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Wave fundamentals

This chapter covers the fundamental concepts of waves. As with all the
chapters in the book, you can read the sections within this chapter in any order,
or you can skip them entirely if you’re already comfortable with this material.
But if you’re working through one of the later chapters and you find that you’re
uncertain about some aspect of the discussion, you can turn back to the relevant
section of this chapter.

In the first two sections of this chapter you’ll be able to review the basic
definitions and terminology of waves (Section 1.1) and the relationships
between wave parameters (Section 1.2). Later sections cover topics that serve
as the foundation on which you can build your understanding of waves,
including vectors (Section 1.3), complex numbers (Section 1.4), the Euler
relations (Section 1.5), wavefunctions (Section 1.6), and phasors (Section 1.7).

1.1 Definitions

When you’re embarking on a study of new topic, it’s always a good idea to
make sure you understand the terminology used by people who discuss that
topic. Since this book is all about waves, a reasonable place to start is by asking
the question “What exactly is a wave?”

Here are some of the answers to that question that you may encounter in the
literature.

“A classical traveling wave is a self-sustaining disturbance of a medium,
which moves through space transporting energy and momentum.” [6].

“What is required for a physical situation to be referred to as a wave is that
its mathematical representation give rise to a partial differential equation of a
particular form, known as the wave equation.” [9].

1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-05486-8 - A Student’s Guide to Waves
Daniel Fleisch and Laura Kinnaman
Excerpt
More information

http://www.cambridge.org/9781107054868
http://www.cambridge.org
http://www.cambridge.org


2 Wave fundamentals

“[The essential feature of wave motion is that a] condition of some kind is
transmitted from one place to another by means of a medium, but the medium
itself is not transported.” [4].

“[A wave is] each of those rhythmic alternations of disturbance and recovery
of configuration.”1

Although there’s not a great deal of commonality in these definitions of a
wave, each contains an element that can be very helpful when you’re trying to
decide whether some phenomenon can (or should) be called a wave.

The most common defining characteristic is that a wave is a disturbance
of some kind, that is, a change from the equilibrium (undisturbed) condition.
A string wave disturbs the position of segments of the string, a sound wave
disturbs the ambient pressure, an electromagnetic wave disturbs the strengths
of the electric and magnetic fields, and matter waves disturb the probability
that a particle exists in the vicinity.

In propagating or traveling waves, the wave disturbance must move from
place to place, carrying energy with it. But you should be aware that combi-
nations of propagating waves can produce non-propagating disturbances, such
as those of a standing wave (you can read more about this in Section 3.2 of
Chapter 3).

In periodic waves, the wave disturbance repeats itself in time and space.
So, if you stay in one location and wait long enough, you’re sure to see the
same disturbance as you’ve seen previously. And if you take an instantaneous
snapshot of the wave, you’ll be able to find different locations with the same
disturbance. But combinations of periodic waves can add up to non-periodic
disturbances such as a wave pulse (which you can read about in Section 3.3 of
Chapter 3).

Finally, in harmonic waves, the shape of the wave is sinusoidal, meaning that
it takes the form of a sine or cosine function. You can see plots of a sinusoidal
wave in space and time in Fig. 1.1.

So waves are disturbances that may or may not be propagating, periodic,
and harmonic. But whatever the type of wave, there are a few basic parameters
that you should make sure you understand. Here’s a little FAQ that you may
find helpful.

Q: How far is it from one crest to the next?

A: λ (Greek letter “lambda”), the wavelength. Wavelength is the amount
of distance per cycle and has dimensions of length; in SI,2 the units

1 Oxford English Dictionary.
2 “SI” stands for “Système International d’unités”, the standard metric reference system of units.
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1.1 Definitions 3
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Figure 1.1 An example of a sinusoidal wave plotted in space and time.

of length are meters (m). Shouldn’t this technically be “meters/cycle”?
Yes, but since people know you’re taking about waves when you mention
wavelength, the “per cycle” is usually assumed and not explicitly kept in
the units.

Q: How long in time is it between crests?

A: T (sometimes you’ll see this written as P), the period. Period is the
amount of time per cycle and has units of time, seconds (s) in SI. Again,
this is really “seconds per cycle”, but the “per cycle” is assumed and
usually dropped.

Q: How often do crests come by?

A: f , the frequency. If you count how many wave crests pass by a given
place in a certain amount of time, you are measuring f . Thus frequency is
the number of cycles per amount of time and has units of one over time
(technically cycles per unit time, but again, “cycles” is assumed and may
be omitted). So in SI you’ll see the units of frequency either as cycles/sec
or 1/s, which are also called hertz (Hz). The frequency of a wave is the
inverse of the wave’s period (T).

