METHODS IN MOLECULAR BIOPHYSICS
Second Edition

Current techniques for studying biological macromolecules and their interactions are based on the application of physical methods, ranging from classical thermodynamics to more recently developed techniques for the detection and manipulation of single molecules. Reflecting the advances made in biophysics research over the past decade, and now including a new section on medical imaging, this new edition describes the physical methods used in modern biology.

All the key techniques are covered, including mass spectrometry, hydrodynamics, microscopy and imaging, diffraction and spectroscopy, electron microscopy, molecular dynamics simulations, and nuclear magnetic resonance. Each method is explained in detail using examples of real-world applications. Short asides are provided throughout to ensure that explanations are accessible to life scientists, physicists, and those with medical backgrounds.

The book remains an unparalleled and comprehensive resource for graduate students of biophysics and medical physics in science and medical schools, as well as for research scientists looking for an introduction to techniques from across this interdisciplinary field.

Nathan R. Zaccai is a Research Associate at the Cambridge Institute for Medical Research, University of Cambridge. His current research focuses on the molecular and thermodynamic basis of the transport and presentation at cell surfaces of proteins involved in pathogen evasion and host immunity.

Igor N. Serdyuk (1939–2012) was Professor of Molecular Biology and Head of the Laboratory of Nucleoprotein Physics at the Institute of Protein Research, Pushchino, Russia.

Joseph Zaccai is Directeur de Recherche Emeritus at the Centre Nationale de la Recherche Scientifique and Visiting Scientist at the Institut Laue-Langevin and Institut de Biologie Structurale, Grenoble. His current research interests include the exploration of the role of dynamics and physical chemical limits for life. He has many years of experience in teaching biophysics to biologists, medical students, and physicists.
REVIEWS FROM THE FIRST EDITION

I first asked what methods in molecular biophysics I would expect to use as a biochemist and structural biologist. This text book provides an introduction to the physics of each of [the techniques used by my own group] as well as a review of the applications... [It] will be in demand by third year undergraduates in the many courses run by physicists to introduce them to biological themes. It would also be used by the many post-graduate students doing... research degrees as well as post-doctorals in chemical biology, biochemistry, cell biology and structural biology research groups... In summary, this is a valuable contribution to the field... this is an area which has advanced tremendously and the major texts in biophysical methods are now simply out of date. The text covers the methods that young researchers and some undergraduates will wish to learn. I am sure that it will find itself on the shelves of many laboratories throughout the world. There is nothing quite like it at the moment.

Sir Tom Blundell FRS, FMedSci, Professor and Head, Department of Biochemistry, University of Cambridge

Thank you very much for giving me the opportunity to preview this wonderful text book. It has outstanding breadth while maintaining sufficient depth to follow modern experiments or initiate a deeper understanding of a new subject area. I love the 'Physicist's' and 'Biologist's Boxes' to address specific subjects for researchers with different backgrounds. This is one of the most comprehensive and highly relevant texts on biophysics that I have encountered in the last 10 years, clearly written and up-to-date. It is a must-have for biophysicists working in all lines of research, and certainly for me.

Nikolaus Grigorieff, Professor of Biochemistry, Brandeis University

[This is] a wonderful up-to-date treatise on the many and diverse methods used... in the fields of molecular biophysics, physical biochemistry, molecular biology, biological physics and the new and emerging field of quantum nanobiology. The wide range of methods available... in these multidisciplinary fields has been overwhelming for most researchers, students and scientists [who fail] to fully appreciate the utility and usefulness of the methods [other than their own]. [In many cases, this has] created disagreements and... controversy. The only way to understand and appreciate fully the problems in quantum nanobiology and their complexity is to utilize and fully understand the many diverse methods covered by the authors in this very fine treatise... [It] should be in the library of any serious researcher in the many diverse multidisciplinary fields working on problems in quantum nanobiology... They will be greatly rewarded by an ability to see and view the problems and their complexity through different perspectives, aspects and points of view, ...

Karl J. Jalkanen, Associate Professor of Biophysics, Quantum Protein Centre, Technological University of Denmark

This most welcome text provides an up-to-date introduction to the vast field of biophysical methods. Written in an accessible style with an eye to a broad audience, it will appeal to biologists who wish to understand how to determine how macromolecules function and to scientists with a physics or physical chemistry background who wish to know how measurement of the physical world can impact our understanding of biological problems. The book succeeds in unifying disparate approaches under the aegis of developing an understanding of how macromolecules work.
Importantly, the text also provides the relevant historical background, an invaluable guide that will aid in the appreciation of what has gone before and should serve to orient them towards the future and what may be possible. It is a valuable resource for novice and seasoned biophysicists alike.

Dan Minor, California Institute for Quantitative Biomedical Research University of California, San Francisco

Methods in Molecular Biophysics is now the book I consult first when faced with an unfamiliar experimental technique. Both classic analytical techniques and the latest single-molecule methods appear in this single comprehensive reference.

Philip Nelson, Department of Physics, University of Pennsylvania, and author of Biological Physics

The authors provide an overview of many of the major recent accomplishments in the use of physical tools to investigate biological structure. There are interesting historical and biographical comments that lead the reader into understanding contemporary concepts and results. The book will be valuable both for students and research scientists.

Michael G. Rossmann, Hanley Professor of Biological Sciences, Purdue University

The melding of physics, chemistry and biology in modern science has changed our view of the natural world and opened avenues for detailed understanding of the origin of biological regulation. Methods in Molecular Biophysics provides an up-to-date view of classical biophysics, theory and practice of modern chemical biology and represents an essential text for the interdisciplinary scientist of the 21st Century. A great achievement and presentation awaits the student who reads this book, along with an excellent reference for the seasoned practitioner of biophysical chemistry.

Milton H Werner, Laboratory of Molecular Biophysics, The Rockefeller University

The methods, concepts, and discoveries of molecular biophysics have penetrated deeply into the fabric of modern biology. Physical methods that were once seemingly arcane are now commonplace in modern cell biology laboratories. This well written, thorough, and elegantly illustrated book provides the connections between molecular biophysics and biology that every aspiring young biologist needs. At the same time, it will serve physical scientists as a guide to the key ideas of modern biology.

Stephen H. White, Professor, Department of Physiology and Biophysics, University of California at Irvine

Methods in Molecular Biophysics offers a well-written, modern and comprehensive coverage of the properties of biological macromolecules and the techniques used to elucidate these properties. The authors have done a great service to the biophysics community in providing a long-needed update and expansion of previous texts on analysis of biological macromolecules. The choice and organization of material is especially well done. This book will be of considerable value not only to students, but also, due to the scope and breadth of coverage, to experienced researchers. I enthusiastically recommend Methods in Molecular Biophysics to anyone who wishes to know more about the techniques by which the properties of biological macromolecules are determined.

