Coastal Wetlands of the World

Geology, Ecology, Distribution and Applications

Salt marshes and mangrove forests, the intertidal wetlands of the world's coastlines, provide key ecological services to all areas of the globe, and are vital sinks and sources in carbon budgets. They are crucial indicators of both modern-day anthropogenic impacts on climate and ecosystems, and paleoecological changes during much of Earth's history.

This cutting-edge, richly illustrated book introduces the essential elements of coastal wetlands and their applications. It unites geological and oceanographic approaches in an accessible way, providing scientific names for key plant and animal species. The book opens by introducing coastal oceanography, the physical features of wetlands, their ecology and human impacts upon them, giving students from all fields the necessary background for wetlands studies. It then presents detailed case studies from all areas of the world, with extensive illustrations, presenting students with a broad, global-scale picture of wetlands geomorphology and biodiversity. The final chapters discuss some unique applications of coastal wetlands, including geological monitoring, uses in biotechnology and agriculture and various experimental mesocosms.

This is ideal as supplementary reading to support students on a wide range of Earth and Life science courses, from environmental science, ecology, and paleoecology to geomorphology and geography. Providing citations to a variety of more specialist articles, it will also be a valuable interdisciplinary reference for researchers.

David Scott is a Professor in the Earth Sciences Department of Dalhousie University, where he teaches micropaleontology and Quaternary geology. Other positions held include VP on the Cushman Foundation Board, membership of the Geological Society of America and Paleontological Society, and serving as associate editor for the Canadian Journal of Earth Sciences. He has written over 130 refereed papers, has edited three NATO volumes on coastal geomorphology and paleontological subjects, and is also the co-author of *Monitoring in Coastal Environments Using Foraminifera and Thecamoebian Indicators* (with Franco Medioli and Charles Schafer, CUP 2001). Professor Scott has conducted field work in most major marshes of North America, and several wetlands in South America and Europe, in addition to participating in Ocean Drilling Program studies in the Indian Ocean.

Jennifer Frail-Gauthier is a PhD Candidate in earth sciences and biology at Dalhousie University, and her research topic is small food webs in salt-marsh ecosystems, specifically foraminifera, which form an important part of this book. Her PhD focus is on experimental approaches to salt marshes for studies in ecology, biology, geology, restoration and other human impacts. Ms Frail-Gauthier is a science writing tutor and teaches third-year applied coastal ecology, which focusses on the various coastal ecosystems of the world, including

geology, ecology and anthropogenic impacts, and also teaches various biology courses. She has received several major scholarships and awards during her graduate studies, and also holds a Teaching Excellence Award and a University Medal from Dalhousie University.

Petra Mudie is an Adjunct of the Graduate Studies Faculty at Dalhousie University, Adjunct Professor of the Memorial University of Newfoundland, and a Scientist Emeritus with Geological Survey of Canada Atlantic. Her previous work includes heading up a halophyte research laboratory at the Scripps Institute of Oceanography, including surveys of coastal wetlands from Canada to Mexico, working on environmental marine geology for the Canadian Government until 2001, and subsequently leading an international programme, studying palynological records of the history of climate and sea-level change in the Black-Sea–Eastern-Mediterranean Corridor. She is the author of over 80 papers in science journals. Dr Mudie and Professor Scott have collaborated on salt-marsh and Arctic paleoenvironmental studies for nearly 40 years, co-supervising many graduate students.

'This is a major new contribution to the study of salt marshes and mangrove forests. Uniquely comprehensive, the book provides extraordinary coverage of coastal wetlands from the Arctic to the tropics with superb case study examples from Africa, Europe, Asia, and both Americas.

Importantly, this innovative volume covers not only the physical, ecological and human interventions controlling the development, loss and future of coastal wetlands but also provides the reader with modern approaches to geological monitoring, conservation of plant biodiversity, and experimental methods. The readability of the book, with supporting graphics and informative photographs, makes it accessible to readers at all levels.'