An illustration of the meaning of wavelength, wave period, and frequency (and
how they’re measured) is shown in Fig. 1.2.
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4 Wave fundamentals

Meter
Stick

How far from one
crest to the next?

Measuring Wavelength Measuring Period Measuring Frequency

Stop
watch

How much time
between one crest
and the next?

How many crests pass
by a point in a certain
amount of time?

Counter
0 1 20

Stop
watch

Figure 1.2 Measuring wave parameters.

Q: How big is the wave at any given place or time?

A: y, the displacement. Displacement is the amount of disturbance from
equilibrium produced by the wave; its value depends on the place and
time at which you measure the wave (and so is a function of x and t
for a wave moving along the x-axis). The units of displacement depend
on exactly what kind of a wave it is: waves on strings have displace-
ments with units of distance (see Chapter 4), electromagnetic waves
have displacements with units of electric and magnetic field strength
(see Chapter 5), and one-dimensional quantum-mechanical matter waves
have displacement with units of one over the square root of length (see
Chapter 6).

Q: What is the biggest the wave ever gets?

A: A, the amplitude. Amplitude is a special value related to the displacement
that occurs at the peak of a wave. We say “related to” because there are
several different types of amplitude. “Peak” amplitude is the maximum
displacement from equilibrium; this is measured from the equilibrium
value to the top of the highest peak or the bottom of the deepest trough.
“Peak-to-peak” amplitude is the difference between a positive peak and a
negative peak, measured from crest to trough. And “rms” amplitude is the
root-mean-square value of the displacement over one cycle. For sinusoidal
waves, the peak-to-peak amplitude is twice as big as the peak amplitude,
and the rms amplitude is 0.707 times the peak amplitude. Amplitude has
the same units as displacement.
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1.1 Definitions 5

Q: How fast is the wave moving?

A: v, the wave speed. Usually, when authors refer to wave speed, they’re
talking about phase speed: How fast does a given point on a wave move?
For example, if you measure how long it takes for one crest of a wave to
travel a certain distance, you’re measuring the phase speed of the wave. A
different speed, group speed, is important for groups of waves called wave
packets whose shape may change over time; you can read more about this
in Section 3.4 of Chapter 3.

Q: What determines which part of a wave is at a given place at a certain time?

A: φ (Greek letter “phi”), the phase. If you specify a place and time, the phase
of the wave tells you whether a crest, a trough, or something in between
will appear at that place and time. In other words, phase is the argument
of the function that describes the wave (such as sin φ or cos φ). Phase has
SI units of radians and values between 0 and ±2π over one cycle (you
may also see phase expressed in units of degrees, in which case one cycle
= 360◦ = 2π radians).

Q: What determines the starting point of a wave?

A: ε (Greek letter “epsilon”), or φ0 (“phi-zero”), the phase constant. At the
time t = 0 and location x = 0, the phase constant ε or φ0 tells you
the phase of the wave. If you encounter two waves that have the same
wavelength, frequency, and speed but are “offset” from one another (that
is, they don’t reach a peak at the same place or time), those waves have
different phase constants. A cosine wave, for example, is just a sine wave
with a phase-constant difference of π /2, or 90◦.

Q: All this sounds suspiciously like phase is related to some kind of angle.

A: That’s not a question, but you’re right, which is why phase is sometimes
called “phase angle”. The next two definitions should help you understand
that.

Q: What relates a wave’s frequency or period to angles?

A: ω (Greek letter “omega”), the angular frequency. The angular frequency
tells you how much angle the phase of the wave advances in a given
amount of time, so the SI units of angular frequency are radians per sec-
ond. Angular frequency is related to frequency by the equation ω = 2π f .

Q: What relates a wave’s wavelength to angles?

A: k, the wavenumber. The wavenumber tells you how much the phase of
the wave advances in a given amount of distance, so wavenumber has SI
units of radians per meter. Wavenumber is related to wavelength by the
equation k = 2π/λ.
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6 Wave fundamentals

1.2 Basic relationships

Many of the basic wave parameters defined in the previous section are related
to one another through simple algebraic equations. For example, the frequency
( f ) and the period (T) are related by

f = 1

T
. (1.1)

This equation tells you that frequency and period are inversely proportional.
This means that longer period corresponds to lower frequency, and shorter
period corresponds to higher frequency.

