The Ethics of Nuclear Energy

Despite the nuclear accident at the Fukushima Daiichi plant in Japan, a growing number of countries are interested in expanding or introducing nuclear energy. However, nuclear energy production and nuclear waste disposal give rise to pressing ethical questions that society needs to face. This book takes up this challenge with essays by an international team of scholars focusing on the key issues of risk, justice, and democracy. The essays consider a range of ethical issues, including radiological protection, the influence of gender in the acceptability of nuclear risk, and environmental, international, and intergenerational justice in the context of nuclear energy. They also address the question of when, and under which conditions, nuclear energy should play a role in the world’s future supply of electricity, looking at both developing and industrialized countries. The book will interest readers in ethics and political philosophy, social and political sciences, nuclear engineering, and policy studies.

Behnam Taebi is Assistant Professor of Ethics of Technology in the Philosophy Department of Delft University of Technology and Research Fellow at Harvard Kennedy School’s Belfer Center for Science and International Affairs. He is the author of *The Morally Desirable Option for Nuclear Power Production* (2011) and the editor of several volumes, including *The Socio-Technical Challenges of Nuclear Power Production and Waste Management* (2015).

Sabine Roeser is Professor of Ethics in the Philosophy Department of Delft University of Technology, the Netherlands. She is the author of *Moral Emotions and Intuitions* (2011) and the editor of numerous volumes, including *The Ethics of Technological Risk* (2009), *Handbook of Risk Theory* (2012) and *Emotion and Value* (2014).
The Ethics of Nuclear Energy

Risk, Justice, and Democracy in the post-Fukushima Era

Edited by

Behnam Taebi and Sabine Roeser
Contents

List of figures and tables \hspace{1cm} page vii
List of contributors \hspace{1cm} ix
Acknowledgments \hspace{1cm} xi
Abbreviations \hspace{1cm} xii

1 The ethics of nuclear energy: an introduction
BEHNM TAEBI AND SABINE ROESER \hspace{1cm} 1

Part I Risk

2 Nuclear energy and the ethics of radiation protection
SVEN OVE HANSSON \hspace{1cm} 17

3 The unknowable ceilings of safety: three ways that nuclear accidents escape the calculus of risk assessments
JOHN DOWNER \hspace{1cm} 35

4 Rights to know and the Fukushima, Chernobyl, and Three Mile Island accidents
KRISTIN SHRADER-FRECHETTE \hspace{1cm} 53

5 Gender, ethical voices, and UK nuclear energy policy in the post-Fukushima era
KAREN HENWOOD AND NICK PIDGEON \hspace{1cm} 67

Part II Justice

6 The need for a public “explosion” in the ethics of radiological protection, especially for nuclear power
STEPHEN M. GARDNER \hspace{1cm} 87
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Distributive versus procedural justice in nuclear waste repository siting</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Pius Krüti, Kjell Törnblom, Ivo Wallimann-Helmer, and Michael Stauffacher</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Nuclear energy, justice, and power: the case of the Pilgrim Nuclear Power Station license renewal</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>Bindu Panikkar and Ronald Sandler</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Non-anthropocentric nuclear energy ethics</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>John Nolt</td>
<td></td>
</tr>
<tr>
<td>Part III</td>
<td>Democracy</td>
<td>177</td>
</tr>
<tr>
<td>10</td>
<td>Morally experimenting with nuclear energy</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Ibo van de Poel</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Global nuclear energy and international security</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Thomas E. Doyle, II</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Nuclear energy, the capability approach, and the developing world</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>Paolo Gardoni and Colleen Murphy</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>The role of nuclear energy in the future energy landscape: energy scenarios, nuclear energy, and sustainability</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Rafaela Hillerbrand</td>
<td></td>
</tr>
</tbody>
</table>

Bibliography 250

Index 284
Figures and tables

Figures

5.1 British public views on replacement of nuclear power station. 70
7.1 Survey data from the Swiss Canton of Nidwalden in 2006 on respondents’ perception of procedural fairness issues in repository siting for nuclear waste. 126
7.2 Survey data from the Swiss Canton of Nidwalden in 2006 on respondents’ perception of distributive fairness issues in repository siting for nuclear waste. 127
7.3 Survey data from the Swiss Canton of Nidwalden in 2006. Respondents of Wolfenschiessen’s directly adjacent neighboring municipality Dallenwil feel less fairly treated and less well involved in the process. 128
7.4 Repository siting areas with favorable geological conditions under consideration (current state, 2014). 130
7.5 Survey study of 2011 on the perception of nuclear waste and hazardous waste issues. Importance of procedural fairness aspects (political process, planning process, etc.) is shown. 133

Tables

2.1 Factors that may have a legitimate impact on the choice between the two major methods to ensure protection of groups that are sensitive to some detrimental environmental impact, such as the carcinogenic effects of ionizing radiation. 25
7.1 General perception of procedural vs distributive fairness (in the frame of nuclear waste). 128
7.2 Example of a vignette representing an unfair procedure (procedural justice, −PF), an mid-fair distribution (distributive injustice, +/−DF), and a negative outcome valence (−OV). 131
7.3 Major results of vignettes’ studies of 2009 representing aggregated part-worth utilities of attributes and attribute-levels of study 1 (N = 53) and study 2 (N = 56) and attribute importance. 132
7.4 Survey study of 2011 on the perception of nuclear waste and hazardous waste issues. 134
7.5 Survey study of 2011 concerning perceptions of nuclear waste and hazardous waste issues. 135
7.6 Survey study of 2011 on the perception of nuclear waste and hazardous waste issues. 136
10.1 Possible conditions for responsible experimentation. 196
Contributors

John Downer is Lecturer in Risk and Resilience in the School of Sociology, Politics and International Studies, University of Bristol.