- Professor Curtis J. Richardson, Director, Duke University Wetland Center

Coastal Wetlands of the World

Geology, Ecology, Distribution and Applications

DAVID B. SCOTT,

JENNIFER FRAIL-GAUTHIER

AND

PETRA J. MUDIE

Department of Earth Sciences, Dalhousie University, Halifax, Nova Scotia, Canada

University Printing House, Cambridge CB2 8BS, United Kingdom

Published in the United States of America by Cambridge University Press, New York

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107056015

© David B. Scott, Jennifer Frail-Gauthier and Petra J. Mudie 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Scott, D. B.

Coastal wetlands of the world : geology, ecology, distribution and applications / David B. Scott, Jennifer Frail-Gauthier, Petra J. Mudie.

pages cm

ISBN 978-1-107-05601-5 (hardback)

1. Wetland ecology. 2. Wetland conservation. 3. Coasts. 4. Coastal ecology.

I. Frail-Gauthier, Jennifer. II. Mudie, Petra J. III. Title.

QH541.5.M3S36 2014

577.68-dc23 2013035761

ISBN 978-1-107-05601-5 Hardback ISBN 978-1-107-62825-0 Paperback

Additional resources for this publication at www.cambridge.org/coastalwetlands

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface	page xi
List of acronyms and abbreviations	xiii
1 Introduction: what is covered in this coastal wetlands book?	1
Box 1.1 The Ramsar Convention: international wetlands	
conservation	2
2 Physical aspects: geological, oceanic and climatic conditions	5
2.1 What are coastal wetlands (saltwater wetlands)?	5
Box 2.1 Important tidal reference points	6
2.2 Where are they found?	7
Box 2.2 Measuring and defining saltiness	8
2.3 How are salt marshes formed?	8
2.4 Physical conditions that shape wetlands	12
Box 2.3 Salt marsh tidal zones	13
2.5 Impacts of storms and extreme climate events	14
3 Zonations and plants: development, stressors and adaptations	17
3.1 Sediment stabilization and salt marsh development	17
3.2 Salt marsh zones and physical stressors	19
3.3 Plant adaptations and species diversity	20
Box 3.1 Comparison of plant photosynthesis and metabolism	24
3.4 Mangrove forest diversity and adaptations	25
3.5 Pollen archives of wetland vegetation development	26
4 Animals in coastal wetlands: zonation, adaptations and energy flow	30
4.1 Animals that inhabit salt marshes	30
Box 4.1 Tidal wetland foraminifera	32
4.2 Salt marsh zonations, stressors and adaptations	34
Box 4.2 Animals of polar and subarctic marshes	35
4.3 Mangrove animals	37
4.4 Energy flow in coastal wetlands: animal-plant interactions	38
4.4.1 Primary production	38
4.4.2 Secondary production: consumers versus detritivores	41
4.4.3 Mangrove energy flow	42

۷

vi	Contents	
	5 Human intervention causing coastal problems	44
	5.1 Human population growth and landscape alteration	44
	5.2 Land reclamation	46
	5.3 Accelerated global warming	48
	5.4 Arctic sea ice tipping point	49
	5.5 Biological invasions	52
	5.6 Wetland drainage and conversion for farming	53 54
	Box 5.1 Mosquito life cycle: vectors of fatal or debilitating diseases	55
	5.7 Pollution by excess nitrogen and oil spills	55
	6 Coastal wetlands worldwide: climatic zonation, ecosystems and biogeography	57
	6.1 Climate zones and coastal wetland ecosystems	57
	6.2 Biogeographic variation	64
	Box 6.1 Phytosociological classification of coastal wetland according	
	to Thannheiser and Haachs	68
	6.3 Subregional salinity variations: effects on plant assemblages	68
	6.4 What in the world to expect next?	71
	7 Examples of North American salt marshes and coastal wetlands	72
	7.1 Arctic Coast: Mackenzie Delta region of the Beaufort Sea	72
	Box 7.1 Vanishing Arctic villages and sea ice; pop-up pingos	73
	7.2 Subarctic salt marshes: West versus East Coast	77
	7.2.1 West Coast: Cook Inlet on the 'Pacific Ring of Fire'	78
	7.2.2 West Coast: impacts of avalanches and glacial surges	
	in Southern Alaska	80
	7.2.3 East Coast: Hudson Plains and James Bay	83
	7.3 Temperate marshes: West versus East Coast	87
	7.3.1 Temperate wetlands of Western North America: Alaska to Mexico	87
	7.3.1.1 Willapa Bay, Washington State	88 90
	7.3.1.2 Netarts Bay, Oregon	90 91
	7.3.1.3 Humboldt Bay and Eel River, Northern California 7.3.1.4 San Francisco Bay: transition from cool to warm	91
	temperate regions	92
	7.3.1.5 Los Peñasquitos Lagoon case history, Southern California	95
	7.3.1.6 Tijuana Estuary: California–Mexico boundary salt	20
	marsh reserve	101
	7.3.2 Temperate wetlands of Eastern North America: Nova Scotia	
	to Chesapeake Bay	103
	7.3.2.1 Chezzetcook Marsh, Southeastern Canada	103
	7.3.2.2 Bay of Fundy, Southeastern Canada	106
	Box 7.2 Tidal power and estuarine wetlands	109
	7.3.2.3 New England–Chesapeake Bay, Northeastern United States	110

