Contents

Preface

<table>
<thead>
<tr>
<th>Section One</th>
<th>Plant Ecophysiology</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>An Introduction to Biogeography: Broad-Scale Relationships Amongst Climate, Vegetation Distribution and Vegetation Attributes</td>
<td>xi</td>
</tr>
<tr>
<td>1.1</td>
<td>Large-Scale Patterns in Climate</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Climate Classification Systems</td>
<td>10</td>
</tr>
<tr>
<td>1.3</td>
<td>Atmospheric and Oceanic Circulation Influence Regional Climates</td>
<td>14</td>
</tr>
<tr>
<td>1.4</td>
<td>Biome Classification Systems</td>
<td>22</td>
</tr>
<tr>
<td>1.5</td>
<td>Classifying Vegetation by Function and Form</td>
<td>26</td>
</tr>
<tr>
<td>1.6</td>
<td>Global Traits of Leaf Attributes and Leaf Function</td>
<td>32</td>
</tr>
<tr>
<td>1.7</td>
<td>Leaf Lifespan: “Live Fast Die Young” Interpreted Through Cost-Benefit Analysis</td>
<td>37</td>
</tr>
<tr>
<td>1.8</td>
<td>Root Depth as a Function of PFTs</td>
<td>39</td>
</tr>
<tr>
<td>1.9</td>
<td>References</td>
<td>41</td>
</tr>
<tr>
<td>2</td>
<td>An Introduction to Plant Structure and Ecophysiology</td>
<td>43</td>
</tr>
<tr>
<td>2.1</td>
<td>Leaf Anatomy and Leaf Attributes</td>
<td>43</td>
</tr>
<tr>
<td>2.2</td>
<td>Vascular Tissues</td>
<td>49</td>
</tr>
<tr>
<td>2.3</td>
<td>Root Anatomy</td>
<td>56</td>
</tr>
<tr>
<td>2.4</td>
<td>Stomatal, Mesophyll and Canopy Conductances</td>
<td>57</td>
</tr>
<tr>
<td>2.5</td>
<td>Photosynthetic Processes: Leaf-Scale</td>
<td>78</td>
</tr>
<tr>
<td>2.6</td>
<td>GPP, NPP and NEE</td>
<td>89</td>
</tr>
<tr>
<td>2.7</td>
<td>Optimisation Theory as Applied to Leaf-Scale CO₂ and Water Fluxes</td>
<td>93</td>
</tr>
<tr>
<td>2.8</td>
<td>Water-Use-Efficiencies of Leaves and Canopies</td>
<td>97</td>
</tr>
<tr>
<td>2.9</td>
<td>Trade-Off of N versus Water Allows Maintenance of High Rates of Photosynthesis in Arid Sites</td>
<td>101</td>
</tr>
</tbody>
</table>
Contents

2.10 Nitrogen, Phosphorous and Drought 104
2.11 References 106

3 Water Relations, Hydraulic Architecture and Transpiration by Plants 110
3.1 Functions and Properties of Water 111
3.2 The Water Relations of Plant Cells 113
3.3 Water in the Atmosphere 119
3.4 Daily and Seasonal Patterns of Leaf Water Potential 122
3.5 Anisohydric *versus* Isohydric Leaves 124
3.6 Transpiration at the Leaf and Plant Scale 126
3.7 Hydraulic Architecture 132
3.8 Field Studies of Hydraulic Architecture of Stands of Trees 145
3.9 References 149

Section Two Remote Sensing

4 An Overview of Remote Sensing 155
4.1 Introduction 155
4.2 A Framework of Remote Sensing 156
4.3 Advantages of Remote Sensing 158
4.4 Conclusions 164
4.5 References 165

5 Fundamentals and Physical Principles of Remote Sensing 167
5.1 Fundamentals of the Remote Sensing Signal 167
5.2 Properties of Electromagnetic Radiation 168
5.3 The Electromagnetic Spectrum 170
5.4 Basic Energy Concepts 171
5.5 Defining Spectral Units 173
5.6 Defining Directional Quantities 175
5.7 Introduction to Thermal Measurements 178
5.8 The Role and Influence of the Atmosphere 180
5.9 References 183

6 Satellite Sensors and Platforms 184
6.1 Introduction 184
6.2 Sensor Resolution 185
6.3 Orbital Systems 191
6.4 Hyperspectral Sensors 198
6.5 Microwave Sensors 199
6.6 Solar-Induced Chlorophyll Fluorescence 200
6.7 LiDAR 200
6.8 GRACE 201
6.9 Airborne Sensors 201
Contents

6.10 Continuity and Fusion of Data 202
6.11 References 203

7 Remote Sensing of Landscape Biophysical Properties 206
7.1 Introduction 206
7.2 Spectral Signatures 206
7.3 Landscape Optics 215
7.4 Canopy Biophysics 217
7.5 Conclusions 231
7.6 References 232

Section Three Modelling

8 An Introduction to Modelling in Plant Ecophysiology 239
8.1 Introduction 239
8.2 Canopy Photosynthesis and Water Flow through the SPAC 239
8.3 References 242

9 Modelling Radiation Exchange and Energy Balances of Leaves and Canopies 244
9.1 Introduction 244
9.2 Solar Radiation 244
9.3 Canopy Light Environment 252
9.4 References 256

10 Modelling Leaf and Canopy Photosynthesis 260
10.1 Introduction 260
10.2 Models of Leaf-Scale Photosynthesis 261
10.3 Modelling the Biochemistry of Photosynthesis 266
10.4 Parameter Optimisation for Photosynthesis Models 272
10.5 Modelling Canopy Photosynthesis 273
10.6 References 278

