Introduction to Statistical Physics

Rigorous and comprehensive, this textbook introduces undergraduate students to simulation methods in statistical physics.

The book covers a number of topics, including the thermodynamics of magnetic and electric systems; the quantum mechanical basis of magnetism; ferrimagnetism, antiferromagnetism, spin waves and magnons; liquid crystals as a non-ideal system of technological relevance; and diffusion in an external potential. It also covers hot topics such as cosmic microwave background, magnetic cooling and Bose–Einstein condensation.

The book provides an elementary introduction to simulation methods through algorithms in pseudocode for random walks, the 2d Ising model and a model liquid crystal. Any formalism is kept simple and derivations are worked out in detail to ensure the material is accessible to students from subjects other than physics.

João Paulo Casquilho is an Associate Professor at the Universidade Nova de Lisboa, Portugal. His research work includes experimental and theoretical studies in liquid crystals rheology under applied electric or magnetic fields and dynamical systems.

Paulo Ivo Cortez Teixeira is an Adjunct Professor at the Instituto Superior de Engenharia de Lisboa and a research associate at the Universidade de Lisboa, Portugal. He is a theoretical soft matter physicist who has worked on colloids, elastomers, foams and liquid crystals.

Introduction to Statistical Physics

and to Computer Simulations

João Paulo Casquilho Universidade Nova de Lisboa, Portugal

Paulo Ivo Cortez Teixeira Instituto Superior de Engenharia de Lisboa, Portugal

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107053786

© J. Casquilho and P. Teixeira 2015

Translation from the Portuguese language edition: Introducão à Física Estatística by João Paulo Casquilho e Paulo Ivo Cortez Teixeira © IST Press 2011, Instituto Superior Técnico All Rights Reserved

> This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Casquilho, João Paulo, 1951– author. [Introducão à física estatística. English] Introduction to statistical physics: and to computer simulations / by João Paulo Casquilho, Paulo Ivo Cortez Teixeira. pages cm A translation from the Portuguese language edition Introducão à física estatística. Includes bibliographical references and index. ISBN 978-1-107-05378-6 (hardback) 1. Statistical physics. I. Teixeira, Paulo Ivo Cortez, 1965– author. II. Title. QC174.8.C3713 2015 530.15'95–dc23 2014032049 ISBN 978-1-107-05378-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> J. P. Casquilho dedicates this book to the memory of his parents. P. I. C. Teixeira dedicates this book to his parents.

Contents

P_{i}	refac	е		<i>page</i> xiii	
A	cknov	vledge	ments	XV	
1	Rano	Random walks			
	1.1	Introd	luction	1	
	1.2	Proba	bility: basic definitions	1	
	1.3	Rando	3		
	1.4	The s	imple random walk	5	
	1.4.1 The binomial distribution		The binomial distribution	5	
		1.4.2	The Gaussian distribution	8	
		1.4.3	The Poisson distribution	12	
	1.5	The generalised random walk		12	
		1.5.1	Joint distributions of several random variables	12	
		1.5.2	General results for random walks in one dimension	14	
		1.5.3	Random walks in three dimensions	16	
			The central limit theorem*	18	
	1.6	Monte	19		
	1.A	Some	25		
		1.A.1	Integrals of the form $\int_0^{+\infty} e^{-bx} x^n dx$	25	
		1.A.2	Integrals of the form $\int_0^{+\infty} e^{-ax^2} x^n dx$	25	
		1.A.3	Integrals of the form $\int_{-\infty}^{+\infty} e^{-(ax^2+bx+c)} dx$	27	
	1.B	Stirlir	28		
	Prob	29			
	Refe	erences		31	
2	Revi	ew of th	ermodynamics	32	
	2.1	Introd	luction	32	
	2.2	Basic	32		
		2.2.1	The laws of thermodynamics	32	
		2.2.2	Thermodynamic potentials. Maxwell's relations	37	
		2.2.3	Thermodynamic response functions	40	
		2.2.4	Magnetic systems	43	
		2.2.5	Electric systems*	45	
	Prob	46			
	Refe	erences		47	