vii	Contents	
	7.4 North American subtrarias marshas	113
	7.4 North American subtropical marshes7.4.1 Carolina and Georgia salt marshes: Cape Hatteras to Northern Florida	113
	7.4.2 Florida mangroves	117
	7.4.3 The Deep South: Mississippi Delta and Louisiana wetlands	120
	7.4.4 Subtropical coastal wetlands of Baja California peninsula, Mexico	123
	7.5 Tropical wetlands of North America and the Caribbean Islands	129
	8 Examples of South American coastal wetlands	132
	8.1 South America's tropical coastal wetlands: composition,	
	importance and changes	134
	8.2 South American subtropical and temperate East Coast	138
	8.2.1 Brazilian south coast	139
	8.2.2 Patos Lagoon: the world's largest 'choked' lagoon	140
	8.2.3 Argentina to Tierra del Fuego and Mar Chiquita wetlands	142
	Box 8.1 What's in a name?	143
	8.2.4 San Blas, Argentina	145
	8.2.5 Bahia Bustamante, near Commodore Rivadavia	146
	8.3 South American West Coast temperate region	146
	8.3.1 Valdivia, Chile Bay 8.2 Magazing magnitude of earth gueless	147
	Box 8.2 Measuring magnitude of earthquakes 8.3.2 Bahia Quillaipe: a beautiful bay full of sea anemones	148
	and worms	148
	8.4 South American subarctic salt marshes: oil spill and ozone damage	149
	8.4.1 Bahía Lomas, Tierra del Fuego, Antarctic Chile	149
	8.4.2 Rio Chico, Tierra del Fuego, Argentina	151
	9 Africa: selected marsh and mangrove areas	153
	9.1 Location and biodiversity: introduction to Africa as a pantropical bridge	153
	Box 9.1 Panmangal 3-D zonation	155
	9.2 West Coast geomorphology: deltas, lagoons and anthropogenic changes9.2.1 Niger Delta: largest in Africa but strongly altered by	156
	petroleum industry	156
	9.2.2 Sierra Leone-Côte d'Ivoire barrier lagoons: prehistory and industrial	
	impacts	158
	9.3 Tropical West Coast estuary: The Gambia case history	161
	9.3.1 Background history shapes the future: from Mandinka Empire	
	to small British colony	161
	9.3.2 The shared Gambia River: longest estuary in Africa	163
	9.3.3 The mangrove vegetation and its services	163
	9.3.4 Gambian mangrove and estuarine animals	166
	9.3.5 Gambian oyster industry	171
	9.3.6 What to expect in the future?	172
	9.4 Nile River Delta case history: early civilizations and recent destruction	172
	9.4.1 Background environment and historical geology	172

