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Introduction and Main Concepts

This chapter is aimed at an audience that is not yet familiar with the area of nonlin-

ear dynamics and its mathematical description. Its goal is to introduce the reader

to the terminology and fundamental tenets adopted by the majority of scientists

working in this area, as well as to provide theoretical and mathematical tools and

background to better understand the subsequent parts of the book.

Concepts of nonlinear dynamics, such as dynamical systems, bifurcations,

attractors, and Lyapunov exponents, will be briefly described. However, since the

main topic of this book is synchronization, we present these auxiliary topics with

the minimum of details and limit ourselves to a rather informal descriptive pre-

sentation. A reader interested in further deepening their general knowledge in

nonlinear science and its applications is referred to the following books: Schus-

ter and Just 2005; Baker and Gollub 1996; Ott 2002; Strogatz 2015; Fuchs 2013;

Guckenheimer and Holmes 1983.

1.1 Dynamical Systems

From atoms to galaxies, at every length scale of study, one can distinguish relatively

isolated self-organized structures referred to as systems. The world, both around

and inside us, consists of many such systems. Most systems of interest are not fully

isolated, but interact with each other. Their interactions may be due to fundamental

physical forces, such as gravity or electromagnetism, collisions, or exchange of

energy or matter.

In classical mechanics, the study of motion of bodies induced by external or

internal forces is called dynamics, a word which originates from the Greek word

δύναµις , meaning “power.” In a more general context, we understand the term

dynamical to be equivalent with time-dependent. Therefore, a dynamical system is

a system that evolves over time. Hereby, we tacitly adopt the Newtonian concept

of a globally defined time, i.e., we assume that the system variables are functions

of time, treated as a universal parameter. In the context of mechanics, the system
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2 Introduction and Main Concepts

variables are typically positions and velocities of idealized mass points and, in the

simplest case, the evolution of the system variables is determined by Newton’s

laws. However, in the following we will not restrict ourselves to mechanical sys-

tems, but will allow for more general system variables: for instance, concentrations

of chemicals, intensity of a light beam, or temperature at a given point. Note that

the system variables can be functions of both space and time.

Unless stated otherwise, we will focus on the case of deterministic systems, i.e.,

dynamical systems that are not influenced by noise. Mathematically, a dynamical

system can be described by either differential or difference equations. In the former

case, time flows continuously and the system is called a continuous system or flow.

In the latter case, time changes discretely, and the system is known as a discrete

system. In the following, we will describe the main features of dynamical systems

by referring to popular examples.

1.1.1 Linear Dynamical Systems

Dynamical systems whose variables are linked by linear functions are called linear

systems. The temporal evolution of a continuous linear system characterized by n

system variables is generated by a set of n ordinary differential equations

ẋ1 = a11x1 + a12x2 + · · · + a1nxn,

ẋ2 = a21x1 + a22x2 + · · · + a2nxn,

...

ẋn = an1x1 + an2x2 + · · · + annxn,

(1.1)

where xi = xi (t) are the time-dependent system variables, ẋi ≡ dxi/dt are their

time derivatives, and ai j are constant coefficients.

In vector form, Equation 1.1 can be written as

ẋ(t) = Ax(t), (1.2)

where x = (x1, x2, . . . , xn) is an n-dimensional vector, and A is a constant matrix.

When the system dynamics are defined in terms of discrete times, i.e., when

the current state of the system is iteratively determined by the previous one, the

dynamics are instead described by difference equations, or iterative maps. The

variables exhibit a mapping form, as x varies in discrete steps:

xi+1 = Axi. (1.3)

Linear systems can be solved exactly. The solution of Equation 1.2 has an

exponential form and can be found using the set of eigenvalues λ, given by the

determinant equation
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1.1 Dynamical Systems 3

det (A − λI) = 0, (1.4)

where I is the identity matrix, and the eigenvectors vi satisfy the equation

Avi = λi vi . (1.5)

The eigenvalues λ represent powers of the exponential components of the solution,

and the eigenvectors are their coefficients.

Pure linear systems, however, do not exist in nature. Like a point mass, they are

just mathematical approximations. The dynamics of linear systems, indeed, are not

rich enough to describe the most commonly observed behaviors, such as periodic

oscillations, bifurcations, synchronization, and chaos. The asymptotic state of a

bounded linear system, reached for t → ∞, is only a steady state, i.e., a fixed

equilibrium point that can be either stable or unstable. The stability properties of

dynamical systems will be described in Section 1.4.

