
for pulse radar, 193–7
chirp signals, 173–4
chronic diseases, 41–2
circuit loading, 13
Index

267

clutter
in breast cancer detection, 255–7
radar clutter, 164–8, 180–2
CMOSs. See complementary metal-oxide semiconductors
cochlear implants, 2–3
coils
frequencies and, 30
in in vivo experiments, 27
power transfers and, 29–30
complementary metal-oxide semiconductors (CMOSs), 4–6
design, 156–6
for DICP implants, 97
harmonic tag design, 156–9
design frequencies, 156–8
dolomite, 2–3
data. See also amplitude-shift keying data
ASK data, 14
ASK modulation for, 4–6, 11
from BEST system, 25–6
IR-UWB communication for, 6, 195
for patients, 30–1
for reflux diseases, 21–6
diagnostic methods
for GERD, 8, 30
design frequencies, 156–8
dI water. See deionized water
DICP implants. See digital intracranial pressure implants
DICP prototypes. See digital intracranial pressure prototypes
dielectric constant, 146
digital intracranial pressure (DICP) implants
AICP implants compared to, 92, 116–20
alternative processing method for, 106
animal studies for, 113–18
annular slot antennas for, 107–8
antenna matching for, 108–10
antennas for, 106–8
batteries for, 118–19
configuration for, 106
design for, 97
epoxy for, 106–7
ez430-RF2500 for, 97, 108–10
gross pathology exams for, 115
in vitro tests for, 98–104, 111–13
in vivo experiments for, 98–9
in vivo study for, 113–15
long-term studies for, 104
MEMS for, 98, 118
pigs with, 113–18
power management in, 118–19
for rotational head injury assessment, 104–5
schematics for, 106
signal-strength test for, 110–11
technological advances for, 118
in wireless ICP systems, 97–104
digital intracranial pressure (DICP) prototypes, 99–100
diode impedance, 156–8
diagnostic methods
for patients, 30–1
dogs, in experiments, 76–81
Doppler radar systems, 212, 219. See also microwave Doppler radar systems
algorithms for, 164–5
biomedical applications of, 239–43
biomedical imaging from, 175–6
block diagrams for, 163
CW radar in, 202 experiments for, 244–50
design frequencies, 190–2, 243–6
measurements from, 154–5, 161–3
micro-Doppler phenomenon in, 239–40
micro-Doppler signatures extraction, 240–3
noninvasive investigations with, 176
objects for, 160–1
PCBs for, 184–5
for physiological monitoring, 155–9, 163–4
quadrature Doppler radar, 159–60, 176–7
RFID systems compared to, 154–5
technological advances in, 197–8, 225
DRF, 56–7
dry tests, 100–1
effective radiated power (ERP), 71–2
electrical detection. See microwave dielectric spectroscopy
electrical implants, 2–3
electrodes, 20
electromagnetic wave penetration, 141
endoluminal catheters compared to, 48–58
electrodes for, 48–58
catheters compared to, 44
for ICP, 84–5
in vitro tests for, 68–73
in vivo experiments for, 73–82
medical uses for, 40–1
embedded wireless devices (cont.)