11 Modelling Stomatal and Canopy Conductance 281
11.1 Introduction 281
11.2 Semi-Empirical Models of Stomatal Conductance 282
11.3 Models Based on Conservative Water-Use-Efficiency 287
11.4 Canopy Conductance/Resistance Models 289
11.5 References 293

12 Modelling Leaf and Canopy Transpiration and the Soil-Plant-Atmosphere Continuum 296
12.1 Introduction 296
12.2 Canopy Radiation Exchange 296
12.3 Transpiration at the Leaf-Scale 297
Contents

12.4 Water Flow through the Soil-Plant-Atmosphere Continuum and Evapotranspiration Models 299
12.5 Microclimate Within and Over Canopies 306
12.6 Soil Water and Heat Dynamics 310
12.7 Dynamic Water and Heat Exchanges Across the SPAC 313
12.8 Model Solution 315
12.9 References 317

13 Coupling Models of Photosynthesis, Transpiration and Stomatal Conductance and Environmental Controls of Leaf Function 321
13.1 Introduction 321
13.2 Leaf Temperature 321
13.3 Numerical Solutions for Combined Leaf Models 323
13.4 Uncoupling of Integrated Photosynthesis-Transpiration-Stomatal Conductance Models 325
13.5 A Modelling Perspective of Physiological Responses to Environmental Variables 326
13.6 Environmental Controls of Diurnal Variation of Photosynthesis, Transpiration and Stomatal Conductance 336
13.7 References 341

Section Four Case Studies

14 Boreal Forests 347
14.1 Introduction 347
14.2 Coping with Freezing Winters: Photosynthetic C Gain and Transpiration 347
14.3 Climate and Vegetation Interactions in a Canadian Boreal Forest: ET and WUE 353
14.4 Controls of ET and Carbon Flux in a Scots Pine (Pinus sylverstris) Forest 357
14.5 Comparing Carbon Balances of Boreal Humid Evergreen Forests with Semi-Arid Boreal Forests 360
14.6 Permafrost, ET and NPP 362
14.7 Modelling Controls of ET in a Scots Pine Boreal Forest 364
14.8 References 366

15 Arid and Semi-Arid Grasslands 368
15.1 Introduction 368
15.2 Intra-Annual Patterns of Carbon Flux in Grasslands 368
15.3 Inter-Annual Patterns of Carbon Flux in Grasslands 371
15.4 Responses of Arid and Semi-Arid Zones to Pulses of Rainfall 377
15.5 References 381
Contents

16 Savannas 383
 16.1 Introduction 383
 16.2 What Are Savannas? 383
 16.3 Daily and Seasonal Patterns in C and Water Flux 384
 16.4 Modelling Seasonal Changes in Canopy C Uptake: Application of Optimality Theory to Savannas 393
 16.5 Productivity Along Rainfall Gradients 396
 16.6 GPP, NEE and Respiration Differ in Their Response to Temperature and Aridity 403
 16.7 Inter-Annual Variations in Rainfall and Productivity: Comparisons Within a Single Site 404
 16.8 Woody Thickening and Atmospheric CO₂ Concentrations 408
 16.9 References 411

17 Seasonal Behaviour of Vegetation of the Amazon Basin 415
 17.1 Introduction 415
 17.2 Biogeography of the Amazon Basin 416
 17.3 Seasonality in Tropical Forest Function 419
 17.4 Field Phenology Studies 421
 17.5 Flux Tower Measurements in the Amazon 423
 17.6 Satellite-Based Studies of Landscape Seasonality 424
 17.7 Model Results 431
 17.8 Modelling, Remote Sensing, Ecophysiology and Drought in the Amazon 434
 17.9 Conclusions 437
 17.10 References 437

18 Tropical Montane Cloud and Rainforests 442
 18.1 Introduction 442
 18.2 Types of Tropical Montane Cloud and Rainforests 442
 18.3 The Climate of Tropical Montane Cloud Forests 444
 18.4 Leaf Structure Varies with Altitude 446
 18.5 Does Photosynthetic Capacity Vary with Altitude in Tropical Montane Trees? 446
 18.6 NPP and C Allocation Patterns in Tropical Montane Cloud Forests 448
 18.7 Transpiration, Evapotranspiration and Stomatal Conductance 450
 18.8 Remote Sensing of ET 453
 18.9 Climatological Links Between Tropical Lowland and Montane Forests 455
 18.10 References 457
Contents

19 Groundwater Dependent Ecosystems 460
 19.1 Introduction 460
 19.2 Groundwater and Groundwater Dependent Ecosystems 460
 19.3 Classes of GDEs 463
 19.4 Identifying Groundwater Dependent Vegetation 464
 19.5 Ecophysiology of Terrestrial GDEs Subject to 469
 Groundwater Abstraction
 19.6 Estimating Rates of Water-Use of GDEs 472
 19.7 Groundwater Recharge, Climate and Vegetation 478
 19.8 References 480

20 Global-Change Drought and Forest Mortality 484
 20.1 Introduction 484
 20.2 Global Change-Type Droughts 485
 20.3 Field Observations of Drought and Mortality 488
 20.4 Remotely Sensed Observations of Drought and Mortality 490
 20.5 Mechanisms that May Explain Tree Mortality 496
 20.6 Global Convergence in Vulnerability of Forests to Drought 502
 20.7 Modelling the Interactions Amongst Drought and 503
 Increased Temperatures and VPD
 20.8 An Integrated View of Mortality 506
 20.9 Ecological Modelling of Mortality at Landscape Scales 506
 20.10 Summary 508
 20.11 References 508

Index 513