1.1.2 Nonlinear Dynamical Systems

If a system is characterized by variables that depend nonlinearly on each other, the

motion can become very complex. Such systems are called nonlinear dynamical

systems. Mathematically, a nonlinear continuous dynamical system is described by

ẋ1 = F1(x1, x2, . . . , xn),

ẋ2 = F2(x1, x2, . . . , xn),

...

ẋn = Fn(x1, x2, . . . , xn),

(1.6)

where Fi are functions that couple the variables among them. If at least one of these

functions is nonlinear, the system in Equation 1.6 is said to be nonlinear.

In vector form, a nonlinear dynamical system can be described as

ẋ(t) = F(x(t)), (1.7)

where F = (F1, F2, . . . , Fn) is a vector function: Rn → R
n .

The time evolution of the system describes a trajectory, or orbit, in the Euclidean

space of the n variables x ∈ Rn , or phase space. Each point in the phase space

represents a unique state of the system. In the case of three-dimensional systems,

one can visualize directly the trajectory in three coordinates (x1, x2, x3), while for

systems with n > 3, visualization of the orbit is only possible by means of projec-

tions of the phase space on planes (or hyperplanes) of two or three of the system’s

variables.

Since at any given time the system state is described by a vector defined by the

functions and parameters in Equation 1.7, the system evolution is deterministic.
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4 Introduction and Main Concepts

In other words, for any fixed initial condition x0 ∈ Rn , the system always fol-

lows a unique path, which therefore can never intersect the paths originating from

different initial conditions. However, it has to be remarked that a strictly deter-

ministic system is only a theoretical idealization, because random components or

fluctuations are always present in nature, and are sometimes accounted for via

perturbation theory. Furthermore, in practice, exact knowledge about the future

state of a system is restricted by the precision with which the initial state can be

measured, especially for chaotic systems characterized by a strong dependence on

initial conditions.

1.1.3 Autonomous and Nonautonomous Systems

A dynamical system that contains a time-dependent function is called nonauto-

nomous; otherwise, the system is said to be autonomous. Every nonautonomous

system can be transformed into an autonomous system by adding an additional

degree of freedom proportional to the time. As an example, let us consider such a

transformation when applied to a CO2 laser model. Under loss modulation, this

laser represents a nonautonomous (or driven) system described as (Chizhevsky

et al. 1997; Pisarchik and Corbalán 1999)

ẋ = τ−1x (y − k0 − km sin(2π fm t)) ,

ẏ = (y0 − y)γ − yx .
(1.8)

In these equations, x is proportional to the radiation density, y and y0 stand for the

gain and the unsaturated gain in the active medium, τ is the light half round-trip

time in the laser cavity, γ is the gain decay rate, k0 is the constant portion of the

losses, and km and fm are the modulation amplitude and frequency. The system is

nonlinear because of the yx coupling term.

Introducing the additional variable z = 2π fm t , one can convert the two-

dimensional nonautonomous system in Equation 1.8 into the three-dimensional

autonomous system:

ẋ = τ−1x(y − k0 − km sin z),

ẏ = (y0 − y)γ − yx,

ż = 2π fm .

(1.9)

It is clear that, by generalization of this procedure, any nth-order nonautonomous

system can be transformed into an (n + 1)-dimensional autonomous system.

1.1.4 Conservative and Dissipative Systems

A dynamical system is said to be conservative (dissipative) if a unitary volume

of initial conditions produces orbits whose images in time are contained within
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1.2 Chaotic Systems 5

a constant (contracting) volume of the phase space. Although all real dynami-

cal systems are dissipative, quantum mechanics mostly deals with conservative,

or Hamiltonian, systems. The most notable examples of conservative systems are

undamped pendula, sets of point masses interacting under Newton’s gravitational

force, and nonrelativistic charged particles in an electromagnetic field.

Dissipation arises from any kind of loss, quite often due to internal friction. In

dissipative dynamical systems, the potential, or energy, goes from an initial form to

a final asymptotic one. After a sufficiently long period – known as transient time

– has elapsed, the trajectory of the dissipative system is found in a subset of the

phase space that is said to be the system’s attractor. As the energy in conservative

systems is preserved, they do not have attractors.