viii	Contents	
	9.4.2 Holocene and historical records of Nile Delta change	174
	9.4.3 The Nile Delta in the future	177
	9.5 South African wetlands: the Indian Ocean influence	177
	9.6 Other important East African coastal wetlands and some	101
	cautionary notes	181
	Box 9.2 Sinai Desert 'hard bottom' mangroves	182
	10 Europe and Asia: a view of what remains	186
	10.1 European temperate regions: waddens, estuaries and the Low Countries	187
	10.2 European Mediterranean: vanishing oceans and sinking cities	190
	10.2.1 Rhône Delta and Camargue Marshes, France: violet salt	
	and pink flamingos	190
	10.2.2 The Po Estuary and sinking of Venice Lagoon into the	100
	Adriatic Sea	192
	10.3 Southeast Europe and Southwest Asia: Mediterranean–Indian	102
	Ocean transition	193 196
	Box 10.1 Ancient Troy, Trojan legends and salt marshes 10.3.1 Northern Black Sea: tiny tides and giant mud volcanoes	190
	10.3.2 Danube Delta: the largest and best-preserved wetland	197
	in Central Europe	199
	Box 10.2 Characteristics of tidal freshwater marshes	200
	10.3.3 The Tigris–Euphrates Rivers case history: what happened	
	to the Gardens of Babylon?	202
	10.4 Southern and Southeastern Asia: Indo-Pacific and Polynesian	
	subregion of Oceania	208
	10.4.1 Ganges River Delta: The Green Delta and	
	Beautiful Gardens	210
	10.4.2 The Mekong Delta: a biological treasure trove	215
	10.4.3 Other Southeast Asian mangrove regions: more biodiversity	222
	10.4.4 East Asia: China, River of Sorrow and macrotidal mudflats	224
	Box 10.3 Conservation statuses along East China coasts	228
	11 Australasia: wetlands of Australia and New Zealand	231
	11.1 Australia: tropical mangroves to warm temperate salt marshes	231
	11.1.1 Tropical Northeastern Australia: behind the Barrier Reef	234
	11.1.2 Tropical Northern Australia: saltwater crocodiles and	
	flying foxes	237
	11.1.3 Southwestern Australia: Shark Bay stromatolites and Leschenault	
	Inlet Estuary	238
	11.1.4 Temperate Southeastern Australia: southern mangroves	
	and paleotsunamis	240
	Box 11.1 Opening a can of worms	241
	11.2 New Zealand coastal wetlands: the outer edge of the colonized	- /-
	Pacific World	242

ix	Contents	
	12 Applications in geological monitoring: paleoseismology and paleoclimatology	248
	12.1 How wetland archives are used in paleoseismology and paleotempestology	248
	12.2 Paleoearthquakes and earthquake prediction	250
	12.2.1 Alaskan case histories	250
	Box 12.1 About time: dating of sediments for paleoenvironmental studies	252
	Box 12.2 Paleoecological transfer functions: qualitative versus	
	quantitative methods	257
	12.2.2 Cascadia and the 'Orphan Tsunami' case history	258
	12.2.3 The Peruvian earthquake and Hawaiian tsunami	260
	12.2.4 Australia: tsunamis or not?	261
	12.3 Paleoclimate and paleo-sea levels	262
	12.3.1 Los Peñasquitos Lagoon case history: mangroves	
	and immigrations	263
	12.3.2 Australasian and Southeast Asian examples	264
	12.3.3 Caveat: the present limits of climate applications	267
	13 Applications in conservation of plant biodiversity and agriculture	269
	13.1 Salt of the Earth	269
	13.2 Biodiversity of salt marshes and mangrove swamps	270
	13.2.1 Traditional uses of coastal wetlands	270
	13.2.2 Historical uses of coastal wetland plants	271
	13.3 Agriculture and soil salinity: past and future problems	273
	13.4 Salt marsh biodiversity: emerging studies of halophyte	
	genomes and ionomes	276
	14 Using mesocosms as a way to study coastal wetlands	279
	14.1 Why make experimental studies in coastal wetlands?	279
	Box 14.1 The value of indoor salt marsh mesocosms: example	
	from Halifax, Nova Scotia, Canada	282
	14.2 Examples of coastal mesocosms: introduction	285
	14.3 Restoration and construction	286
	14.4 Experiments testing physical parameters	290
	14.5 Experiments testing biological parameters	292
	14.6 Experiments and mesocosms testing other parameters	293
	15 Conclusions and future directions	297
	References	302
	Index	339