You can verify that Eq. (1.1) is dimensionally consistent by recalling from
Section 1.1 that the units of frequency are cycles/second (often expressed
simply as 1/s) and the units of period are just the inverse: seconds/cycle
(usually expressed as “s”). So the dimensions of Eq. (1.1) in SI units are[

cycles

seconds

]
=
[

1

seconds/cycle

]
.

Another simple but powerful equation relates the wavelength (λ) and frequency
( f ) of a wave to the wave’s speed (v). That equation is

λf = v. (1.2)

The basis for this equation can be understood by considering the fact that
speed equals distance divided by time, and a wave covers a distance of one
wavelength in a time interval of one period. Hence v = λ/T , and since
T = 1/f , this is the same as v = λf . It also makes physical sense, as you can
see by considering a wave that has long wavelength and high frequency. In that
case, the speed of the wave must be high, for how else could those far-apart
crests (long wavelength) be coming past very often (high frequency)? Now
think about a wave for which the wavelength and frequency are both small.
Since those closely spaced crests (short wavelength) are not coming past very
often (low frequency), the wave must be moving slowly.

To see that the dimensions are balanced in Eq. (1.2), consider the units of
wavelength multiplied by the units of frequency:[

meters

cycle

] [
cycles

second

]
=
[

meters

second

]
,

which are the units of speed.
So Eq. (1.2) allows you to find the speed of a wave if you know the wave’s

wavelength and frequency. But, as you study waves, you’re likely to encounter
many situations in which you’re dealing with waves of the same type that
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1.2 Basic relationships 7

For waves with
the same speed
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the frequency
must be low
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to keep the speed
the same (constant v)

Figure 1.3 The relationship of wavelength to frequency for waves of the same
speed.

are moving at the same speed (such as electromagnetic waves in a vacuum,
which all travel at the speed of light). In such cases, the waves may have
different wavelength (λ) and frequency ( f ), but the product of the wavelength
and frequency must equal the wave speed.

This means that as long as the wave speed (v) is constant, waves with longer
wavelength (large λ) must have lower frequency (small f ). Likewise, for waves
with the same speed, if the wavelength is short (small λ), the frequency must
be high (large f ). This concept is so important we’ve written it as an “expanded
equation” in Fig. 1.3.

For sound waves (which have constant speed under certain circumstances),
frequency corresponds to pitch. So low-pitch sounds (such as the bass notes
of a tuba or the rumble of a passing truck) must have long wavelength, and
high-pitch sounds (such as the tweets of a piccolo or Mickey Mouse’s voice)
must have short wavelength.

For electromagnetic waves in the visible portion of the spectrum, frequency
corresponds to color. So the relationship between wavelength, frequency, and
speed means that low-frequency (red) light has longer wavelength than high-
frequency (blue) light.

There are two additional equations that are very useful when you’re working
on wave problems. The first of these is the relationship between frequency ( f ),
period (T), and angular frequency (ω):

ω = 2π

T
= 2π f . (1.3)

You can see from this equation that angular frequency has dimensions of angle
over time (SI units of rad/s), consistent with the definition of this parameter in
Section 1.1. So frequency ( f ) tells you the number of cycles per second, and
angular frequency (ω) tells you the number of radians per second.
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8 Wave fundamentals

Here’s why the angular frequency (ω) of a wave is a useful parameter. Let’s
say you want to know how much the phase of a wave will change at a certain
location in a given amount of time (�t). To find that phase change (�φ), just
multiply the angular frequency (ω) by the time interval (�t):

(�φ)constant x = ω �t =
(

2π

T

)
�t = 2π

(
�t

T

)
, (1.4)

where the subscript “constant x” is a reminder that this change in phase is due
only to advancing time. If you change location, there will be an additional
phase change as described below, but for now we’re considering the phase
change at one location (constant x).

At this point, it may help you to step back from Eq. (1.4) and take a look
at the �t/T term. This ratio is just the fraction of a full period (T) that the
time interval �t represents. Since the phase change during a full period is 2π

radians, multiplying this fraction (�t/T) by 2π radians gives you the number
of radians that the wave phase has advanced during the time interval �t.

Example 1.1 How much does the phase of a wave with period (T) of 20
seconds change in 5 seconds?

Since the wave period T is 20 seconds, a time interval �t of 5 seconds
represents 1/4 period (�t/T = 5/20 = 1/4). Multiplying this fraction by
2π gives π/2 radians. Thus the phase of the wave advances by π/2 radians
(90◦) every 5 seconds.