David Worcester, Department of Biological Sciences, University of Missouri – Columbia
METHODS IN MOLECULAR BIOPHYSICS
Structure, Dynamics, Function for Biology and Medicine
Second Edition

NATHAN R. ZACCAI
University of Cambridge

IGOR N. SERDYUK
Formerly of the Institute of Protein Research, Pushchino, Moscow Region

JOSEPH ZACCAI
Institut Laue-Langevin
To Ol’ga, Brinda, Missy
CONTENTS IN BRIEF

Contents xi
Preface to the First Edition xxi
Preface to the Second Edition xxiii

Introduction: Molecular Biophysics at the Beginning of the Twenty-First Century: From Ensemble Measurements to Single-Molecule Detection 1

Part A Biological Macromolecules and Physical Tools 11
A1 Macromolecules in Their Environment 13
A2 Macromolecules as Physical Particles 25
A3 Understanding Macromolecular Structures 43

Part B Mass Spectrometry 69
B1 Mass and Charge 71
B2 Structure Function Studies 85

Part C Thermodynamics 113
C1 Thermodynamic Stability and Interactions 115
C2 Differential Scanning Calorimetry 126
C3 Isothermal Titration Calorimetry 141
C4 Surface Plasmon Resonance and Interferometry-Based Biosensors 149

Part D Hydrodynamics 159
D1 Biological Macromolecules as Hydrodynamic Particles 161
D2 Analytical Ultracentrifugation 184
D3 Fluorescence Depolarization 215
D4 Dynamic Light Scattering and Fluorescence Correlation Spectroscopy 229

Part E Optical Spectroscopy 251
E1 Visible and IR Absorption Spectroscopy 253
E2 Two-Dimensional IR Spectroscopy 281

E3 Raman Scattering Spectroscopy 288
E4 Optical Activity and Circular Dichroism 306

Part F Optical Microscopy 323
F1 Light Microscopy 325
F2 Single Molecule Manipulation and Atomic Force Microscopy 335
F3 Fluorescence Microscopy 384

Part G X-ray and Neutron Diffraction 405
G1 The Macromolecule as a Radiation Scattering Particle 407
G2 Small-Angle Scattering and Reflectometry 423
G3 X-ray and Neutron Macromolecular Crystallography 456

Part H Electron Diffraction 487
H1 Electron Microscopy 489
H2 Three-Dimensional Reconstruction from Two-Dimensional Images 502

Part I Molecular Dynamics 519
I1 Energy and Time Calculations 521
I2 Neutron Spectroscopy 531

Part J Nuclear Magnetic Resonance 543
J1 Distances and Angles from Frequencies 545
J2 Experimental Techniques 566
J3 Structure and Dynamics Studies 594

Part K Medical Imaging 627
K1 Radiology and Positron Emission Tomography 629
K2 Ultrasound Imaging 639
K3 Magnetic Resonance Imaging 648
CONTENTS

Preface to the First Edition xxiii
Preface to the Second Edition xxv

Introduction: Molecular Biophysics at the Beginning of the Twenty-First Century: From Ensemble Measurements to Single-Molecule Detection 1

1 A Brief History and Perspectives
2 Languages and Tools
3 Length and Timescales in Biology
4 The Structure–Function Hypothesis
5 Complementarity of Physical Methods
6 Thermodynamics
7 Hydrodynamics
8 Radiation Scattering
9 Spectroscopy
10 Single-Molecule Detection
11 Biophysics and Medicine

PART A BIOLOGICAL MACROMOLECULES AND PHYSICAL TOOLS 11

A1 Macromolecules in Their Environment 13
A1.1 Historical Review 13
A1.2 Macromolecular Solutions 13
A1.2.1 Concentration 13
A1.2.2 Partial Volume 14
A1.2.3 Colligative Properties 14
A1.2.4 Chemical Potential and Activity 15
A1.2.5 Temperature 16
A1.2.6 Osmotic Pressure 16
A1.2.7 Virial Coefficients 16
A1.3 Macromolecules, Water, and Salt 18
A1.3.1 Ionic Strength and Debye–Hückel Theory 19
A1.3.2 Polyelectrolytes and the Donnan Effect 19
A1.3.3 Macromolecule–Solvent Interactions 20
A1.3.4 Water, Salt and the Hydrophobic Effect 20
A1.4 Checklist of Key Ideas 23
Suggestions for Further Reading 24

A2 Macromolecules as Physical Particles 25
A2.1 Historical Review and Biological Applications 25

A2.2 Biological Molecules and the Flow of Genetic Information 26
A2.3 Proteins 28
A2.3.1 Chemical Composition and Primary Structure 28
A2.3.2 Structures of Higher Order 29
A2.4 Nucleic Acids 33
A2.4.1 Chemical Composition and Primary Structure 33
A2.4.2 Structures of Higher Order 33
A2.5 Carbohydrates 34
A2.5.1 Chemical Composition and Primary Structure 36
A2.6 Lipids 38
A2.6.1 Chemical Composition 38
A2.6.2 Higher-Order Structures 40
A2.6.3 Lipids and Membrane Proteins 41
A2.7 Checklist of Key Ideas 41
Suggestions for Further Reading 42

PART B MASS SPECTROMETRY 69

B1 Mass and Charge 71
B1.1 Historical Review 71
B1.2 Introduction to Biological Applications 72
B1.3 Ions in Electric and Magnetic Fields 73
B1.4 Mass Resolution and Mass Accuracy 73
B1.4.1 Mass Resolution 73
B1.4.2 Molecular Mass Accuracy 74
B1.5 Ionization Technique 74
B1.5.1 From Ions in Solution to Ions in the Gas Phase 74
B1.5.2 Laser Desorption, Matrix-Assisted Laser Desorption Ionization, and Photodissociation MS 76
B1.5.3 Electrospray Ionization (ESI) 77
B1.6 Instrumentation and Innovative Techniques 77
B1.6.1 Quadrupole Mass Filter 78
B1.6.2 Quadrupole Ion Trap 78
B1.6.3 Ion Cyclotron Resonance Mass Spectrometry (ICR-MS) 78
B1.6.4 Orbitrap Analyzer 80
B1.6.5 TOF Mass Spectrometer 80
B1.6.6 Fourier Transform Mass Spectrometry (FT-MS) 81
B1.6.7 Tandem Mass Spectrometry (MS-MS) 82
B1.7 Checklist of Key Ideas 83
Suggestions for Further Reading 83

PART C THERMODYNAMICS 113
C1 Thermodynamic Stability and Interactions 115
C1.1 Historical Overview and Biological Applications 115
C1.2 The Laws of Thermodynamics 116
C1.2.1 Fundamental Definitions and the Zeroth Law 117
C1.2.2 The First Law and Energy 117
C1.2.3 The Second Law and Entropy 118
C1.2.4 The Third Law and Absolute Zero 119
C1.3 Useful Concepts and Equations 119
C1.3.1 Free Energy and Allied Concepts 120
C1.3.2 Binding Studies 122
C1.3.3 Calorimetry and Binding 123
C1.3.4 Activation Thermodynamics 124
C1.4 Checklist of Key Ideas 124
Suggestions for Further Reading 125