Colour plate section is found between pages 178 and 179

Preface

Coastal Wetlands of the World follows the book by Scott, Medioli and Schafer (2001) on Monitoring in Coastal Environments. We are motivated to write this new book based on concern about the status of mangroves and salt marshes all over the world, from pole to pole, and by the fact that few students have the chance to look at our changing shorelines from both a geological and an ecological perspective. Coastal wetlands are being destroyed and degraded at alarming rates, and only a fraction remains. These wetlands protect us from storm buffering and have extremely high primary production, making them important storehouses of carbon and energy, habitats that nurture juvenile stages of commercially important fishes and that filter our waste water - yet we continue to damage them faster than we can preserve them. In some areas, less than a third of natural wetlands remain along the coast, and very few are entirely unaffected by *direct* human impacts. Furthermore, all our coastal wetlands are changing in response to *indirect* human impacts: global warming, sea level rise and increasing numbers of severe coastal storms. These impacts are further magnified in the Arctic, where the pace of climate warming is four times faster than other places on Earth, and where disappearing sea ice is encouraging rapid expansion of oil and gas exploration, with the associated risks of long-lasting pollution damage. Arctic people say that 'The Earth is faster now' - and it appears that traditional methods of coastal living are no longer viable. It is likely that circumpolar regions are already irreversibly changed – and the spill-over impacts on global air and ocean systems is already being felt by people in crowded cities of warm temperate regions.

We take an interdisciplinary approach to *Coastal Wetlands of the World* – there literally is something for everyone between the covers of this book. It was initially written for undergraduate students, focussing on classical studies that are the baselines for evaluating recent changes, but it soon became clear that more detail was needed to guide readers towards the proliferation of new scientific literature. As a result, we have included innumerable up-todate references that will also help graduate students, naturalists and coastal-resource managers obtain a fresh view of tidal wetlands research across a wide spectrum of disciplines. Geologists, ecologists, conservationists, environmentalists, archeologists, historians and social scientists can all learn something new and clearly understand the issues at hand, for any area of the world. The book's global focus and ample illustrations are also intended to draw the student beyond their familiarity with a limited neighbourhood marshland toward a much bigger picture of wetlands geomorphology and biodiversity on a global scale.

Why yet another book covering coastal wetlands and ecosystems? Our literature search of the most widely used texts showed a large imbalance in coverage of the world's continents, despite the shrinking size of our Internet-linked Global Village. We have attempted to fill in large gaps for under-reported regions of Mexico, South America, Africa, Eastern Europe

xi

xii

Preface

and China, and we provide the only systematic and focussed coverage of global tidal wetlands. Most other wetlands books are broken into vari-authored chapters and/or report on either marshes or mangroves, presenting a somewhat schizophrenic perspective to the reader, as though the world has sharp boundaries. In contrast, our readers are provided a seamless virtual tour from the northern tip of continental North America to the southern tip of New Zealand. From geology to biology to ecology to human impacts, we introduce wetlands from a generic stand point (Chapters 1-6). We then dive into information about coastal wetlands across all continents, giving specific historical case studies, and earmarking new research and paradigm shifts in traditional concepts about drivers of coastal climate changes. The last section of our book focusses on unique applications of coastal wetlands studies, including a chapter on paleoseismology, paleoclimate and forecasting (updated and much expanded in the range of proxies from *Monitoring in Coastal Environments*), and an outline of how coastal wetlands are used as experimental mesocosms to better understand and replace what is lost. We are the first to cover both traditional knowledge and cuttingedge subcellular and genetic knowledge of the potential for salt-tolerant plants to combat crises of soil salinization in agricultural crops. The development of new salt-tolerant crops is a major part of the new Green Revolution needed to feed the world's rapidly expanding human population - simultaneously representing major carbon credits and conserving our fast-dwindling global freshwater resources. Education is the first step in the coastal crisis facing everyone 'living on the edge' – the more that can be taught about tidal wetlands, the more our global population can see the dire need to save what remains and wisely restore what we have destroyed.