This illustrates why angular frequency (ω) can be thought of as a “time-to-
phase converter”. Given any amount of time t, you can convert that time to
phase change by finding the product ωt.

The final important relationship of this section concerns wavenumber (k)
and wavelength (λ). The relationship between these parameters is

k = 2π

λ
. (1.5)

This equation shows that wavenumber has the dimensions of angle over
distance (with SI units of rad/m). It also suggests that wavenumber can be used
to convert distance to phase change, just as angular frequency can be used to
convert time to phase change.

To find the phase change �φ over a given distance at a certain time, multiply
the wavenumber k by a distance interval �x:

(�φ)constant t = k �x =
(

2π

λ

)
�x = 2π

(
�x

λ

)
, (1.6)

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-05486-8 - A Student’s Guide to Waves
Daniel Fleisch and Laura Kinnaman
Excerpt
More information

http://www.cambridge.org/9781107054868
http://www.cambridge.org
http://www.cambridge.org


1.3 Vector concepts 9

where the subscript “constant t” is a reminder that this change in phase is due
only to changing location (as described above, there will be an additional phase
change due to the passage of time).

Just as the term �t/T gives the fraction of a full cycle represented by the
time interval �t, the term �x/λ gives the fraction of a full cycle represented
by the distance interval �x. Thus the wavenumber k serves as a “distance-to-
phase converter”, allowing you to convert any distance x to a phase change by
forming the product kx.

With an understanding of the meaning of the wave parameters and relation-
ships described in this and the previous section, you’re almost ready for a dis-
cussion of wavefunctions. But that discussion will be more meaningful to you
if you also have a basic understanding of vector concepts, complex numbers,
and the Euler relations. Those are the subjects of the next three sections.

1.3 Vector concepts

Before getting into complex numbers and Euler’s relation, we think a discus-
sion of basic vector concepts will provide a helpful foundation for those topics.
That’s because every complex number can be considered to be the result of
vector addition, which is described later in this section. Furthermore, some
waves involve vector quantities (such as electric and magnetic fields), and a
quick review of the basics of vectors may help you understand those waves.

So what exactly is a vector? For many physics applications, you can think of
a vector simply as a quantity that includes both a magnitude (how much) and a
direction (which way). For example, speed is not a vector quantity; it’s called a
“scalar” quantity because it has magnitude (how fast an object is moving) but
no direction. But velocity is a vector quantity, because velocity includes both
speed and direction (how fast an object is moving and in which direction).

The are many other quantities that can be represented by vectors, including
acceleration, force, linear momentum, angular momentum, electric fields, and
magnetic fields. Vector quantities are often represented pictorially as arrows,
in which the length of the arrow is proportional to the magnitude of the vector
and the orientation of the arrow shows the direction of the vector. In text,
vector quantities are usually indicated either using bold script (such as A) or
by putting an arrow over the variable name (such as �A).

Just as you can perform mathematical operations such as addition, sub-
traction, and multiplication with scalars, you can also do these operations
with vectors. The two operations most relevant to using vectors to understand
complex numbers are vector addition and multiplication of a vector by a scalar.
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10 Wave fundamentals
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Figure 1.4 Graphical addition of vectors.

The simplest way to perform vector addition is to imagine moving one
vector without changing its length or direction so that its tail (the end without
the arrowhead) is at the head (the end with the arrowhead) of the other vector.
The sum is then determined by making a new vector that begins at the tail of
the first vector and terminates at the head of the second vector. This graphical
“tail-to-head” approach to vector addition works for vectors in any direction
and for three or more vectors as well.

To graphically add the two vectors �A and �B in Fig. 1.4(a), imagine moving
vector �B without changing its length or direction so that its tail is at the position
of the head of vector �A, as shown in Fig. 1.4(b). The sum of these two vectors
is called the “resultant” vector �C = �A + �B; note that �C extends from the tail
of �A to the head of �B. The result would have been the same had you chosen
to displace the tail of vector �A to the head of vector �B without changing the
direction of �A.

It’s extremely important for you to note that the length of the resultant vector
is not the length of vector �A added to the length of vector �B (unless �A and
�B happen to point in the same direction). So vector addition is not the same
process as scalar addition, and you should remember to never add vectors using
scalar addition.

Multiplication of a vector by a scalar is also quite straightforward, because
multiplying a vector by any positive scalar does not change the direction of
the vector – it only scales the length of the vector. Hence, 4�A is a vector in
exactly the same direction as �A, but with length four times that of �A, as shown
in Fig. 1.5(a). If the scaling factor is less than one the resulting vector is shorter
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