microwave frequencies for, 41
operating principles for, 45–7
packaging concepts for, 58–61
empirical mode decomposition (EMD)
for antenna motion, 219–25
for human subjects, 212–19
IMFs and, 212–16
measurements and, 212–18
in microwave Doppler radar systems, 208–12
signal analysis and, 212
signal performance of, 210–12, 217–18
for wireless vital signs monitoring devices, 218–19
endoluminal capsule applications, 4–6
endoscopic procedures
NOTES for, 3–4
for wireless implants, 3–4
epidural implants, 78
epoxy
for batteries, 112
for DICP implants, 106–7
permittivity of, 107
ERP. See effective radiated power
eosophageal cancer, 7
evaluation methods, for in vitro implants
air tests for, 62–5
hydrostatic tests for, 65–6
microwave transmission in, 66
polyacrylamide phantoms in, 66–7
types of, 61–2
experiments. See also in vivo experiments
for ANC, 165–7
antenna motion in, 206–8, 222–5
BEST system in, 23–6
for breast cancer detection, 257–60
distances in, 246–50
for Doppler radar systems, 244–50
experimental verification in, 160–3
geometry in, 257–8
human subjects in, 167–9
1D noncoherent experiments, 233–4
for PIFA, 51–8
single-person experiments, 244–5
3D noncoherent experiments, 234–5
time-domain in, 165–7
two-person experiments, 246–8
for wearable radar tag systems, 160–3
eZ430-RF2500, 97, 108–10
fidgeting, in human subjects. See microwave Doppler radar systems
field-programmable gate arrays (FPGAs), 178
finger pulse reference signals, 213–18
flow cytometers, 125–7
fluorophores, 125–7
FMCW radar. See frequency modulated continuous-wave radar
FPGAs. See field-programmable gate arrays
frequencies
coils and, 30
design frequencies, 156–8
for Doppler radar systems, 190–2, 243–6
of heart rates, 222
for imaging, 17–18, 57
for incident radiation, 156–9
microwave frequencies, 41, 129–31
MPE for, 17–18
pressure and, 68
radiofrequencies, 129
relaxation oscillators for, 20–1
for RF devices, 155–6
for rotational head injuries, 109
signal accuracy maps for, 28–9
STFT in, 243
time-domain and, 172–4
frequency modulated continuous-wave (FMCW) radar, 172–4, 229–30
frequency-doubling tags
harmonic radar motion sensitivity for, 156
harmonic tag design for, 156–9
schematics for, 155
gastroesophageal applications. See implantable wireless medical devices
gastroesophageal reflux disease (GERD)
BEST system for, 16–18
diagnostic methods for, 8, 30
medical definition of, 6–7
wireless capsules for, 13–15
Gaussian signals
biomedical applications of, 232–5, 243, 251
in radar systems, 195–6, 214–18
gel phantoms. See also polyacrylamide phantoms
for PIFA, 65
temperatures and, 57–8
water and, 68
gel geometries for antennas, 219–20, 252
in experiments, 257–8
PIFA geometry, 48–9
of signal returns, 256
GERD. See gastroesophageal reflux disease
glucose, 132–4
gross pathology exams, 115
harmonic radar motion sensitivity, 156
harmonic tag design, 156–9
heart rates
frequencies of, 222
radar heart signals for, 214–18, 223–5
simulation for, 214
Index

heartburn. See gastroesophageal reflux disease; nonerosive esophagus reflux disease
HHT. See the Hilbert-Huang transform
the Hilbert transform, 209–10
the Hilbert-Huang transform (HHT), 210
human gait analysis
distances in, 246–50
single-person experiments for, 244–5
two person experiments for, 246–8
human subjects
for breath-rate sensing, 197
EMD for, 212–19
in experiments, 167–9
pseudo-Wigner-Ville distribution for, 247–8
respiration rates in, 161
hydrostatic tests
for AICP implants, 95
for evaluation methods, for in vitro implants, 65–6
in vitro tests and, 71, 111–13
schematics for, 65, 112–13
HYGE devices, 94
hyperventilation, 74–5
IACUC. See Institutional Animal Care and Use Committee
ICP. See intracranial pressure
ICP implants. See intracranial pressure implants