vii

viii		Contents				
	3	The	nostulati	es of statistical physics. Thermodynamic equilibrium	48	
	5	3 1	Introd	luction	48	
		3.1	The n	ostulates of statistical physics	40	
		33	Isolate	ed systems	53	
		5.5	3 3 1	Microcanonical ensemble	53	
			332	Connection with thermodynamics Entropy	54	
			3.3.3	Equilibrium conditions for an isolated system	55	
				Thermal equilibrium. Absolute temperature. Distribution		
				function for the energy	56	
				Mechanical equilibrium. Pressure	60	
				Equilibrium with respect to particle exchange.		
				Chemical potential	61	
			3.3.4	Infinitesimal quasi-static processes	61	
			3.3.5	The isolated paramagnetic solid	63	
		3.4	Gener	al conditions for thermodynamic equilibrium. Thermodynamic		
			poten	tials revisited	68	
			3.4.1	Isolated system: the second law	68	
			3.4.2	General criterion for equilibrium	68	
			3.4.3	System in contact with a temperature reservoir	70	
			3.4.4	System in contact with a temperature and pressure reservoir	71	
			3.4.5	Isolated system in contact with a pressure reservoir	72	
			3.4.6	Legendre transformations. General formulation of the conditions for		
			2 4 7	thermodynamic equilibrium*	72	
			3.4./	Phase equilibria	/4	
				The Globs phase rule	/6	
		Drol	lama	The Clausius–Clapeyron equation	70	
		Refe	erences		81	
		C 1. 1		and the second	0.0	
	4	Stat	istical th	ermodynamics: developments and applications	82	
		4.1	Introd	nuction	82	
		4.2		Cononical encomble	82 82	
			4.2.1	Mean value and variance of the energy	02 85	
			4.2.2	Infinitesimal quasi static processes. Connection with	85	
			4.2.3	thermodynamics	86	
			424	The third law	91	
		4.3	The id	leal solid	91	
			4.3.1	Paramagnetism	91	
				Ideal system of N spins $1/2$	92	
				Brillouin theory of paramagnetism*	97	
			4.3.2	Magnetic cooling	99	
			4.3.3	Thermal vibrations of the crystal lattice. Einstein's theory	102	
		4.4	Syster	m in equilibrium with a heat and particle reservoir	104	
			4.4.1	Grand canonical ensemble	104	

ix	Contents				
	4.4.2 Connection with thermodynamics	106			
	4.4.3 Particle number fluctuations	108			
	4.5 System in equilibrium with a heat and pressure reservoir*	110			
	4.5.1 Isothermal–isobaric ensemble	110			
	4.5.2 Connection with thermodynamics	111			
	4.5.3 Volume fluctuations	111			
	4.6 Thermodynamic equivalence of the statistical ensembles	112			
	Problems	113			
	References	115			
	5 The classical ideal gas	116			
	5.1 Introduction	116			
	5.2 The density of states	116			
	5.3 Maxwell–Boltzmann statistics	119			
	5.4 Partition function of the ideal gas in the classical regime	122			
	5.5 Single-particle partition function	124			
	5.6 Thermodynamics of the classical ideal gas	127			
	5.7 Validity of the classical regime	129			
	5.8 The Maxwell–Boltzmann distribution	130			
	5.9 Gas in a uniform external field	132			
	5.10 The real gas*	133			
	Free expansion of a gas	137			
	5.A Phase space. Density of states	138			
	5.B Liouville's theorem in classical mechanics	142			
	5.C The equipartition theorem	145			
	Problems	146			
	Keterences	148			
	6 The quantum ideal gas	149			
	6.1 Introduction	149			
	6.2 Systems of identical particles*	149			
	6.3 Quantum statistics	151			
	6.4 The classical limit	155			
	6.5 Continuum-states approximation	156			
	6.5.1 Classical limit of the quantum ideal gas	157			
	6.6 The ideal Fermi gas	159			
	6.6.1 The free electron gas	162			
	6./ The ideal Bose gas	165			
	0./.1 Bose-Einstein condensation	16/			
	0.7.2 The phonon gas	1/1			
	Debye ineory	1/4			
	0.7.3 The photon gas	1/9			
	I he cosmic background radiation	103			
	Pafaranaas	104			
	NGIGI CHUCS	10/			