A typical example of a dissipative linear system is a damped harmonic oscillator,

described by

mẍ + cẋ + kx = 0, (1.10)

where m is the mass, c is the viscous damping coefficient, and k is the elastic

constant. These coefficients define the undamped angular frequency

ω0 =
√

k/m (1.11)

and the damping ratio

ζ = c

2
√

mk
. (1.12)

When the new variables x1 = x and x2 = ẋ are introduced, Equation 1.10

generates a system of two first-order differential equations:

ẋ1 = x2,

ẋ2 = −(c/m)x2 − ω2
0x1.

(1.13)

The damping ratio ζ determines the transient behavior of the oscillator. If ζ = 0,

the oscillator is undamped, the system is conservative, and the solutions are oscil-

lations that continue indefinitely with frequency ω0. If 0 < ζ < 1, the oscillator is

underdamped, and its oscillations have a frequency ω = ω0

√

1 − ζ 2. Otherwise,

the system returns to its equilibrium without oscillating, and the oscillator is known

as either overdamped (if ζ > 1) or critically damped (if ζ = 1).

All systems considered in this book behave like undamped or underdamped

oscillators, since speaking of synchronization for fixed points is meaningless.

1.2 Chaotic Systems

Nonlinear differential equations are very difficult (or even impossible) to solve

analytically, and until computer simulations became possible, chaotic solutions

could not be calculated (Lorenz 1963).
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6 Introduction and Main Concepts

By chaotic solutions, we generally denote those trajectories that have a critical

dependence on the initial conditions. This means that if one considers any two tra-

jectories originating from two nearby initial conditions (whose Euclidean distance

in phase space is arbitrarily small), these trajectories exponentially separate in time,

i.e., the distance between the two actual states of the system grows exponentially

over time.

To discuss the main concepts of chaotic dynamics, let us consider a three-

dimensional (n = 3) nonlinear Rössler oscillator, described by the system (Rössler

1977)

ẋ = −ωy − z,

ẏ = ωx + ay,

ż = b + z(x − c).

(1.14)

This oscillator is often used for studying synchronization because its natural

frequency ω is directly included in the equations as a parameter.

In spite of its apparent simplicity, the system in Equation 1.14 exhibits very rich

dynamics. For a large set of parameters, such as, for example, a = 0.16, b = 0.1,

c = 8.5, and ω = 1, the motion of the system Equation 1.14 is chaotic.

The dynamics of a nonlinear system can be visualized and characterized by the

following tools: (i) time series, (ii) phase-space portrait, and (iii) power spectrum.

Let us consider each of these tools separately.

1.2.1 Time Series

Time series describe the temporal evolution of a system variable. Figure 1.1 shows

the time series of all three variables of Equation 1.14 in the chaotic state given by

the parameter values defined above. Although the oscillations of each variable are

irregular, they are correlated due to their functional dependence in Equation 1.14,

even if we cannot see it at a first glance.

Time series have proven to be a good tool for synchronization analysis, to extract

meaningful statistics and other data characteristics. Time series analysis can be car-

ried out either in the time domain or in the frequency domain. The former includes

cross-correlation analyses that are frequently used to quantify synchronization of

coupled systems (see Section 2.3). The latter includes spectral analysis, which is

described below. Time series analysis can also be used to reconstruct attractors

from experimental data.

1.2.2 Phase Space

The concept of phase space was developed in the nineteenth century thanks to the

contributions of Ludwig Boltzmann, Henri Poincaré, James Maxwell, and Josiah

Gibbs to statistical mechanics and Hamiltonian mechanics. In nonlinear dynamics,
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Figure 1.1 Time series of three variables of the Rössler oscillator, Equation 1.14,
in the chaotic regime for a = 0.16, b = 0.1, c = 8.5, and ω = 1.

the phase space is a space whose coordinates correspond to the system variables.

The system trajectory in the phase space represents all possible states during an

infinite time evolution. The phase space dimension is equal to the number of system

variables. The phase space trajectory of the chaotic Rössler oscillator is shown in

Figure 1.2.
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Figure 1.2 The chaotic trajectory of the Rössler oscillator for a = 0.16, b = 0.1,
c = 8.5, and ω = 1, contained within a certain region of the phase space (x, y, z).

When the phase space has a very large dimension, the trajectory of a system is

often visualized by projections onto the subspace corresponding to two or three

variables. These projections are called phase portraits.