ICP monitoring. See intracranial pressure monitoring
ICs. See integrated circuits
imaging. See also magnetic resonance imaging
biomedical imaging, 175–6
CMOSs for, 4–6
frequencies for, 17–18, 57
imaging antennas, 251–4
instrument shake in, 202–3
neuroimaging, 43–4
IMFs. See intrinsic mode functions
impedance changes, 8–10, 14–15, 19–20
impedance measurements
conductivity for, 18–19
with wireless capsules, 15
implantable systems. See also analog intracranial pressure implants; digital intracranial pressure implants
BRAVO devices for, 10–12
cochlear implants as, 2–3
epidural implants, 78
for ICP, 42–3, 47, 61
implantable visual prosthetics, 2–3
temperature changes and, 63
wireless implants, 3–5
implantable wireless medical devices, 31. See also batteryless wireless impedance and pH sensor capsules; reflux monitoring, with endoluminal applications
endoluminal capsule applications for, 4–6
implementation methods for, 3–4
wireless communication in, 1–3
impulse-radio ultra-wideband (IR-UWB) communication, 6, 195
incident radiation, 156–9
indoor positioning software
1D noncoherent experiments for, 233–4
3D dynamic free motion for, 235–6
two person experiments for, 234–5
3D robot tracking for, 237–8
uses of, 228–9, 239
UT tracking software for, 230–3
indoor positioning systems, 229–30
inductive-coupling, 26–7
in vitro antenna characterization, 48–9
in vitro implants, 61–8
in vitro tests
air tests and, 71
for DICP implants, 98–104, 111–13
on DIP prototypes, 99–100
dry tests in, 100
for embedded wireless devices, 68–73
hydrostatic tests and, 71, 111–13
measurements for, 68–70
microwave transmission in, 71–2
parylene coating in, 70, 72–3
performance of, 103–4
signal-strength tests in, 102–3
temperature sensitivity in, 70
temperature tests in, 103
water tests in, 100–2
in vivo experiments, 23–6
animal models for, 73
cells in, 27
correlation in, 81–2
for DICP implants, 98–9
on dogs, 76–81
for embedded wireless devices, 73–82
IACUC for, 74, 92, 113
for ICP, 61
measurements in, 79–80
on pigs, 73–7
skull burr holes in, 80–1
surgical procedures for, 74–6
in vivo studies, 113–15
Institutional Animal Care and Use Committee (IACUC), 74, 92, 113
instrument shake, 202–3
instruments-based physiologic radar system, 177–8, 185–7
integrated circuits (ICs), 20, 177, 179–80, 183
interference-reduction. See microwave Doppler radar systems
intracranial hypertension, 41, 73, 76, 79–80
intracranial pressure (ICP). See also analog intracranial pressure implants; digital intracranial pressure implants
intracranial pressure (ICP). (cont.)
camino catheters for, 61–3, 73–6, 78–83
chronic diseases and, 41–2
CPP and, 119–20
CSF and, 40–1, 43–4
dynamics model for, 120
embedded wireless devices for, 84–5
hyperventilation and, 74–5
implantable systems for, 42–3, 47, 61
in vivo experiments for, 61
measurements for, 89–90
MRI for, 43–4
for patients, 40
piezoresistive pressure-sensing elements for, 62–3
PZR implants for, 68–70
risks of, 41–2
intracranial pressure (ICP) implants
air tests for, 62–5
anatomy and, 77–8
measurements for, 76
probes compared to, 84–5
schematics for, 47
intracranial pressure (ICP) monitoring
block diagrams for, 46
technological advances for, 44–5
technology for, 43–4
intrinsic mode functions (IMFs)
EMD and, 212–16
for signals, 208–12
ions, 140–1
ion-selective field-effect transistor sensors, 22
IR-UWB communication. See impulse-radio ultra-wideband communication
liquid analysis. See microwave analysis
localization systems, 229–30
long-term studies
for DICP implants, 104
for TBI, 119
lymphoma cells
in broadband spectroscopy, 147–8
in cellular analysis, 143–6
dielectric contrast of, 146
microwave biosensors for, 143–5
magnetic resonance imaging (MRI), 43–4
mannequins, 21–2