x	-	Contents				
	7	Magnetism				
		7.1 Introduction	188			
		7.2 The Heisenberg model*	189			
		7.2.1 Exchange interaction	190			
		7.2.2 The Heisenberg Hamiltonian	195			
		7.3 Weiss's mean-field theory of magnetism or the Weiss model	196			
		7.3.1 Zero-field, or spontaneous, magnetisation	199			
		7.3.2 Non-zero-field magnetisation	201			
		7.3.3 Ferromagnetic domains. Hysteresis	202			
		7.4 Landau theory of magnetism	203			
		Helmholtz free energy	204			
		Gibbs free energy	207			
		Heat capacity	208			
		7.5 Ferrimagnetism and antiferromagnetism	211			
		7.6 Spin waves and magnons	214			
		Problems	218			
		References	219			
	8	The Ising model				
		8.1 Introduction	220			
		8.2 Exact solution of the one-dimensional Ising model	221			
		8.3 Monte Carlo simulations of the Ising model	224			
		8.3.1 Importance sampling	224			
		8.3.2 Computational method	226			
		8.3.3 Metropolis algorithm	227			
		8.3.4 Transition probabilities	227			
		8.3.5 Computation of physical quantities	230			
		Magnetisation	230			
		Energy	232			
		Critical temperature	232			
		8.4 Other Ising models	234			
		8.4.1 Antiferromagnetism	236			
		8.4.2 The lattice gas	236			
		Problems	237			
		References	238			
	9	Liquid crystals	239			
		9.1 Generalities	239			
		9.2 Maier–Saupe theory	242			
		9.3 Onsager theory	251			
		9.4 Landau–de Gennes theory	256			
		Critique of Landau-de Gennes theory	259			
		9.5 Monte Carlo simulations of the Lebwohl–Lasher model*	259			
		Effect of an applied field	260			

xi	Contents						
	Problem	15	267				
	Referen	ces	267				
	10 Phase transitions and critical phenomena						
	10.1 Int	troduction	269				
	10.2 Ph	ases and phase transitions	269				
	10.3 Th	e order of a phase transition	270				
	10.4 Cr	itical points and critical exponents	272				
	10	.4.1 Definition of critical exponents	273				
	10	.4.2 The most important critical exponents	275				
	10	.4.3 Critical exponent inequalities	278				
	10.5 Cl	assical theories of phase transitions. Universality	279				
	10	.5.1 Van der Waals theory of the liquid–vapour transition	279				
		Critical exponents for the Van der Waals equation of state	282				
	10	The Van der Waals equation of state as a mean-field theory	285				
	10	.5.2 Weiss theory of magnetism	287				
	10 (17	.5.3 Landau theory of phase transitions. Universality	287				
	10.6 11	C 1 E sector 1 directed dimensional Lineared 1*	287				
	10	6.1 Exact solution of the two-dimensional Ising model*	287				
	10 7 D	.0.2 Other exact and approximate results	290				
	10.7 K	ad avant results: the coaling humothesis	201				
	a 10 פ דא	a exact results: the scaling hypothesis	291				
	10.0 III	short overview of the renormalisation group	295				
	Problem	short overview of the renormalisation group	290				
	Referen	ces	297				
	11 Irreversible processes						
	11 1 Int	roduction	298				
	11.2 Di	ffusion	298				
	11.2 Br	ownian motion	303				
	11.	3.1 Statistical interpretation of diffusion*	304				
	11.	3.2 Equation of motion	305				
	11.	3.3 Electric circuit analogy	306				
	11.	3.4 Mean square displacement	307				
	11.4 Th	e Fokker–Planck equation*	309				
		Steady-state solutions of the Fokker–Planck equation	314				
	11.5 Th	e Dirac δ function	317				
	Problems						
	References						
	Appendix A	Values of some fundamental physical constants	322				
	Appendix B	Some useful unit conversions	323				
	Index		324				

Preface

Statistical physics is a core subject in any degree course in physics, engineering physics, or physics (or chemistry) for education. Its role is on a par with that of introductory quantum mechanics: both provide an essential background in the fundamentals of physics and are prerequisites for more advanced subjects such as atomic and molecular physics, condensed matter physics or solid state physics. On the other hand, statistical physics plays a central part in laying the foundations and enabling the interpretation of classical thermodynamics, the derivation of its laws and of results for model systems such as the classical ideal gas.

