Abiotic drivers of fluxes, 386, 405
Absorbance (leaf- and canopy-scale), 45, 47–49, 208, 268
Absorption, 172–174, 277
A/C, curves, 84–86, 265–266
Active and passive sensors, 168
Adiabatic lapse rate, 12, 444
Advanced high resolution radiometer. See AVHRR
Aerodynamic resistance, 308–310
Airborne sensors, 161, 162, 171, 199, 201
Air entry threshold, 142–144
Albedo, 5, 44, 46, 49, 171, 173, 176, 194, 244, 250–254, 454
Altitude and biomass, 449
and leaf structure, 44, 446
and photosynthetic capacity, 442–448
and temperature, 12, 443–445
Amazon (The), 415–437
Biogeography of the Amazon basin, 416–419
Drought in the Amazon, 434–436
Dry tropical forests, 428
Ecophysiology of the Amazon, 434–436
Flux tower measurements in the Amazon, 423–424, 428–429
Greening of the Amazon, 426–430, 436–437
Modelling of the Amazon, 423–424, 428–429
Boreal forests, 347–366
Carbon balance and photosynthesis, 351–352
Controls of ET and C flux in Scots Pine, 357–359
Modelling ET, 364–366
Permafrost, 362–364
Semi-arid boreal forests, 360–362
Water-use and water-use efficiency, 353–357
Boundary layer conductance, 74, 241, 261, 297–298, 326–337
Bidirectional reflectance distribution function (BRDF), 176–177
C4 photosynthesis, 82–84
Calvin cycle, 81–84
Canopy biophysics (and remote sensing), 217
Canopy conductance, 71–74
Canopy energy balance (and modelling), 250–256
Canopy light environments. See Canopy energy balances
Anisohydric stomata/leaves, 124–126, 498
Anisohdrys/iso/dry and forest mortality, 498–499
Anthocyanins, 48, 204, 208
Arid grasslands, See Grasslands
Aridity gradients, 101, 123, 403
Atmospheric circulations, 14, 16–17
Atmospheric corrections, 180, 183, 201, 430
Aerosols, 180, 182, 407, 437
Scattering, 182
Water vapour, 180, 181
Atmospheric window, 181–182, 201
AVHRR, 162, 189, 190, 194, 202, 220, 230, 426
Baldocchi-Meyers’ equation, 90–92
Ball-Woodrow-Berry type models, 282–284
Bi-directional reflectance distribution function, 176–177
Big leaf models, 241, 275–277, 301, 303, 365
Biogeography, 3–41
and atmospheric and oceanic circulations, 14–22
and biome classification systems, 22–32
Holdridge life zones, 22–24
The Whittaker Biome Classification, 24–26
Ecohydrological types, 26–27
Plant functional types, 27–32
and climate, 3–8, 10–12
and evaporative demand, 8–10
and global leaf traits, 32–37
and leaf lifespan/cost benefit analyses, 37–39
and root depth, 39–41
of The Amazon, 416–418
Biomass partitioning (in tropical montane forests), 448–449
Biophysical properties, 206–232
and canopy biophysics, 217
and spectral signatures, 206, 217–222
and vegetation optics, 206
Boundary layer conductance (and leaf function), 326–328
Boreal forests, 347–366
Carbon balance and photosynthesis, 351–352
Controls of ET and C flux in Scots Pine, 357–359
Modelling ET, 364–366
Permafrost, 362–364
Photo-protection during winter, 352
Semi-arid boreal forests, 360–362
Water-use and water-use efficiency, 353–357
Boundary layer conductance, 74, 241, 261, 297–298, 326–337
Bidirectional reflectance distribution function (BRDF), 176–177
C4 photosynthesis, 82–84
Calvin cycle, 81–84
Canopy biophysics (and remote sensing), 217
Canopy conductance, 71–74
Canopy energy balance (and modelling), 250–256
Canopy light environments. See Canopy energy balances
Canopy photosynthesis, 55–56
Modelling of canopy photosynthesis. See Modelling and water flow through the SPAC, 239–241
Carbon gain ratio, 94–95
Carbon starvation, 496, 499–501
Carotenoids, 48, 78, 207–208
Casparian strip, 56
Chlorophyll and photosynthesis, 47–49, 78–79 and remote sensing, 207–212 and solar induced chlorophyll fluorescence and remote sensing, 200
Climate classification systems, 10–12 Koppen-Geiger climate classification, 11–12 and large-scale patterns in climate, 3–10 and radiative cooling, 5

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press 978-1-107-05420-2 - Vegetation Dynamics: A Synthesis of Plant Ecophysiology, Remote Sensing and Modelling Derek Ramus, Alfredo Hueten and Qiang Yu

Index

514


© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press 978-1-107-05420-2 - Vegetation Dynamics: A Synthesis of Plant Ecophysiology, Remote Sensing and Modelling Derek Ramus, Alfredo Hueten and Qiang Yu