Thomas E. Doyle, II is Assistant Professor of Political Science in the Department of Political Science, Texas State University.

Stephen Gardiner is Professor of Philosophy and Ben Rabinowitz Endowed Professor of Human Dimensions of the Environment in the Department of Philosophy, University of Washington.

Paolo Gardoni is Associate Professor in the Department of Civil and Environmental Engineering, the University of Illinois at Urbana-Champaign.

Sven Ove Hansson is Professor of Philosophy in the Division of Philosophy, Royal Institute of Technology (KTH), Stockholm.

Karen Henwood is Professor of Social Sciences in the Cardiff University School of Social Sciences, Cardiff University.

Rafaela Hillerbrand is Professor of Philosophy of Engineering and Philosophy of Science at the Karlsruhe Institute of Technology and visiting researcher at Delft University of Technology.

Pius Krüti is Senior Scientist in Environmental Sciences in the Institute for Environmental Decisions, ETH Zurich.

Colleen Murphy is Associate Professor in the College of Law, the Department of Philosophy, the University of Illinois at Urbana-Champaign.

John Nolt is Professor of Philosophy in the Philosophy Department, University of Tennessee, Knoxville.

Bindu Panikkar is Postdoctoral Research Associate in the Arctic Institute of North America, University of Calgary.
List of contributors

NICK PIDGEON is Professor of Environmental Psychology, and Director of the Understanding Risk Research Group, in the School of Psychology, Cardiff University.

IBO VAN DE POEL is Professor in Ethics and Technology in the Department of Philosophy, Delft University of Technology.

SABINE ROESER is Professor of Ethics in the Department of Philosophy, Delft University of Technology.

RONALD SANDLER is Professor of Philosophy in the Department of Philosophy and Religion, Northeastern University, Boston.

KRISTIN SHRADER-FRECHETTE is O’Neill Family Professor of Philosophy in the Department of Philosophy and the Department of Biological Sciences, University of Notre Dame.

MICHAEL STAUFFACHER is Senior Scientist in Sociology in the Institute for Environmental Decisions, ETH Zurich.

BEHNA N TAEBI is Assistant Professor of Ethics of Technology in the Department of Philosophy, Delft University of Technology and Research Fellow at the Belfer Center for Science and International Affairs, John F. Kennedy School of Government, Harvard University.

KJELL TÖRNBLOM is Professor Emeritus in Social Psychology, affiliated with the Transdisciplinarity Lab of the Department of Environmental Systems Science, ETH Zurich.

IVO WALLIMANN-HELMER is the Director of the Program for Advanced Studies in Applied Ethics and a postdoctoral researcher in the University Research Priority Program for Ethics at the Centre for Ethics, University of Zurich.
Acknowledgments

This volume originated as a part of a bigger project to invite scholars from different fields to reflect on the sociotechnical and ethical aspects of nuclear energy in the post-Fukushima era. This idea was warmly welcomed by a great number of scholars from different fields. Social-scientific contributions will be published in a special issue of the Journal of Risk Research (Taebi and van de Poel 2015). Philosophical contributions were selected for this volume. Earlier drafts of some of the chapters were presented at the “Annual conference of International Studies Association” (ISA2014) in Toronto, “IEEE Ethics.2014” in Chicago, and at the “Nuclear Security, Policy and Ethics” symposium in March 2014 at Delft University; this symposium was part of The Nuclear Knowledge Summit, an official side event of the Nuclear Security Summit 2014 that took place in the Netherlands. We would like to thank the audiences of these conferences for their helpful feedback. Furthermore, we wish to thank Hilary Gaskin from Cambridge University Press for her constructive comments and guidance and two anonymous reviewers for their feedback. We further wish to thank Matthew Bunn, Christopher Clement, Rosemary Crawley, Thomas Doyle, Johan Herrenberg, Maximilian Mayer, Jeff Powell, and Andisha Sabri for their feedback and assistance.