Statistical physics is also an excellent vehicle for introducing numerical simulation methods, which are ever more prevalent in physics and engineering. Indeed, computer simulations in statistical physics are playing an increasingly important role in the understanding of the properties and phase transitions of physical systems. Moreover, the computational techniques of statistical physics have been fruitfully applied to problems in many other fields, such as optimisation of assembly lines in an engineering context. Monte Carlo simulations of a number of model systems are, therefore, implemented in this course.

This book grew out of a set of lecture notes for the undergraduate statistical physics course and the graduate computer simulation methods course taught by one of us (J.P.C.) to physical engineering students at the School of Science and Technology of the New University of Lisbon, Portugal (FCT/UNL), in the years 2001–2008. In its final form, the book clearly comprises too much material for a one-semester course. This enables instructors to first cover the foundations of the subject, and then make a selection of more advanced topics, on the basis of their personal preferences and those of the group being taught. This English edition is a thoroughly revised and expanded translation, by the authors, of the Portuguese edition (IST Press, Lisbon, 2011); some of the original chapters have been broken up into shorter chapters, for a sharper focus and greater clarity.

We have deliberately kept our formalism (almost) elementary; no extensive knowledge of, e.g., quantum mechanics or analytical mechanics is presupposed, which should make the book accessible to students of subjects other than physics, such as materials science, materials engineering, chemistry, chemical engineering, or biomedical engineering. A sound basis in general physics, namely classical mechanics, classical thermodynamics, electromagnetism, and some knowledge of modern physics is, however, required. We do work out most derivations in considerable detail, and provide mathematical background material in a number of appendices. Sections marked '*' contain more advanced material, or a more detailed discussion of, or further elaboration on, particular subjects.

This book is organised into five parts, as we now describe.

xiii

xiv

Preface

Random walks. In the first part we give an introduction to statistical methods in physics, and to Monte Carlo simulation methods, through the study of random walks (one chapter).

Statistical thermodynamics. In the second part we present and discuss the basic postulates of statistical physics. We then develop the statistical ensemble formalism and establish the connection with thermodynamics (three chapters).

The ideal gas. In the third part we treat the classical and quantum ideal gases using the statistical ensemble formalism (two chapters). As an extension of the classical ideal gas we study the classical real gas, with a view to applications to non-ideal systems. As applications of the quantum ideal gas we discuss the free electron model in metals, Bose–Einstein condensation, thermal vibrations in crystals and blackbody radiation.

Non-ideal systems, phase transitions and critical phenomena. In the fourth part (four chapters), one chapter is devoted to the mean-field and Landau theories of magnetic phase transitions, and to spin waves. The theory and Monte Carlo simulations of the Ising model are presented in a separate chapter. There follows a chapter on liquid crystals (mostly nematic), where we discuss the analogies between mean-field and Landau-type theories of liquid crystals, and those of ferromagnetism. We introduce the Onsager theory of the nematic phase in solutions and implement Monte Carlo simulations of confined liquid crystals using the Lebwohl–Lasher model. Finally, some of the results previously obtained for phase transitions are recapitulated in the more general context of critical phenomena in a separate chapter.

Brownian motion and diffusion. In the fifth and final part (one chapter) we briefly address irreversible processes through the study of Brownian motion and diffusion, which are related phenomena. Appropriately, we start and finish this book with the random walk, as both paradigm and metaphor.

Acknowledgements

The authors thank Professors Assis Farinha Martins and Grégoire Bonfait, of FCT/UNL, for reading parts of the original manuscript and for their valuable criticism and suggestions. We also acknowledge the invaluable assistance of IST Press and Cambridge University Press, at various stages of manuscript preparation. Thanks are due to some of our anonymous referees, for their insightful and constructive criticisms and suggestions: we believe that the book is better as a result. Finally, we acknowledge the financial support of Fundação para a Ciência e Tecnologia of Portugal, in the form of Projects no. PEst-OE/FIS/UI0618/2011 and PEst-C/CTM/LA0025/2011.

XV