C2 Differential Scanning Calorimetry 126
C2.1 Historical Overview 126
C2.2 Basic Theory 126
C2.3 Experimental Considerations 126
C2.3.1 Instrument Specifications 126
C2.3.2 Sensitivity of Heat Capacity Measurements 126
C2.3.3 Sample Requirements 127
C2.4 The Heat Capacity of Proteins 127
C2.4.1 The Heat Capacity Versus Temperature Curve 127
C2.4.2 Partition Function Analysis of the Heat Capacity Curve 128
C2.4.3 Two-State Transition: Calorimetric and Van’t Hoff Enthalpies are Equal 128
C2.4.4 Calorimetric and Van’t Hoff Enthalpies are Not Equal: Cooperative Domains 129
C2.4.5 Folding Intermediates and Effects of Mutations 129
C2.4.6 Complex Proteins 130
C2.4.7 Solvent Effects on the Transition and the Absolute Partial Heat Capacity Difference Between Folded and Unfolded States of a Macromolecule 132
C2.4.8 Heat Capacity Calculations from Structural Data 132
C2.4.9 Protein Stabilization Forces 136
C2.5 Nucleic Acids and Lipids 139
C2.6 Checklist of Key Ideas 139
Suggestions for Further Reading 140

C3 Isothermal Titration Calorimetry 141
C3.1 Historical Review 141
C3.2 Experimental Aspects and Equations 141
Contents

C3.2.1 Measuring Protocol and Samples 141
C3.2.2 Binding Enthalpy and Heat Capacity 142
C3.2.3 Affinity Constants 142
C3.3 Applications 144
C3.3.1 Entropic Versus Enthalpic Optimization 144
C3.3.2 Relating Binding Energy and Structure 144
C3.3.3 Combining ITC and Other Biophysical Methods 144
C3.4 Checklist of Key Ideas 148
Suggestions for Further Reading 148

C4 Surface Plasmon Resonance and Interferometry-Based Biosensors 149
C4.1 Historical Overview and Introduction to Biological Problems 149
C4.2 Measuring Surface Binding 149
C4.2.1 Layout of a Biosensor 149
C4.2.2 SPR Biosensor 150
C4.2.3 Interferometers as Biosensors 151
C4.2.4 Other Types of Biosensor 151
C4.2.5 Coupling Ligands to a Surface 152
C4.3 Binding Between a Soluble Molecule and a Surface 152
C4.3.1 Thermodynamics of Surface Interactions 152
C4.3.2 Measurement of the Equilibrium Constant 152
C4.3.3 The Determination of the k_{off} and k_{on} of an Interaction 153
C4.4 Experimental Analysis 155
C4.4.1 Scope of Analytes 155
C4.4.2 Experimental Controls and Pitfalls 155
C4.4.3 Cell–Cell Interactions 155
C4.4.4 SPR and Mass Spectrometry 155
C4.5 Checklist of Key Ideas 156
Suggestions for Further Reading 157

D1. Biological Macromolecules as Hydrodynamic Particles 161
D1.1 History and Introduction to Biological Problems 161
D1.2 Hydrodynamics at a Low Reynolds Number 163
D1.2.1 Reynolds Number 163
D1.2.2 Movement at Low Reynolds Number 163
D1.3 Hydration 163
D1.4 Friction 165
D1.4.1 “Stick” and “Slip” Boundary Conditions 165
D1.4.2 Hydrodynamic Quantities 165
D1.5 Diffusion 168
D1.5.1 Translational Diffusion Coefficients 168
D1.5.2 Microscopic Theory of Diffusion 169
D1.5.3 Macroscopic Theory of Diffusion and Fick’s Equations 169
D1.5.4 Solutions to Fick’s Equations 170
D1.5.5 Experimental Methods for Directly Determining Diffusion Coefficients 171
D1.5.6 Translational Friction and Diffusion Coefficients 172
D1.6.1 Einstein–Smoluchowski Relation 172
D1.6.2 Diffusion Coefficients of Biological Macromolecules 174
D1.6.3 Dependence of the Diffusion Coefficient on the Molecular Mass of Globular Proteins 175
D1.6.4 Dependence of the Diffusion Coefficient on the Molecular Mass of DNA 176
D1.6.5 The Limits to Stokes’ Law 176
D1.7 Hydrodynamic Experiments 176
D1.7.1 Measurement of Translational Frictional Coefficients 178
D1.7.2 Measurement of Rotational Frictional Coefficients 179
D1.7.3 Measurement of Viscosity 180
D1.7.4 Prediction of Hydrodynamic Properties 181
D1.8 Checklist of Key Ideas 182
Suggestions for Further Reading 183

D2 Analytical Ultracentrifugation 184
D2.1 Historical Review 184
D2.2 Instrumentation and Innovative Technique 185
D2.2.1 Rotors and Cells 186
D2.2.2 Optical Detection Systems 187
D2.2.3 Data Acquisition 188
D2.3 The Lamm Equation 189
D2.4 Solutions of the Lamm Equation for Different Boundary Conditions 190
D2.4.1 Exact Solutions 190
D2.4.2 Analytical Solutions 190
D2.4.3 Numerical Solutions 192
D2.5 Sedimentation Velocity 193
D2.5.1 Macromolecules in a Strong Gravitational Field 193
D2.5.2 Determination of Sedimentation and Diffusion Coefficients from the Moving Boundary 195
D2.5.3 Highly Heterogeneous Systems 196
D2.5.4 Sedimentation Coefficients of Biological Macromolecules 198
D2.5.5 Differential Sedimentation for Measuring Small Changes in Sedimentation Coefficients 198
D2.6 Molecular Mass from Sedimentation and Diffusion Data 200
D2.7 Sedimentation Equilibrium 201
D2.8 Molecular Mass 201

PART D HYDRODYNAMICS 159
D2.7.2 Binding Constants 202
D2.8 The Partial Specific Volume 204
D2.9 Density Gradient Sedimentation 204
D2.9.1 Velocity Zonal Method 204
D2.9.2 Equilibrium Sedimentation in a Density Gradient 206
D2.10 Molecular Shape from Sedimentation Data 207
D2.10.1 Homologous Series of Quasi-Spherical Particles: Globular Proteins in Water 207
D2.10.2 Homologous Series of Random Coils: Proteins in Guanidine Hydrochloride 209
D2.10.3 From Slightly Flexible Rod to Nearly Perfect Random Coil: DNA 209
D2.10.4 Ribosomal RNAs, Ribosomal Particles, and RNP Complexes 210
D2.11 Checklist of Key Ideas 213
Suggestions for Further Reading 214

D3 Fluorescence Depolarization 215
D3.1 Historical Review 215
D3.2 Introduction to Biological Problems 215
D3.3 Theory of Fluorescence Depolarization 216
D3.3.1 Fluorescence as a Physical Phenomenon 216
D3.3.2 Lifetime of Fluorophore and Rotational Correlation Time 217
D3.3.3 Steady-State Fluorescence Depolarization 217
D3.3.4 Time-Resolved Fluorescence Depolarization 219
D3.4 Instrumentation 219
D3.5 Depolarized Fluorescence and Brownian Motion 221
D3.5.1 Steady-State or Static Polarization 221
D3.5.2 Fluorescence Anisotropy Decay Time 221
D3.5.3 Rotational Correlation Time of Globular Proteins 222
D3.6 Depolarized Fluorescence and Molecular Interactions 225
D3.7 Checklist of Key Ideas 227
Suggestions for Further Reading 228