MATLAB programs, 98–9, 165, 214, 220, 222
maximum permissible exposure (MPE), 17–18
measurements
antenna motion and, 206
camino probes for, 96, 116
of cells, 143–5
from Doppler radar systems, 154–5, 161–3
for dry tests, 100–1
EMD and, 212–18
errors in, 83, 111
for ICP, 89–90
for ICP implants, 76
for in vitro tests, 68–70
in in vivo experiments, 79–80
MATLAB programs for, 98–9, 165, 214, 220, 222
for performance, 54–8
pH measurements, 15
RF measurement, 140–3
rotational head injuries and, 95–7, 113–15
of signal returns, 256–7
VNA for, 51–2, 198
MEMS. See microelectromechanical systems
metals, 58–9
micro-Doppler phenomenon, 239–40
micro-Doppler signature extraction, 240–3
microelectromechanical systems (MEMS)
for DICP implants, 98, 118
in microwave biosensors, 136–7
microscopy
fluorophores in, 125–7
microwave dielectric spectroscopy compared to, 127–8
microwave analysis
of biomolecules in aqueous solution, 131–7
ions in, 140–1
permittivity in, 143
water in, 132–4
microwave biosensors
for lymphoma cells, 143–5
MEMS in, 136–7
for noninvasive investigations, 124–5, 148–9
schematics of, 145
for selectivity, 135–7
for single-cell analysis, 148–9
for spectroscopy, 131–7
microwave dielectric spectroscopy biosensors for, 131–7
for cellular analysis, 142–3, 148–9
microscopy compared to, 127–8
for molecular analysis, 148–9
for molecular investigations, 125–8
microwave Doppler radar systems
antenna motion in, 203–8, 219–25
EMD in, 208–12
for vital signs detection, 202–3
microwave frequencies
for cell detection, 129–31
for embedded wireless devices, 41
microwave sensors, 137–8
microwave spectroscopy. See also microwave dielectric spectroscopy
for molecular investigations, 137
for noninvasive investigations, 128–31
specificity in, 145–7
microwave transmission
in evaluation methods, for in vitro implants, 66
Index

natural oriﬁce transluminal endoscopic surgery (NOTES), 3–4
NERD. See nonerosive esophagus reﬂux disease neuroimaging, 43–4
neuropathologic studies, 119–20
noise-reduction. See microwave Doppler radar systems
noncontact motion sensors, 187–93
nonerosive esophagus reﬂux disease (NERD) diagnostic methods for, 8, 30
medical deﬁnition of, 7
noninvasive investigations. See also cellular investigations
 cellular analysis and, 125–8
 with Doppler radar systems, 176
 microwave biosensors for, 124–5, 148–9
 microwave spectroscopy for, 128–31
 optical techniques in, 127
 with radar, 176
 sensitivity in, 138–40
 nonpolar liquids, 68
 NOTES. See natural oriﬁce transluminal endoscopic surgery
 numerical simulation, 257–9

objects
 for ANC, 167–8
 for Doppler radar systems, 160–1
 single moving objects, 167–8
 1D noncoherent experiments, 233–4
 optical techniques, 127
 Optotrak 3020, 235–9

packaging concepts, for embedded wireless devices
 biocompatible coating for, 60
 materials for, 58–9
 metals for, 58–9
 pressure-sensing methods for, 60
 pressure-sensing sites for, 60–1
 sealants for, 59
 superstrates for, 59–60
 parylene coating, 70, 72–3
 patients
 data for, 30–1
 ICP for, 40
 mannequins as, 21
 MII probes for, 9
 receivers for, 11
 wireless communication for, 1–3
 PCBs. See printed circuit boards
 performance
 of batterless wireless impedance and pH sensor capsules, 21–6
 of EMD signals, 210–12, 217–18
 of in vitro tests, 103–4
 performance, measurements for
 drift in, 56–7
 silicone coating thickness in, 54–5
 temperature changes and, 57–8
 permittivity
 acrylamide and, 68
 of epoxy, 107
 of glucose, 132–4
 in microwave analysis, 143
 nonpolar liquids and, 68
 of tumor tissues, 253
 of water, 134–6
 pH measurements, 15
 phantoms
 for antennas, 48–9
 gel phantoms, 57–8, 65, 68
 ingredients and, 67–8
 polyacrylamide phantoms, 66–7
 recipe for, 66–7
 saline in, 52