Index

More information
Jarvis-Stewart model, 74–75
Jmax, 84–86
La Niña. See El Niño
Landscape optics, 215–216
Land surface models; land surface schemes, 25–28
Land Surface Water Index (LSWI), 225
Large-scale Biosphere-Atmosphere Experiment in Amazonia (LBA), 423
Leaf anatomy, 43–47
Leaf attributes and leaf functions, 32–37, 43–47
Leaf lifespan, 37–39
Leaf temperature and modelling, 252–255
Leaf water potential (daily and seasonal patterns), 122–124
Light Detection and Ranging (LIDAR), 100
Light response curves, 86–87
and modelling, 262–265
Linear and cyclic electron flow, 81
Long-wave radiation, 248–249
Marginal unit water cost of photosynthesis, 93–96
Mesophyll conductance, 57, 69–71
Microwave sensors, 199–200
Mic scattering, 4
Modelling and mortality, 503–505, 506–508
Biochemistry of photosynthesis, 266–270
Canopy conductance and resistance, 289–292
Canopy energy balances, 250–252
Canopy radiation exchange, 296–297
Canopy structure and light environment, 252–255
CO2 concentration and leaf function, 332–335
CO2 response model of photosynthesis, 265–266
Combined Leaf Models: numerical solutions, 323–325
Environmental controls of photosynthesis, 272–273
Fitting model equations of photosynthesis, 272–273
Global radiation, 244–246, 250
Initial quantum yield, 262–266
Leaf canopy radiation exchange, 296–297
Leaf energy balance, 299
Leaf temperature, 321–323
and leaf function, 332–333
Light intensity and leaf function, 331–332
Long-wave radiation, 247–250
Multi-source models, 305–306
Parameter optimisation of photosynthesis, 272–273
Photosynthesis
Leaf-scale, 261–266
Canopy-scale, 273–275
Single-leaf, big leaf, two-leaf and multiple layer models, 275–278
Photo-inhibition, 270–272
Physiological responses to environmental variables, 326–335
Radiation exchange of leaves and canopies, 240
Root water uptake, 311–312
Soil water and heat dynamics, 310–311
Solar altitude, 244–245
Solar declination, 244–245
Solar radiation, 244–246
Stomatal conductance
Semi-empirical models, 282–287
Jarvis models, 282
Ball-Woodrow-Berry type models, 283–287
Optimisation theory and stomatal models, 287–289
Sunrise/sunset hour angle, 245
Transpiration at the leaf-scale, 297–299
Two source models, 303–305
Uncoupling photosynthesis, transpiration and stomatal conductance models, 325
Water and heat exchange in the SPAC, 313–315
Moderate Resolution Imaging Spectroradiometer (MODIS), 163
Mortality (forest). See drought and forest mortality
Multi-scale observations in remote sensing, 160–161
NDVI (Normalised Difference Vegetation Index), 209, 219–221, 224–231, 467–468, 477–479, 490–495
Near infrared, 161, 171, 181, 209, 213
Nitrogen and water trade-offs, 101–104
Nitrogen, P and drought, 104–105
Nocturnal transpiration, 131
Non-photosynthetic vegetation (NPV), 215, 224, 226, 228
Non-structural carbohydrates (and forest mortality), 499–500, 506
Normalised Difference Vegetation Index. See NDVI
North Atlantic Oscillation, 15–16
NPP. See net primary productivity
Oceanic circulation, 14, 18–22
Optimisation theory
Applied to leaf-scale C and water fluxes, 93–97, 272, 287–288
and stomatal conductance, 288–289
and savannas, 394–395
Orbits and satellites, 191–198
Geostationary orbits, 192
Low inclined orbits, 193
Polar orbits, 193–198
Orographic rain, 13, 456
Pm, Pn, Pn, 142–144
Pacific Decadal Oscillation, 16–17
Parameter optimisation for models of photosynthesis, 272
Penman and Penman-Monteith equations, 29, 72, 301–304, 365
Permafrost, 352, 362–364
Phenology, 415, 421–429

© in this web service Cambridge University Press
Phloem
Contents, 54
Loading and unloading, 53–55
Sap velocity and coupling with soil respiration, 55–56
Structure, 52–53

Photochemistry, 78–79
Photosynthetically active radiation (PAR) and fPAR, 217–219, 227–229, 357–361, 447–449
Photochemical Reflectance Index (PRI), 208–209
Photosynthesis: leaf scale, 78–88 (and see Modelling)
A/Ci curves, 84–86
ATP synthesis, 79–80
Biochemical models of photosynthesis, 267–273
Calvin cycle, 81–83
Electron transport and ATP/NADPH synthesis, 79–81
Light response curves, 86–87
Mitchell's chemi-osmotic theory, 80–81
NADPH synthesis, 79–81
Photo-inhibition and modelling, 270–272
Photosynthesis, 78–79
Ribulose-bis phosphate carboxylase-oxygenase, 80–83
Z-scheme, 79–82
Photosynthesis: canopy-scale, 87–89 (and see Modelling)
A/Ci curves, 84–86
ATP synthesis, 79–81