Our work on this project was conducted at the Department of Philosophy, Faculty of Technology, Policy and Management at Delft University of Technology, and the Belfer Center for Science and International Affairs, John F. Kennedy School of Government at Harvard University. In addition to thanking these two groups, we wish to thank the Netherlands Organisation for Scientific Research (NWO). Sabine Roeser’s work was funded by an NWO VIDI grant on “Moral Emotions and Risk Politics” (grant number 276-20-012). Behnam Taebi’s work was funded by an NWO VENI grant on “Multinational nuclear waste repositories: ethics and acceptability” (grant number 275-20-040).
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABWR</td>
<td>Advanced boiling water reactor</td>
</tr>
<tr>
<td>ALARA</td>
<td>As low as reasonably achievable</td>
</tr>
<tr>
<td>ALARP</td>
<td>As low as reasonably practicable</td>
</tr>
<tr>
<td>ALEPP</td>
<td>At Least Equal Protection Principle</td>
</tr>
<tr>
<td>AP</td>
<td>Accountability Principle</td>
</tr>
<tr>
<td>BFE</td>
<td>Bundesamt für Energie (Switzerland)</td>
</tr>
<tr>
<td>BNP</td>
<td>Background of Nature Principle</td>
</tr>
<tr>
<td>BWR</td>
<td>Boiling water reactor</td>
</tr>
<tr>
<td>CDF</td>
<td>Core damage frequency</td>
</tr>
<tr>
<td>CEMP</td>
<td>Comparative Exposure Minimization Principle</td>
</tr>
<tr>
<td>CIP</td>
<td>Current Impacts Principle</td>
</tr>
<tr>
<td>CNP</td>
<td>Concerned Neighbors of Pilgrim</td>
</tr>
<tr>
<td>CoRWM</td>
<td>Committee on Radioactive Waste Management</td>
</tr>
<tr>
<td>COWAM-2</td>
<td>Community Waste Management-2 (EU)</td>
</tr>
<tr>
<td>CRA</td>
<td>Capability-based Risk Analysis</td>
</tr>
<tr>
<td>CRP</td>
<td>Comparable Risk Principle</td>
</tr>
<tr>
<td>DECC</td>
<td>Department of Energy and Climate Change (UK)</td>
</tr>
<tr>
<td>DF</td>
<td>Distributive fairness</td>
</tr>
<tr>
<td>DLP</td>
<td>Dose Limit Principle</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Energy (USA)</td>
</tr>
<tr>
<td>DTI</td>
<td>Department of Trade and Industry (UK)</td>
</tr>
<tr>
<td>EHP</td>
<td>Excessive Harm Principle</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental impact statement</td>
</tr>
<tr>
<td>EISD</td>
<td>Energy Indicators for Sustainable Development</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency (USA)</td>
</tr>
<tr>
<td>EWA</td>
<td>Institute for Energy Economics (Germany)</td>
</tr>
<tr>
<td>GRP</td>
<td>Generator’s Responsibility Principle</td>
</tr>
<tr>
<td>HDI</td>
<td>Human Development Index</td>
</tr>
<tr>
<td>HGW</td>
<td>High-level waste</td>
</tr>
<tr>
<td>HSE</td>
<td>Health and Safety Executive (UK)</td>
</tr>
<tr>
<td>IAEA</td>
<td>International Atomic Energy Agency</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer</td>
</tr>
</tbody>
</table>

xii
List of abbreviations

ICRP International Commission on Radiological Protection
IP Inclusiveness Principle
IPCC Intergovernmental Panel on Climate Change
ISS International Security Studies
JP Justification Principle
JRWA Jones River Watershed Association
KASAM Swedish National Council for Nuclear Waste
LOCA Loss of coolant accident
LWR Light water reactor
MADPH Massachusetts Department of Public Health
MBP Maximizing Benefit Principle
MEMA Massachusetts Emergency Management Agency
MPLP Minimal Practical Level Principle
NAIIC Nuclear Accident Independent Investigation Commission (Japan)
NAT Normal Accident Theory
NBP Net Benefit Principle
NEA Nuclear Energy Agency (OECD)
NHP No Harm Principle
NP Necessity Principle
NPDES National Pollutant Discharge Elimination System
NPT Non-Proliferation Treaty
NRA Nuclear Regulation Authority (Japan)
NRC Nuclear Regulatory Commission (USA)
NSAP No Significant Action Principle
NWMO Nuclear Waste Management Organization (Canada)
OBP Optimal Balancing Principle
OHP Offsetting Harm Principle
OP Optimization Principle
OV Outcome valence
P&T Partitioning and transmutation
PF Procedural fairness
PNBP Presumptive Net Benefit Principle
PP Publicity Principle
PPFGP Protection of Present and Future Generations Principle
PRA Probabilistic risk assessment
PWR Pressurized water reactor
QALY Quality Adjusted Life Years
RCA Reliability-based capability approach
RY Reactor year
SALT Strategic Arms Limitation Talks
SEMP Subordinate Exposure Minimization Principle
SF Spent fuel
List of abbreviations

SFOE	Swiss Federal Office of Energy
SMHS	Southeastern Massachusetts Health Study
SRP	Special Representation Principle
TEPCO	Tokyo Electric Power Company
TMI	Three Mile Island
UBP	Undue Burdens Principle
UCS	Union of Concerned Scientists
VP	Vulnerability Principle
WCED	World Commission on Environment and Development
WHO	World Health Organization
WNA	World Nuclear Association
WTA	Willingness-to-accept
WTP	Willingness to pay
WWF	Worldwide Fund for Nature