 physiologic monitoring
 Doppler radar systems for, 155–9, 163–4
 experimental veriﬁcation for, 160–3
 radar clutter in, 164–8
 wearable radar tag systems for, 154–5
 168–9
 wireless technology for, 180

in in vitro tests, 71–2
MII Probes. See multichannel intraluminal impedance probes
millimeter waves. See microwave analysis
module-based integration, 176–8
molecular analysis, 148–9
molecular investigations. See also cellular investigations; noninvasive investigations
microwave dielectric spectroscopy for, 125–8
microwave spectroscopy for, 137
monitoring. See also intracranial pressure monitoring; vital signs monitors
anatomy and, 42–3
diagnostic methods in, 8, 30
ﬁnger pulse reference signals for, 213–18
monitoring duration, 11–12
real time monitoring, 147–8
of respiration, 195–7
monopole antennas, 193, 232, 235–7, 251–2
motion. See Doppler radar systems
motion sensors, 203
moving target indicators, 212, 219
MPE. See maximum permissible exposure
MRI. See magnetic resonance imaging
multichannel intraluminal impedance (MII) probes
BRAVO devices compared to, 11–12, 19–20
22–3
for patients, 9
for reﬂux monitoring, with endoluminal applications, 8–10

packing concepts, for embedded wireless devices
biocompatible coating for, 60
materials for, 58–9
metals for, 58–9
pressure-sensing methods for, 60
pressure-sensing sites for, 60–1
sealants for, 59
superstrates for, 59–60
parylene coating, 70, 72–3
patients
data for, 30–1
ICP for, 40
mannequins as, 21–2
MII probes for, 9
receivers for, 11
wireless communication for, 1–3
PCBs. See printed circuit boards
performance
of batterless wireless impedance and pH sensor capsules, 21–6
of EMD signals, 210–12, 217–18
of in vitro tests, 103–4
performance, measurements for
drift in, 56–7
silicone coating thickness in, 54–5
temperature changes and, 57–8
permittivity
acrylamide and, 68
of epoxy, 107
of glucose, 132–4
in microwave analysis, 143
nonpolar liquids and, 68
tumor tissues, 253
of water, 134–6
PH measurements, 15
phantoms
for antennas, 48–9
gel phantoms, 57–8, 65, 68
ingredients and, 67–8
polyacrylamide phantoms, 66–7
recipe for, 66–7
saline in, 52
physiologic monitoring
Doppler radar systems for, 155–9, 163–4
experimental verification for, 160–3
radar clutter in, 164–8
wearable radar tag systems for, 154–5
168–9
wireless technology for, 180

in in vitro tests, 71–2
MII Probes. See multichannel intraluminal impedance probes
millimeter waves. See microwave analysis
module-based integration, 176–8
molecular analysis, 148–9
molecular investigations. See also cellular investigations; noninvasive investigations
microwave dielectric spectroscopy for, 125–8
microwave spectroscopy for, 137
monitoring. See also intracranial pressure monitoring; vital signs monitors
anatomy and, 42–3
diagnostic methods in, 8, 30
finger pulse reference signals for, 213–18
monitoring duration, 11–12
real time monitoring, 147–8
of respiration, 195–7
monopole antennas, 193, 232, 235–7, 251–2
motion. See Doppler radar systems
motion sensors, 203
moving target indicators, 212, 219
MPE. See maximum permissible exposure
MRI. See magnetic resonance imaging
multichannel intraluminal impedance (MII) probes
BRAVO devices compared to, 11–12, 19–20
22–3
for patients, 9
for reﬂux monitoring, with endoluminal applications, 8–10

packing concepts, for embedded wireless devices
biocompatible coating for, 60
materials for, 58–9
metals for, 58–9
pressure-sensing methods for, 60
pressure-sensing sites for, 60–1
sealants for, 59
superstrates for, 59–60
parylene coating, 70, 72–3
patients
data for, 30–1
ICP for, 40
mannequins as, 21–2
MII probes for, 9
receivers for, 11
wireless communication for, 1–3
PCBs. See printed circuit boards
performance
of batterless wireless impedance and pH sensor capsules, 21–6