Physiological responses to environmental variation (and modelling), 326–336
Pigments, 47–49, 78–79, 170, 206–208
Plant functional types, 27–31
Photosystems I and II, 80–82
Phototropins, 46, 58
Pre-dawn leaf water potential, 62, 75, 122–128, 133, 379, 387, 392
Priestley-Taylor equation, 302–303, 355–356, 474
Pulses of rain
and the bucket model, 378
and water-use efficiency, 100–101
Resolution (of remote sensing sensors), 160–164, 185
Angular, 190–191
Optimal sensor resolution, 189–190
Radiometric, 189
Spatial, 185–186
Spectral, 186–187
Temporal, 187–188
Respiration, 60, 85, 86, 89, 262, 263
and cost-benefit analyses, 38
and savannas, 403–404
and grasslands, 369–372, 377–379
and forest mortality, 498–499, 507
and phloem transport, 55–56
Root anatomy, 56–57
Root depth, 39–41
Sapflow, 72–74, 131–133, 409–410, 434–435, 475, 478
Safe, specific yields (of an aquifer), 473–474
Satellite sensors, 184–201
Airborne sensors. See Airborne sensors
GRACE. See Gravity Recovery and Climate Experiment
Hyerspectral sensors, 198–199
LIDAR, 200–201
Microwave sensors, 199–200
Orbital systems, 191–198
Resolution, 185–191
Savannas, 383–414
Defining savannas, 383–384
Gross Primary Productivity, 403–406
Modelling seasonal changes in C uptake, 393–396
Net ecosystem exchange, 403–406
Optimality and canopy C uptake, 393–395
Patterns of carbon and water flux, 384–386
Photosynthetic capacity and rainfall, 401–403
Productivity and rainfall, 397–398
Rainfall, soil moisture, vapour pressure deficit and productivity, 397–398
Remote sensing and modelling of productivity, 398–401
Seasonality, 386–393
Tree water-use, 390–393
Woodo thickening, 408–411
SAVI. See soil-adjusted vegetation index
Semi-arid grasslands. See grasslands
Sensor systems. See Satellite sensors
Sieve tube cells, sieve elements, 52–53
Soil-Adjusted Vegetation Index (SAVI), 220–221, 224
Soil-plant-atmosphere continuum. See Modelling
Soil spectral signatures, 212–214
Solar constant, 3, 244
Solar induced chlorophyll fluorescence, 200
Solute potential, 116
Southern Annular Mode, 18
Southern Oscillation Index, 14
Spectral albedo, 173
Spectral mixture analyses and remote sensing, 222–224
Spectral signatures, 206, 217–221
Stable isotopes
and groundwater dependent ecosystems, 473–474
and water-use-efficiency, 100–101
Stomata
Open and closing, 58–60

© in this web service Cambridge University Press
www.cambridge.org
Stomatal conductance, 57
and responses to biotic and abiotic controllers of conductance, 60–62
and modelling, 67–69
three-phase response of stomata, 62–67
and tropical montane forests, 450
Stomatal structure and physiology, 57–58
Sun synchronous orbits, 193–198
Temperature and latitudinal gradients, 4–8
Thermohaline currents, 19–22
Thermal measurements and remote sensing, 178–180
Threshold-delay model, 378
Tropical Montane Forests, 442–459
Climate, 444–446, 455–457
Evapotranspiration and transpiration, 450–453
Leaf structure and altitude, 446
Net primary productivity, 448–449
Photosynthesis and altitude, 446–448
Remote sensing of EF, 453–455
Tropical Rainfall Monitoring Mission (TRMM), 193
Two-leaf models of canopies. See Modelling
Turgor potential, 117
Two-layer (Walter) hypothesis, 377–388
Vapour pressure (water), 120–121
Vapour pressure deficit and forest mortality, 503–505
Vcmax, 84–86
Vegetation indices, 224–226
and groundwater dependent ecosystems, 466–469
and LAI and fractional cover, 226–227
and fPAR, 227–230
Vegetation optics (and remote sensing), 206–211
Vegetation water indices, 225
Von Karman’s constant, 88, 307
Walker circulation, 14–15
Water-balance coefficient, 8–10
Water-Nitrogen trade-offs, 101–104
Water: functions and properties, 111–113
Water relations, 113–124
Gravity potential, 118
Hofler diagrams, 118–119
Matric potential, 118
Solute potential, 116
Turgor potential, 117
Water potential, 117–118
Water uptake, 126–131
Water-use-efficiency, 97–100
Water potential, 113–118
Whittaker biome classification, 24–26
Woody thickening, 408–411
Xylem. See Vascular tissues
Xylem embolism, 133, 135, 140, 145
Xylem repair, 145
Xylem structure, 49–51, 503
Xylem vulnerability curves, 138–139, 142, 469
Zenith angle, 4–5, 175–177