D4 Dynamic Light Scattering and Fluorescence Correlation Spectroscopy 229
D4.1 Historical Review 229
D4.2 Introduction to Biological Problems 230
D4.3 Dynamic Light Scattering as a Spectroscopy of Very High Resolution Functions 232
D4.3.1 Fluctuations and Time-Correlation Functions 232
D4.3.2 Measurements of the Dynamic Part of Scattered Light 233
D4.3.3 Diffusion Coefficients from DLS 235
D4.4 Dynamic Light Scattering Under Gaussian Statistics 236

D4.4.1 Particles that are Small Compared to the Wavelength of the Incoming Light 236
D4.4.2 Rigid Particles of Dimension Comparable to the Wavelength of Light 237
D4.4.3 Flexible Macromolecules: DNA 238
D4.4.4 Macromolecules in Uniform Motion: Electrophoretic Light Scattering 239
D4.5 DLS under Non-Gaussian Statistics 241
D4.5.1 Scattering of a Small Number of Particles (Number Fluctuations) 241
D4.5.2 Cross-Correlation (Method of Two Detectors) 242
D4.6 Fluorescence Correlation Spectroscopy 243
D4.6.1 General Principles of FCS 243
D4.6.2 Basics and Applications 244
D4.6.3 Dual-Color Fluorescence Cross-Correlation Spectroscopy 248
D4.7 Checklist of Key Ideas 248
Suggestions for Further Reading 249

PART E OPTICAL SPECTROSCOPY 251
E1 Visible and IR Absorption Spectroscopy 253
E1.1 Brief Historical Review and Biological Applications 253
E1.2 Brief Theoretical Outline 254
E1.2.1 The Extinction Coefficient and Absorbance 255
E1.3 The UV–Visible Spectral Range 255
E1.3.1 UV–Visible Spectrophotometers and Measurement Strategies 257
E1.3.2 UV Absorption Spectra of Proteins 258
E1.3.3 Visible Absorption Spectra of Protein-Associated Groups 259
E1.3.4 UV Absorption Spectra of Nucleic Acids 260
E1.4 IR Absorption Spectroscopy 266
E1.4.1 IR Spectrometers 266
E1.4.2 Molecular Vibrations 267
E1.4.3 IR-Active and IR-Inactive Modes 268
E1.4.4 Quantum Mechanical Treatment of Vibrations 268
E1.4.5 Vibrational Modes of Polyatomic Molecules 270
E1.4.6 Resolution Enhanced FTIR Spectra 271
E1.4.7 From Amide Bands to Protein Secondary Structure 273
E1.4.8 IR Difference Spectroscopy 274
E1.4.9 Time-Resolved IR Spectroscopy 276
E1.4.10 DNA Conformation 277
E1.5 Checklist of Key Ideas 279
Suggestions for Further Reading 280

E2 Two-Dimensional IR Spectroscopy 281
E2.1 Historical Review and Introduction to Biological Problems 281
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2.2</td>
<td>Linear and Multidimensional Spectroscopy</td>
<td>281</td>
</tr>
<tr>
<td>E2.3</td>
<td>Principles of 2D-IR Spectroscopy</td>
<td>281</td>
</tr>
<tr>
<td>E2.3.1</td>
<td>Pump Probe Experiments</td>
<td>281</td>
</tr>
<tr>
<td>E2.3.2</td>
<td>Selection Rules for Two-Dimensional Spectroscopy</td>
<td>282</td>
</tr>
<tr>
<td>E2.3.3</td>
<td>NMR and 2D-IR Spectroscopy: Similarity and Difference</td>
<td>283</td>
</tr>
<tr>
<td>E2.4</td>
<td>From Amide Bands to Protein Tertiary Structure</td>
<td>283</td>
</tr>
<tr>
<td>E2.4.1</td>
<td>Simulations of 2D-IR Spectroscopy</td>
<td>284</td>
</tr>
<tr>
<td>E2.4.2</td>
<td>Determination of Peptide Structures</td>
<td>284</td>
</tr>
<tr>
<td>E2.5</td>
<td>Checklist of Key Ideas</td>
<td>286</td>
</tr>
<tr>
<td></td>
<td>Suggestions for Further Reading</td>
<td>287</td>
</tr>
<tr>
<td>E3</td>
<td>Raman Scattering Spectroscopy</td>
<td>288</td>
</tr>
<tr>
<td>E3.1</td>
<td>Historical Review and Introduction to Biological Problems</td>
<td>288</td>
</tr>
<tr>
<td>E3.2</td>
<td>Classical Raman Spectroscopy</td>
<td>288</td>
</tr>
<tr>
<td>E3.2.1</td>
<td>Raman Spectra</td>
<td>288</td>
</tr>
<tr>
<td>E3.2.2</td>
<td>Frequency, Intensity, and Polarization</td>
<td>289</td>
</tr>
<tr>
<td>E3.2.3</td>
<td>Raman Spectrometers and Raman Microscopes</td>
<td>290</td>
</tr>
<tr>
<td>E3.2.4</td>
<td>Protein Secondary Structure from Raman Spectra</td>
<td>291</td>
</tr>
<tr>
<td>E3.2.5</td>
<td>Protein Conformational Dynamics in Solution and in Crystals</td>
<td>293</td>
</tr>
<tr>
<td>E3.2.6</td>
<td>Conformation of DNA</td>
<td>293</td>
</tr>
<tr>
<td>E3.3</td>
<td>Resonance Raman Spectroscopy (RRS)</td>
<td>295</td>
</tr>
<tr>
<td>E3.4</td>
<td>Surface Enhanced Raman Spectroscopy (SERS)</td>
<td>295</td>
</tr>
<tr>
<td>E3.5</td>
<td>Vibrational Raman Optical Activity</td>
<td>296</td>
</tr>
<tr>
<td>E3.5.1</td>
<td>Vibrational Circular Dichroism (VCD)</td>
<td>296</td>
</tr>
<tr>
<td>E3.5.2</td>
<td>Raman Optical Activity (ROA)</td>
<td>296</td>
</tr>
<tr>
<td>E3.6</td>
<td>Differential Raman Spectroscopy</td>
<td>300</td>
</tr>
<tr>
<td>E3.7</td>
<td>Time-Resolved Resonance Raman Spectroscopy</td>
<td>301</td>
</tr>
<tr>
<td>E3.7.1</td>
<td>Light-Initiated Methods</td>
<td>301</td>
</tr>
<tr>
<td>E3.7.2</td>
<td>Rapid Mixing Methods</td>
<td>303</td>
</tr>
<tr>
<td>E3.8</td>
<td>Checklist of Key Ideas</td>
<td>304</td>
</tr>
<tr>
<td></td>
<td>Suggestions for Further Reading</td>
<td>304</td>
</tr>
<tr>
<td>E4</td>
<td>Optical Activity and Circular Dichroism</td>
<td>306</td>
</tr>
<tr>
<td>E4.1</td>
<td>Historical Review and Introduction to Biological Problems</td>
<td>306</td>
</tr>
<tr>
<td>E4.2</td>
<td>Brief Theoretical Outline</td>
<td>307</td>
</tr>
<tr>
<td>E4.2.1</td>
<td>Plane, Circularly, and Elliptically Polarized Light</td>
<td>307</td>
</tr>
<tr>
<td>E4.2.2</td>
<td>CD, Ellipticity, and ORD</td>
<td>308</td>
</tr>
<tr>
<td>E4.2.3</td>
<td>Electronic Transitions, Dipole, and Rotational Strengths</td>
<td>309</td>
</tr>
<tr>
<td>E4.2.4</td>
<td>Rotational Strength and Structural Organization</td>
<td>310</td>
</tr>
<tr>
<td>E4.3</td>
<td>Instruments</td>
<td>311</td>
</tr>
<tr>
<td>E4.4</td>
<td>CD of Proteins</td>
<td>311</td>
</tr>
<tr>
<td>E4.4.1</td>
<td>Circular Dichroism of Protein Secondary Structures</td>
<td>311</td>
</tr>
<tr>
<td>E4.4.2</td>
<td>Near-UV CD and Protein Tertiary Structure</td>
<td>314</td>
</tr>
<tr>
<td>E4.4.3</td>
<td>Protein Folding</td>
<td>315</td>
</tr>
<tr>
<td>E4.5</td>
<td>Nucleic Acids and Protein–Nucleic Acid Interactions</td>
<td>317</td>
</tr>
<tr>
<td>E4.5.1</td>
<td>RNA</td>
<td>317</td>
</tr>
<tr>
<td>E4.5.2</td>
<td>DNA</td>
<td>318</td>
</tr>
<tr>
<td>E4.5.3</td>
<td>Protein–Nucleic Acid Interactions</td>
<td>318</td>
</tr>
<tr>
<td>E4.6</td>
<td>Carbohydrates</td>
<td>319</td>
</tr>
<tr>
<td>E4.7</td>
<td>CD from IR Radiation to X-rays</td>
<td>320</td>
</tr>
<tr>
<td>E4.8</td>
<td>Checklist of Key Ideas</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>Suggestions for Further Reading</td>
<td>321</td>
</tr>
</tbody>
</table>