of EMD signals, 210–12, 217–18
of in vitro tests, 103–4
performance, measurements for
drift in, 56–7
silicone coating thickness in, 54–5
temperature changes and, 57–8
permittivity
acrylamide and, 68
of epoxy, 107
of glucose, 132–4
in microwave analysis, 143
nonpolar liquids and, 68
tumor tissues, 253
of water, 134–6
PH measurements, 15
phantoms
for antennas, 48–9
gel phantoms, 57–8, 65, 68
ingredients and, 67–8
polyacrylamide phantoms, 66–7
recipe for, 66–7
saline in, 52
physiologic monitoring
Doppler radar systems for, 155–9, 163–4
experimental verification for, 160–3
radar clutter in, 164–8
wearable radar tag systems for, 154–5
168–9
wireless technology for, 180

© in this web service Cambridge University Press
www.cambridge.org
physiologic radar sensor chip development
chip integration for, 187–97
CW radar for, 172–3
FMCW radar for, 172–4
module-based integration for, 176–8
PCBs for, 178–87
pulse radar for, 174–5
theory for, 172
UWB SFCW radar for, 175–6
physiologic signals, 209
piezoresistive (PZR) implants, 68–70
piezoresistive pressure-sensing elements, 45–7
62–3
PIFA. See planar inverted-F antenna
pigs with AICP implants, 92–4
with DICP implants, 113–18
in in vivo experiments, 73–7
planar inverted-F antenna (PIFA)
characterization for, 49–51
experiments for, 51–8
gel phantoms for, 65
geometry for, 48–9
for rotational head injuries, 107–8
superstrates for, 59–60
VCO for, 51, 53–4
for VNA measurements, 51–2
polyacrylamide phantoms, 66–7
polydimethylsiloxane, 20
portable radar systems, 179–80
postoperative provisions, 94
power coils and, 29–30
ERP, 71–2
power amplifiers, 21
power management, 118–19
power transfers, 26–30
for radar systems, 190–3, 232–3
RF power, 138–40
VCOs for, 45–7
wireless power, 26–7
pressure, 68
pressure-sensing elements, 45–7
pressure-sensing methods, 60
pressure-sensing sites, 60–1, 83
printed circuit boards (PCBs)
antennas and, 193
block diagrams for, 180
for board level radar, 178–9
for Doppler radar systems, 184–5
for portable radar systems, 179–80
in RF boards, 182–4
VCOs and, 179–83
for wearable radar tag systems, 184–5
probes, 84–5
pseudo-Wigner-Ville distribution, 247–8
pulse radar, See also ultra-wideband (UWB) technology
biomedical applications of, 250–4, 257–60
block diagrams of, 194, 196
chip integration for, 193–7
for physiologic radar sensor chip development, 174–5
RTOF for, 172, 174–5
theory of, 240–1
UWB for, 172, 174–6, 193–7
PZR implants. See piezoresistive (PZR) implants
quadrature Doppler radar, 159–60, 176–7
radar systems. See also Doppler radar systems;
physiologic radar sensor chip development;
pulse radar; signals
biomedical imaging from, 175–6
block diagrams for, 197
board level radar, 178–9, 182–4
calibration approaches for, 255–7
chirp signals for, 173–4
FMCW radar, 172–4, 229–30
FPGAs for, 178
Gaussian signals in, 195–6, 214–18
heart signals in, 214–18, 223–5
ICs for, 20, 177, 179–80, 183
instruments-based physiologic radar system, 177–8, 185–7
noninvasive investigations with, 176
portable radar systems, 179–80
power for, 190–3, 232–3
quadrature Doppler radar, 159–60, 176–7
radar clutter in, 164–8, 180–2
radar signal processing in, 241–3
RF devices for, 176–8
selectivity for, 154
sensitivity in, 188–92, 195–7
two-frequency radar, 163–4
radiation, 156–9
radiofrequencies, 129
radiofrequency devices. See RF devices
radiofrequency identification (RFID) principle, 12–13
radiofrequency identification (RFID) systems, 154–5
radiofrequency integrated circuits (RFICs), 1–2
real time monitoring, 147–8
receivers, 11
reception, of signals, 204–6
reflux diseases. See also gastroesophageal reflux
disease; nonerosive esophagus reflux disease
data for, 21–6
impedance changes in, 8–10, 14–15
19–20