1.2.3 Power Spectrum

Another way to visualize the dynamics of a system is via a power or frequency

spectrum of one of the system variables. The power spectrum can be obtained by

means of the Fourier transform of the time series. The Fourier transform F , named

after Joseph Fourier (1768–1830), is a mathematical transformation employed to

transform a signal from a time domain to a frequency domain. A reverse operation

F
−1 is also possible. Mathematically, the direct and inverse Fourier transforms are

defined as

F (x (t)) ≡ X (ω)= 1√
2π

∫ ∞

−∞
x (t) e−iωt dt , (1.15)

F
−1 (X (ω)) ≡ x (t) = 1√

2π

∫ ∞

−∞
X (ω) eiωt dω . (1.16)

These integrals exist if three conditions are met, namely:

(i) x (t) is piecewise continuous;

(ii) x (t) is piecewise differentiable;

(iii) x (t) is absolutely integrable, i.e.,
∫ ∞
−∞ |x (t)| dt is finite.

Then, the power spectrum is defined as

S (ω) = X∗ (ω) X (ω) = |X (ω)|2 , (1.17)

where X∗ is the complex conjugate of X .
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Figure 1.3 Power spectrum of the y variable of a Rössler oscillator with the
parameter choice a = 0.16, b = 0.1, c = 8.5, and ω = 1. Notice that the spectrum
of the chaotic signal is continuous, and has a peak at the dominant frequency ω0.

Figure 1.3 shows the power spectrum of the y variable of a Rössler oscillator

with the usual parameters, obtained from the time series of Figure 1.1. The power

spectrum of the chaotic regime has a maximum at a dominant frequency ω0. Due

to nonlinearity, ω0 differs from ω by a small amount.

1.3 Attractors

Differential and difference nonlinear equations that describe dynamical systems

give rise to many types of solutions, both stable and unstable. Stable solutions

encountered in nonlinear dynamics are attractors: asymptotically stable volumes

of the phase space toward which a system evolves, when starting from a set of

initial conditions known as the attractor’s basin of attraction.

1.3.1 Types of Attractors

Attractors are therefore portions (or subsets) of the phase space. The simplest

possible attractor is a stable fixed point, which can be found even in linear sys-

tems (Section 1.1). Nonlinearity, however, allows for more complex and interesting

attractors. They come in different geometric shapes in phase space, such as limit

cycles (periodic orbits), toroids, and miscellaneous manifolds, and may even have

a fractal structure (strange attractors).

A single nonlinear dynamical system can exhibit different attractors, depend-

ing on the values chosen for its parameters. Let us illustrate the case with the

Rössler oscillator of Equation 1.14. In Figure 1.4 we show three different attractors

in the phase space. Each of these attractors is determined by the parameter c, while

keeping the other parameters unchanged.
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Figure 1.4 Types of attractors of a Rössler oscillator for different values of the
parameter c. (a) A period-one orbit is generated for c = 2; (b) a chaotic attractor
is generated for c = 6; and (c) a period-three orbit is generated for c = 6.275.
The other parameters are a = 0.16, b = 0.1, and ω = 1.

Some nonlinear systems even allow coexistence of attractors. While all parame-

ters remain constant, the attractor changes according to the initial conditions. Such

systems are called multistable. Multistability can be revealed not only by changing

initial conditions, but also by varying a system parameter back and forth (contin-

uation method; see Seydel 1988), or by adding noise that converts the multistable

system to a metastable one (noise-induced multistate intermittency; see Pisarchik

et al. 2012a).

1.3.2 Basins of Attraction and Poincaré Maps

The basin of attraction of an attractor is the set of initial conditions that lead the

asymptotic trajectory of the system to the attracted state. For our example of Equa-

tion 1.14, the basin of attraction of the chaotic attractor has a very sophisticated

structure in the three-dimensional phase space.

A visualization of the attractor can be given in a two-dimensional space by plot-

ting the intersection points of trajectories with a plane corresponding to a certain

(fixed) value of one of the system variables (say, z). Such a plane is called the

Poincaré section, named after French mathematician Henri Poincaré (1854–1912).

The attractor can be visualized on the Poincaré section by plotting the value of the

function each time it passes through it in a specific direction. This map is called

the Poincaré map, and it is a lower-dimensional subspace transversal to the system

flow in phase space.

The Poincaré section is a very useful tool for the analysis of nonlinear dynam-

ics, as well as for revealing the attractor’s structure in spaces where dimensions

are reduced by one. Indeed, given a flow, a Poincaré map can always be con-

structed, composed by intersection points xj(t j ) on the Poincaré section in one

direction at discrete times t j . This procedure converts the flow Equation 1.7 to the

map xj+1(t j+1) = P(x j (t j )).

www.cambridge.org/9781107056268
www.cambridge.org