PART F OPTICAL MICROSCOPY 323

F1 Light Microscopy 325

- **F1.1** Historical Review 325
- **F1.2** Light Microscopy Inside the Classical Limit 326
- **F1.2.1** The Standard Light Microscope 326
- **F1.2.2** The Problem of Contrast 328
- **F1.3** Subwavelength Resolution within the Restrictions of Geometrical Optics 329
- **F1.3.1** Confocal Microscopy 329
- **F1.4** Lensless Microscopy 331
- **F1.5** Checklist of Key Ideas 333
- **F1.5.1** Suggestions for Further Reading 333

F2 Single Molecule Manipulation and Atomic Force Microscopy 335

- **F2.1** Historical Review 335
- **F2.2** Nanoscale Manipulation in Biology 336
- **F2.2.1** Optical Traps (Laser Tweezers) 336
- **F2.2.2** Magnetic Traps (Magnetic Tweezers) 338
- **F2.2.3** Cantilever in the Force-Measuring Mode of the AFM 339
- **F2.2.4** Glass Microneedles 340
- **F2.3** General Principles of AFM 340

F3 Optical Activity and Circular Dichroism 306

- **F3.1** Historical Review and Introduction to Biological Problems 306
- **F3.2** Brief Theoretical Outline 307
- **F3.2.1** Plane, Circularly, and Elliptically Polarized Light 307
- **F3.2.2** CD, Ellipticity, and ORD 308
- **F3.2.3** Electronic Transitions, Dipole, and Rotational Strengths 309
- **F3.2.4** Rotational Strength and Structural Organization 310
- **F3.3** The Tip: A Key Element of Scanning Force Microscopy 342
- **F3.3.1** Imaging Modes 342
- **F3.4** Imaging Biological Structures 344
- **F3.4.1** Imaging DNA 344
- **F3.4.2** Imaging Proteins 345
- **F3.4.3** Biological Macromolecules at Work: High-Speed AFM 346
- **F3.4.4** The AFM Probe as a Nanoscalpel 348
PART G X-RAY AND NEUTRON DIFFRACTION 405

G1 The Macromolecule as a Radiation Scattering Particle 407
G1.1 Historical Review and Introduction to Biological Applications 407
G1.2 Radiation and Matter 408
G1.2.1 X-ray and Neutron Scattering 409
G1.2.2 Absorption 409
G1.2.3 Energy Momentum and Wavelength 409
G1.3 Scattering by a Single Atom (the Geometric View) 410
G1.3.1 Point Scattering: Scattering Length 411
G1.3.2 Cross-Sections and Sample Size 412
G1.4 Scattering Vector and Resolution 413
G1.5 Scattering by an Assembly of Atoms 414
G1.5.1 Coherent and Incoherent Scattering 414
G1.5.2 Elastic and Inelastic Scattering 414
G1.5.3 Summing Waves, Fourier Transformation, and Reciprocal Space 415
G1.5.4 The Phase Problem 416
G1.6 Solutions and Crystals 416
G1.6.1 One-Dimensional Crystals 416
G1.6.2 Two- and Three-Dimensional Crystals 417
G1.6.3 Disordered Systems 417
G1.7 Resolution and Contrast 418
G1.8 The Practice of X-ray and Neutron Diffraction 419
G1.8.1 Complementarity 419
G1.8.2 Sources and Instruments 419
G1.9 Checklist of Key Ideas 421

G2 Small-Angle Scattering and Reflectometry 423
G2.1 Theory of Small-Angle Scattering from Particles in Solution 423
G2.1.1 Dilute Solutions of Identical Particles 423
G2.1.2 The Scattering Curve at Small Q Values: The Guinier Approximation, the Forward Scattered Intensity, and Radius of Gyration 425
G2.1.3 Asymptotic Behavior of the Scattering Curve at Large Q Values: The Porod Relation 426
G2.1.4 The Full Scattering Curve: The Distance Distribution Function 427
G2.1.5 The Information Content in \(p(r) \) and \(I(Q) \) for a Monodisperse Solution of a Particle with a Well-Defined Envelope 428
G2.1.6 Polydisperse Solutions 430

F2.4.5 Study of Crystal Growth 348
F2.5 Combination of NSOM and AFM 349
F2.6 Macromolecular Mechanics: Nanometer Steps and Piconeutron Forces 350
F2.6.1 Linear Molecular Motors 351
F2.6.2 Rotary Molecular Motors 360
F2.6.3 The Bacteriophage \(\phi 29 \) DNA Packaging Motor 363
F2.6.4 Molecular Motors and Brownian Motion 365
F2.6.5 Molecular Motors and the Second Law of Thermodynamics 366
F2.6.6 DNA Mechanics 366
F2.6.7 RNA Mechanics 373
F2.6.8 Protein Mechanics 375
F2.6.9 Deformation of Polysaccharides 379
F2.6.10 Linear Molecular Motors 380
F2.6.11 Rotary Molecular Motors 381
F2.6.12 The Bacteriophage \(\phi 29 \) DNA Packaging Motor 382
F2.6.13 Molecular Motors and Brownian Motion 383
F2.6.14 Molecular Motors and the Second Law of Thermodynamics 384
F2.6.15 DNA Mechanics 384
F2.6.16 RNA Mechanics 385
F2.6.17 Protein Mechanics 386
F2.6.18 Deformation of Polysaccharides 387
F2.7 Checklist of Key Ideas 388
Suggestions for Further Reading 389