monitoring duration for, 11–12
water variations and, 25–6
reflux monitoring, with endoluminal applications
battery-based wireless and pH sensor capsules for,
13–15
BRAVO devices for, 10–12
diagnostic methods for, 8
MII probes for, 8–10
significance of, 6–8
wireless impedance sensors, with RFIDs for,
12–13
relaxation models, 133–4
relaxation oscillators, 20–1
relaxation times, 129–31
resonant devices, 135–6
respiration
breath-rate sensing, 197
monitoring of, 195–7
respiration rates, 161, 172, 243–8
respiration signals, 220
RF devices
frequencies for, 155–6
for radar, 176–8
RF boards, 182–4
RF energy in, 158–9
for RF measurement, 140–3
RF power in, 138–40
RF resonators, 136
RF signatures in, 145–7
RF transmitters, 14
RFICs. See radiofrequency integrated circuits
RFID principle. See radiofrequency identification principle
RFID systems. See radiofrequency identification systems
robots. See Optotrak 3020; 3D robot tracking
rodent studies. See in vivo experiments
rotational head injuries. See also analog intracranial pressure implants; digital intracranial pressure implants
assessment of, 104–5
frequencies for, 109
HYGE devices for, 94
measurements and, 95–7, 113–15
PIFA for, 107–8
TBI and, 90–1, 94
USB-based wireless development tools for, 97–9
round-trip time of flight (RTOF), 172, 174–5
saline, 52
salt water, 25–6
Sapphire DART system, 229–30
scattering-parameter measurements, 54
schematics
for air tests, 63
for animal studies, 94
for DICP implants, 106
for dry tests, 100
for eZ430-RF2500, 109
of flow cytometers, 125–6
for frequency-doubling tags, 155
for hydrostatic tests, 65, 112–13
for ICP implants, 47
of microwave biosensors, 145
sealants, 59
selectivity
microwave biosensors for, 135–7
for radar, 154
sensitivity
in noninvasive investigations, 138–40
in radar systems, 188–92, 195–7
of resonant devices, 135–6
temperature sensitivity, 70
sensors. See specific sensors
SFCW radar. See stepped-frequency continuous-wave radar
short-time Fourier transform (STFT), 243
signals
in antenna motion, 204–6
demodulated signals, 206–9, 222
EMD signals, 210–12, 217–18
finger pulse reference signals, 213–18
Gaussian signals, 195–6, 214–18, 232–5, 243, 251
HHT for, 210
the Hilbert transform for, 209–10
IMFs for, 208–12
physiologic signals, 209
radar heart signals, 214–18, 223–5
radar signal processing, 241–3
reception of, 204–6
respiration signals, 220
signal accuracy maps, 28–9
signal analysis, 212
signal returns, 256–7
simulation of, 220–1
wireless signal transduction, 26–30
signal-strength tests, 102–3, 110–11
silicone coating thickness
in performance, measurements for, 54–5
for TBI assessment, 106
simulation
of ANC, 165
of antennas, 253
for heart rates, 214
numerical simulation, 257–9
of signals, 220–1
single moving objects, 167–8
single-cell analysis, 143–5, 148–9
single-person experiments, 244–5
skull burr holes, 61, 80–1
slot antennas, 107–10, 250–4
specificity, in RF signatures, 145–7
spectroscopy. See microwave dielectric spectroscopy; microwave spectroscopy
stepped-frequency continuous-wave (SFCW) radar
block diagrams for, 192
UWB for, 175–6
STFT. See short-time Fourier transform
studies
animal studies, 94–5, 113–18
blast injury studies, 84–5
case studies, 197–8
in vivo studies, 113–15
long-term studies, 104, 119
neuropathologic studies, 119–20
superstrates, 59–60
surgical procedures
for in vivo experiments, 74–6
for TBI assessment, 92–4
swine. See pigs
tags. See specific tags
tap water, 25–6
TBI. See traumatic brain injury
TBI assessment. See traumatic brain injury assessment
TDOA concepts. See time-difference-of-arrival concepts
technological advances
for batteries, 3
in cellular analysis, 127–8
for DICP implants, 118
in Doppler radar systems, 197–8, 225
for electrical implants, 2–3