We are indebted to many people and organizations who have helped in the writing of this book, answered multiple questions about places less familiar to us and provided illustrative materials. Invaluable help with diagrams comes from Rob Gauthier, Alexandre Pelletier-Michaud, Gary Grant and Matthew Chedrawe, and we are indebted to Ken Wallace for photo-compilations and design. The extended family of Petra Mudie have provided photocoverage from all continents where there are tidal wetlands (thanks to Anita and Hilton Whittle, Helen Pease and Peter Mudie) and we sincerely thank all those who graciously provided other beautiful photos of wetlands and animals, as acknowledged in the figure captions. Finally, we are most grateful to Laura Clark and others at Cambridge University Press, who provided encouragement, guidance, and answered no less than 100 questions to help get this book from our heads into a beautiful printed volume.

List of acronyms and abbreviations

Organizations

AGEDI	Abu Dhabi Global Environmental Data Initiative
ASEAN	Association of Southeast Asian Nations
CC	Creative Commons (free-to-use images from Wikipedia or Flickr)
CIMI	Canada-Iraq-marshlands Initiative
CITES	Convention on International Trade in Endangered Species
COSEWIC	Committee on the Status of Endangered Wildlife in Canada
CNES	Centre National d'Etudes Spatiales
CONABIO	Comisión Nacional para el Conocimiento y Uso de la Biodiversidad
COSEWIC	Committee on the Status of Endangered Wildlife in Canada
DFO	Department of Fisheries and Oceans (Canada)
FAO	Food and Agriculture Organization of the United Nations
GSCA	Geological Society of Canada Atlantic
IPCC	Intergovernmental Panel on Climate Change
IRD	l'Institut de recherche pour le développement
IRRI	International Rice Research Institute
MEA	Millennium Ecosystems Assessment
MODIS	Moderate Resolution Imaging Spectroradiometer
NASA	National Aeronautics and Space Administration
NEIC	National Earthquake Information Center
NOAA	National Oceanic and Atmospheric Administration
RIS	Ramsar Information Sheet
SRTM	Shuttle Radar Topography Mission
UNEP	United Nations Environment Programme
UNESCO	United Nations Educational, Scientific and Cultural Organization
USFWS	United States Fish and Wildlife Service
USA	United States of America
USGS	United States Geological Survey
WCMC	World Conservation Monitoring Centre
WRI	World Resources Institute

xiii

xiv

List of acronyms and abbreviations

Standard and other abbreviations or notations

‰	parts per million
$\delta^{13}C$	delta carbon-13 value in mille, which is the ratio between stable carbon isotopes
	(C-12 and C-13) relative to PeeDee Belmnite \times 1000
ASL	above sea level
BCE	before the Common/Christian Era
BP	before present
cal yr BP	calendar years before present
BTEX	benzene, toluene, ethylbenzene and xylenes
CAT	storm/hurricane category
CE	Common/Christian Era
CHC	chlorinated hydrocarbons
DDT	dichlorodiphenyltrichloroethane
DNA	deoxyribonucleic acid
EHW	extreme high water (highest tide line)
GW	gigawatt
IP ₂₅	ice proxy with 25 carbons
LIA	Little Ice Age
LGM	last glacial maximum
$M_{\rm w}$	unit for earthquake magnitude
MHW	mean high water
MHHW	mean higher after first high water (see Box 2.1 for more details)
MIS	marine isotope stages
MLW	mean low water
MSL	mean sea level
MSX	Haplosporidium nelsoni shellfish disease
MW	megawatt
PAH	polycyclic aromatic hydrocarbon
PLF	pingo-like feature
psu	practical salinity unit
RSL	relative sea level
sp.	singular species; plural = spp.
VP	vice president