F3 Fluorescence Microscopy 384
F3.1 Historical Review 384
F3.2 Fluorescence Microscopy Inside the Classical Limit 386
F3.2.1 The Standard Wide-Field Fluorescence Microscope 386
F3.2.2 Two-Photon Excited Microscopy 386
F3.2.3 Total Internal Reflectance Fluorescence Microscopy (TIRFM) 388
F3.3 Fluorescence Spectroscopy of Single Molecules 389
F3.3.1 Laser-Induced Fluorescence 389
F3.3.2 Labeling Schemes and Observable Values 390
F3.4 Increasing the Resolution of Fluorescence Microscopy 392
F3.4.1 4Pi-Confocal Microscopy 392
F3.4.2 Stimulated Emission Depletion Microscopy 393
F3.4.3 Standing-Wave Illumination Fluorescence Microscopy (SWFM) 394
F3.5 Fluorescence Resonance Energy Transfer 395
F3.5.1 FRET as a Spectroscopic Ruler in Static and Dynamic Regimes 395
F3.6 Green Fluorescent Protein 397
F3.6.1 GFP as a Conformational Sensor 399
F3.6.2 GFP as a Cellular Reporter 399
F3.7 Fluorescence Lifetime Imaging Microscopy (FLIM): Seeing the Machinery of Live Cells 400
F3.8 Photo-Activated Localization Microscopy and Stochastic Optical Reconstruction Microscopy 402
F3.9 Checklist of Key Ideas 402
Suggestions for Further Reading 403
G2.1.7 Interactions Between the Particles 430
G2.2 Models and Simulations 431
G2.2.1 From Structure to Scattering Curve 431
G2.2.2 From the Scattering Curve to a Set of Structures 435
G2.3 General Contrast Variation: Particles in Different Solvents “Seen” by X-rays and “Seen” by Neutrons 436
G2.3.1 Two-Component Particles and the Parallel Axes Theorem 436
G2.3.2 The Stuhrmann Analysis of Contrast Variation 438
G2.3.3 Deuterium Labeling and Triangulation 440
G2.4 The Thermodynamics Approach in SAS 441
G2.4.1 Fluctuations in Hydrodynamics and Scattering 441
G2.4.2 Relating the Thermodynamics and Particle Approaches 443
G2.5 Interactions, Molecular Machines, and Membrane Proteins 443
G2.5.1 Aminoacyl tRNA Synthetase Interactions with tRNA 443
G2.5.2 ATP, Solvent- and Temperature-Induced Structural Changes of the Thermosome 444
G2.5.3 Membrane Proteins 444
G2.6 SAS Combined with Other Methods for a Global Structural Study 446
G2.7 Size-Exclusion Chromatography Multiangle Laser Light Scattering 447
G2.8 Reflectometry (or Reflectivity) 448
G2.8.1 Background 448
G2.8.2 Instrumental Set-up 451
G2.8.3 Examples 452
G2.9 Checklist of Key Ideas Suggestions for Further Reading 454

G3 X-ray and Neutron Macromolecular Crystallography 456
G3.1 Historical Review 456
G3.2 From Crystal to Model 457
G3.2.1 Reciprocal Lattice, Ewald Sphere, and Structure Factors 457
G3.2.2 Space Group Symmetry 458
G3.2.3 Electron Density 459
G3.2.4 Technical Challenges and the Crystallographic Model 460
G3.3 Crystal Growth: General Principles Involved in the Transfer of a Macromolecule from Solution to a Crystal Form 460
G3.3.1 Purity and Homogeneity 460
G3.3.2 Crystallization Screens 461

G3.3.3 Crystallization Methods 461
G3.3.4 Identifying Crystals and Precipitates: Crystal Shapes and Sizes 462
G3.3.5 Cryo-Crystallography and Cryo-Protectants 464
G3.3.6 Crystal Mounting 464
G3.3.7 Labeling 465
G3.4 From Intensity Data to Structure Factor Amplitudes 466
G3.4.1 Data Collection and Processing 466
G3.4.2 Indexing Bragg Reflections 466
G3.4.3 Scaling the Reflection Intensities 467
G3.4.4 Twinning 467
G3.4.5 Radiation Damage 467
G3.4.6 Determination of the Unit Cell Dimensions 467
G3.4.7 Determination of the Space Group 468
G3.4.8 Redundancy and Statistics 468
G3.4.9 Molecular Packing in the Unit Cell and the Patterson Function 469
G3.5 Finding a Model to Fit the Data 470
G3.5.1 The Model 470
G3.5.2 Assessing Agreement Between the Model and the Data 470
G3.5.3 Assessing Agreement Between the Model and Chemistry 472
G3.6 From the Data to the Electron Density Distribution: Initial Phase Estimate 473
G3.6.1 Argand Diagram 473
G3.6.2 Molecular Replacement 473
G3.6.3 Direct Methods 474
G3.6.4 Single and Multiple Isomorphous Replacement (SIR, MIR) 475
G3.6.5 Single and Multiple Anomalous Dispersion (SAD, MAD) 475
G3.7 From the Electron Density to the Atomic Model: Refinement of the Model – Phase Improvement 477
G3.7.1 Fitting the Electron Density by Eye and by Hand 477
G3.7.2 Minimization of a Target Function (Maximum Likelihood) 477
G3.7.3 Crystallographic Refinement Restraints 478
G3.7.4 Refinement Procedures 479
G3.7.5 Final Assessment of the Structure 482
G3.7.6 Structural Genomics 482
G3.8 Kinetic Crystallography 483
G3.8.1 Trapping of Intermediate States 483
G3.8.2 Laue Diffraction and Time-Resolved Crystallography 483
G3.9 Neutron Crystallography 484
G3.10 Checklist of Key Ideas Suggestions for Further Reading 486
PART H ELECTRON DIFFRACTION 487