for ICP monitoring, 44–5
in respiration monitoring, 195–7
for RFICs, 1–2
in telemetry, 85
Time Domain Corporation for, 228
technology
for ICP monitoring, 43–4
of indoor positioning software, 228–39
for vital signs detection, 239–40
wireless technology, 40–1, 180
telemedicine, 40–1
telemetry
technological advances in, 85
for wireless implants, 4–5
temperature changes
implantable systems and, 63
performance, measurements for, and, 57–8
in TBI assessment, 112–13
temperatures
gel phantoms and, 57–8
temperature sensitivity, 70
temperature tests, 103
theory
for physiologic radar sensor chip development, 172
of pulse radar, 240–1
3D dynamic free motion, 235–6
3D noncoherent experiments, 234–5
3D robot tracking, 237–8
Time Domain Corporation, 228
time-difference-of-arrival (TDOA) concepts, 229–31
time-domain
in experiments, 165–7
frequencies and, 172–3, 172–4
tracking software, 230–3
traditional culture mediums, 140–3
traumatic brain injury (TBI). See also analog intracranial pressure implants; digital intracranial pressure implants
long-term studies for, 119
neuropathologic studies for, 119–20
rotational head injuries and, 90–1, 94
traumatic brain injury (TBI) assessment
animal models for, 92
animal studies for, 113–18
postoperative provisions after, 94
silicone coating thickness for, 106
surgical procedures for, 92–4
temperature changes in, 112–13
wireless ICP systems for, 89–90, 118–20
tumor tissues, 253
two-frequency radar, 163–4
two-person experiments, 246–8
ultra-wideband (UWB)
for pulse radar, 172, 174–6, 193–7
for SFCW radar, 175–6
ultra-wideband stepped-frequency continuous wave (UWB SFCW) radar, 175–6
ultra-wideband (UWB) technology. See also human gait analysis
biomedical applications of, 228, 260
block diagrams of, 251
for breast cancer detection, 250–60
for indoor positioning software, 228–39
for vital signs detection, 239–50
University of Texas (UT) tracking software, 230–3
USB-based wireless development tools, 97–9
UT tracking software. See University of Texas tracking software
UWB SFCW radar. See ultra-wideband stepped-frequency continuous wave radar
UWB technology. See ultra-wideband (UWB) technology
VCOs. See voltage controlled oscillators
vector network analyzer (VNA)
for measurements, 51–2, 198
PIFA measurements for, 51–2
scattering-parameter measurements for, 54
vital signs detection. See also human gait analysis
micro-Doppler signature extraction in, 240–3
respiration rate in, 243–8
technology for, 239–40
vital signs monitors, 202–3
VNA. See vector network analyzer
voltage controlled oscillators (VCOs)
PCBs and, 179–83
for PIFA, 51, 53–4
for power, 45–7
water. See also specific waters
DI water, 25–6
gel phantoms and, 68
in microwave analysis, 132–4
permittivity of, 134–6
salt water, 25–6
tap water, 25–6
water tests, 100–2
water variations, 25–6
wearable radar tag systems
ANC for, 164–7
experiments for, 160–3
frequency-doubling tags for, 155–9
PCBs for, 184–5
for physiologic monitoring, 154–5
168–9
two-frequency radar for, 163–4
wireless capsules
for GERD, 13–15
impedance measurements with, 15
pH measurements with, 15
power amplifiers for, 21
wireless communication, 1–3
wireless ICP systems. See wireless intracranial pressure systems
wireless impedance sensors, with RFID, 12–13
wireless implants
endoscopic procedures for, 3–4
telemetry for, 4–5
wireless intracranial pressure (ICP) systems
AICP implants in, 94–7
DICP implants in, 97–104
for TBI assessment, 89–90, 118–20
Wireless pH monitoring capsules. See BRAVO devices
wireless power, 26–7
wireless signal transduction, 26–30
wireless technology
for physiologic monitoring, 180
for telemedicine, 40–1
wireless vital signs monitoring devices, 218–19
x-ray mammography, 250
yeast viability, 146