H1. Electron Microscopy 489

H1.1 Historical Review 489

H1.2 Introduction to Biological Problems 490

H1.2.1 The Electron Microscope Image 490

H1.2.2 Applications of EM 490

H1.2.3 Techniques Covered 490

H1.3 Principles of Electron Diffraction and Imaging 490

H1.3.1 Properties of Electrons 490

H1.3.2 Electromagnetic Lens 491

H1.3.3 The Image Recorded by an Electron Microscope 491

H1.3.4 Transfer of Information from Sample to Image 492

H1.4 Electron Microscopes 494

H1.4.1 Electron Beam Generation 494

H1.4.2 Transmission and Scanning Electron Microscopes 494

H1.4.3 Electron Images 495

H1.4.4 Image Recording System 495

H1.5 Techniques in Specimen Preparation 496

H1.5.1 Specimen Support 496

H1.5.2 Negative Staining 497

H1.5.3 Freezing of the Sample 497

H1.6 Data Collection 498

H1.6.1 Factors to Consider during Data Collection 498

H1.6.2 Data from Single Particles 498

H1.6.3 Imaging Crystals and Helical Molecules 498

H1.6.4 Tomography 499

H1.7 Immunochemistry 500

H1.8 Checklist of Key Ideas 500

Suggestions for Further Reading 501

H2. Three-Dimensional Reconstruction from Two-Dimensional Images 502

H2.1 EM in Biology 502

H2.1.1 Structural Biology with EM 502

H2.1.2 Examples of Electron Cryo-Microscopy Reconstructions 502

H2.2 EM Data Preparation 503

H2.2.1 Preliminary Analysis of the Image 503

H2.2.2 Particle Selection 503

H2.2.3 Correction for the Contrast Transfer Function 503

H2.3 Single-Particle Reconstruction Procedures 503

H2.3.1 Coordinate System 503

H2.3.2 Reconstruction from Projections 503

H2.3.3 Iteration Procedure: Reprojection Method 505

H2.3.4 Common Lines Reconstruction Procedure 505

H2.3.5 Polar Fourier Transform Reconstruction 505

H2.3.6 Real-Space Reconstruction Procedure 506

H2.3.7 Focal and Tilt Pairs 506

H2.4 Reconstruction Procedures for One- and Two-Dimensional Crystals 506

H2.4.1 Helical Reconstruction 506

H2.4.2 Electron Crystallography 507

H2.5 Classification Procedures 508

H2.5.1 Statistical Analysis 508

H2.5.2 Multivariate Statistical Analysis 508

H2.6 Determination of the Resolution 508

H2.6.1 Number of Images Required for a Reconstruction 508

H2.6.2 Definition of Resolution 509

H2.6.3 Over-Fitting and Validation of the EM Reconstruction 510

H2.7 Map Enhancement 510

H2.7.1 Symmetry 510

H2.7.2 Weighting 511

H2.7.3 Use of Other Structural Information 511

H2.8 Applications and Examples 512

H2.8.1 The Ribosome 512

H2.8.2 Icosahedral Viruses 512

H2.8.3 Microtubules 514

H2.8.4 Integral Membrane Proteins 514

H2.9 Checklist of Key Ideas 516

Suggestions for Further Reading 517

PART I MOLECULAR DYNAMICS 519

I1. Energy and Time Calculations 521

I1.1 Historical Review of Biological Applications 521

I1.2 Dynamics, Kinetics, Kinematics, and Molecular Stabilization Forces 522

I1.3 Length and Timescales in Macromolecular Dynamics 522

I1.4 Normal Mode Analysis 522

I1.5 Molecular Dynamics Simulations 523

I1.5.1 Force Field 523

I1.5.2 Parameterization of the Force Field 523

I1.5.3 Potential Energy Surface and Energy Minimization 523

I1.5.4 Modeling the Solvent 524

I1.5.5 Typical Molecular Mechanics Simulation Protocol 525

I1.5.6 Analysis of Results 525

I1.6 Application Examples 526

I1.6.1 BPTI and Lysozyme 526

I1.6.2 Protein Folding 527

I1.6.3 Structure Refinement 527

I1.6.4 ATP Synthase: A Molecular Machine 527
PART K MEDICAL IMAGING 627

K1 Radiology and Positron Emission Tomography 629

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1.1</td>
<td>Historical Review</td>
<td>629</td>
</tr>
<tr>
<td>K1.2</td>
<td>Health Physics</td>
<td>630</td>
</tr>
<tr>
<td>K1.2.1</td>
<td>Simple Rules to Protect the Medical Practitioner</td>
<td>630</td>
</tr>
<tr>
<td>K1.2.2</td>
<td>Ionizing Radiation Dose</td>
<td>631</td>
</tr>
<tr>
<td>K1.2.3</td>
<td>Dosimetry</td>
<td>631</td>
</tr>
<tr>
<td>K1.2.4</td>
<td>Practice to Reduce Effective Dose in the Patient</td>
<td>632</td>
</tr>
<tr>
<td>K1.3</td>
<td>Interaction of X-rays and γ-rays with Matter</td>
<td>632</td>
</tr>
<tr>
<td>K1.3.1</td>
<td>Processes of X-ray and γ-ray Absorption in Matter</td>
<td>633</td>
</tr>
<tr>
<td>K1.3.2</td>
<td>Mass Attenuation Coefficient</td>
<td>634</td>
</tr>
<tr>
<td>K1.4</td>
<td>Production of X-rays</td>
<td>634</td>
</tr>
<tr>
<td>K1.5</td>
<td>Detection of X-rays</td>
<td>634</td>
</tr>
<tr>
<td>K1.6</td>
<td>Principles of the CT Scan</td>
<td>635</td>
</tr>
<tr>
<td>K1.7</td>
<td>Positron Emission Tomography</td>
<td>637</td>
</tr>
<tr>
<td>K1.7.1</td>
<td>Principles of PET</td>
<td>637</td>
</tr>
<tr>
<td>K1.8</td>
<td>Checklist of Key Ideas</td>
<td>638</td>
</tr>
</tbody>
</table>

K2 Ultrasound Imaging 639

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>K2.1</td>
<td>Historical Review</td>
<td>639</td>
</tr>
</tbody>
</table>

K3 Magnetic Resonance Imaging 648

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>K3.1</td>
<td>Introduction to MRI and Historical Review</td>
<td>648</td>
</tr>
<tr>
<td>K3.2</td>
<td>Principles of Nuclear Magnetic Resonance</td>
<td>649</td>
</tr>
<tr>
<td>K3.3</td>
<td>Principles of MRI</td>
<td>651</td>
</tr>
<tr>
<td>K3.3.2</td>
<td>T₁ and T₂ Image Formation, Signal Localization, and Pulse Sequences</td>
<td>652</td>
</tr>
<tr>
<td>K3.4</td>
<td>Brain Water, Functional MRI, and PET</td>
<td>656</td>
</tr>
<tr>
<td>K3.5</td>
<td>Checklist of Key Ideas</td>
<td>656</td>
</tr>
</tbody>
</table>

Contents

- K2.2 Ultrasound Waves 639
- K2.3 Health Physics, Absorption, and Attenuation of Ultrasound Waves in Biological Tissue 642
- K2.3.1 Effects of Ultrasound 642
- K2.3.2 Attenuation 642
- K2.4 Principles of Ultrasound Imaging 643
- K2.4.1 Imaging Mode 643
- K2.5 Checklist of Key Ideas 646
- Suggestions for Further Reading 647

- K3.1 Introduction to MRI and Historical Review 648
- K3.2 Principles of Nuclear Magnetic Resonance 649
- K3.3 Principles of MRI 651
- K3.3.2 T₁ and T₂ Image Formation, Signal Localization, and Pulse Sequences 652
- K3.4 Brain Water, Functional MRI, and PET 656
- K3.5 Checklist of Key Ideas 656
- Suggestions for Further Reading 657

References 658
Author Index 672
Subject index 676
PREFACE TO THE FIRST EDITION

André Guinier, whose fundamental discoveries contributed to the X-ray diffraction methods that are the basis of modern structural molecular biology, died in Paris at the beginning of July 2000, only a few weeks after it was announced in the press that a human genome had been sequenced. The sad coincidence serves as a reminder of the intimate connection between physical methods and progress in biology. Not long after, Max Perutz, Francis Crick and then David Blow, the youngest of the early protein crystallographers, passed away. The period marked the gradual closing of the era in which molecular biology was born and the opening of a new era. In what has been called the post-genome sequencing era, physical methods are now increasingly being called upon to play an essential role for the understanding of biological function at the molecular and cellular levels.

Molecular biophysics classical text books published in the previous decades have been overtaken not only by significant developments in existing methods such as those brought about by the advent of synchrotrons for X-ray crystallography or higher magnetic fields in NMR, but also by totally new methods with respect to biological applications, such as mass spectrometry and single molecule detection and manipulation. Our ambition in attempting this book was to be as up-to-date and exhaustive as possible. In their respective parts, we covered classical and advanced methods based on mass spectrometry, thermodynamics, hydrodynamics, spectroscopy, microscopy, radiation scattering, electron microscopy, molecular dynamics and NMR. But rapid progress in the field (we couldn’t very well ask the biophysics community to stop working during the few years it takes to write and prepare a book!), and the requirement to keep the book to a manageable size meant that certain methods are either omitted or not perfectly up-to-date.

The key-word in molecular biophysics is complementarity. The Indian story of the six blind men and the elephant (see Frontispiece) is an appropriate metaphor for the field. Each of the blind men touched a different part of the elephant, and concluded on its nature: a big snake said the man who touched the trunk, the tusks were spears, its side a great wall, the tail a paint brush, the ears huge fans, the legs were tree trunks. We could add a seventh very short-sighted man to the story who can see the whole elephant but as a blurred grey cloud to illustrate diffraction methods. As we wrote in the Introduction, the ideal molecular biophysics method does not exist. It would be capable of observing not only the positions of atoms in molecules in vivo, but also the atomic motions and conformational changes that occur as the molecules are involved in the chemical and physical reactions associated with their biological function, regardless of the timescale involved. No single experimental technique is capable of yielding this information. Each provides us with a partial field of view with its clear regions and areas in deep shadow. In the 21st century, physical methods have to cope with very complicated biological problems, whose solution will depend on the ability to transfer structural and functional knowledge from the operation of a single molecule to the cellular level, and then to the whole organism. The splendor and complexity of the task is humbling, but the challenge will be met.

We are deeply obliged to Professor Don Engelman of Yale University, USA, and Professor Pierre Joliot of the Institut de Biologie Physico Chimique, France, who agreed to write forewords for the book. Outstanding scientists and teachers, each is both major actor and observer in biophysical research and the development of modern biology. We are very grateful to Brinda Muthusamy who painted the frontispiece. Grateful thanks also to expert colleagues for critical discussions on the different methods: Martin Blackledge and the members of the NMR laboratory, Christine Ebel, Dick Wade, Hugues Lortat-Jacob, Patricia Amara, the members of the laboratory of mass spectrometry, all of the Institut de Biologie Structurale, France, Regine Willumeit of the GKSS, Forschungszentrum Geesthacht, Germany, Victor Aksenov of the Joint Institute of Nuclear Research, Russia, Lesley Greene, Christina Redfield, Guillaume Stewart-Jones, Yvonne Jones and David Stuart of the University of Oxford, UK, Jonathan Ruprecht and Richard Henderson of the Laboratory of Molecular Biology, UK, Simon Hanslip and Robert Falconer of the University of Cambridge, UK. We gratefully acknowledge support from the Radulf Oberthuer Foundation, Germany, the Institut de Biologie Structurale and the Institut Laue Langevin, France, and the Cyril Serdyuky Foundation, Ukraine. We are indebted to Gennady Yenin of the Institute of Protein Research, Russia for drawing figures and scientific illustrations, and to Aleksandr Timchenko, Margarita. Shelestova, Margarita Ivanova, Tatyana Kuvshinkina, and Albina Ovchinnikova (Institute of Protein Research, Russia) for technical assistance. And finally, we would like to thank all our colleagues, friends and families, and the staff of Cambridge University Press, who supported us with much patience, understanding and encouragement.

Igor N. Serdyuk, Nathan R. Zaccai, Joseph Zaccai
August 2005
PREFACE TO THE SECOND EDITION

As we wrote in the preface to the first edition, our ambition in attempting *Methods in Molecular Biophysics* was to be as up-to-date and exhaustive as possible, considering the rapid progress in the field. Judging by broad readers’ responses, the book usefully fulfilled its mission. The historical introduction to each method and “physicist” and “biologist” boxes were especially appreciated. Criticism focused on the inclusion of methods which even if once important are no longer topical, and relative inattention to emerging methods that were subsequently proven to be very powerful. Scientific predictions are, of course, particularly difficult to make, especially as progress may come from difficult to foreknow technical breakthroughs. The development of new detector systems, which now permit approaching atomic resolution in cryo-electron microscopy, comes to mind. The unwieldy size and weight of the first edition also invited justified criticism (it is interesting to note that the Russian edition is in two tomes). In this second edition, we have chosen a different book format that we hope will be easier and more pleasant to handle. We have carefully gone through the text to reorganize, bring up-to-date, and prune each of the chapters. We have added a new section on medical imaging so that the book now includes the range of topics covered in most medical school biophysics courses.

To the list of colleagues gratefully acknowledged in the first edition preface, we would like to add Frank Gabel, Institut de Biologie Structurale, Grenoble, for his critical reading of the first edition to suggest corrections and improvements, and expert colleagues who checked the updates, revisions, and additions in the second edition: Elisabetta Boeri Erba, Martin Blackledge, Dimitrios Skoufias of the Institut de Biologie Structurale, Grenoble; Harriet Crawley-Snowdon, James Edgar, Antoni Wrobel, of the Cambridge Institute for Medical Research, University of Cambridge; Antony Fitzpatrick, Laboratory of Molecular Biology, Cambridge; Massimo Antognazzi, School of Physics, University of Bristol; Lotte Stubkjaer Fog, Medical Physicist, Section for Radiotherapy, Oncology Clinic, Rigshospitalet, Copenhagen; Alberto Bravin, Bio-medical Beam Line, European Synchrotron Radiation Facility, Grenoble; Jeremy Smith, Governor’s Chair and Director, University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics.

Many thanks also to our friends and families, and the staff of Cambridge University Press, who supported the project with much patience, understanding, and encouragement.

It is with sadness that we recall the memory of Igor Serdyuk, our co-author, who died suddenly in Spring 2012.

Nathan R. Zaccai, Joseph Zaccai

June 2016