
1 Randomwalks

1.1 Introduction

We shall start our study of statistical physics with random walks. As their name suggests,
random walks are sequences of steps taken in random directions, i.e., where the direction of
a step is chosen according to a given probability distribution. In the most general case, the
length of a step is also random. The probability that each step in a sequence of N steps has
a given length and is taken in a given direction is independent of the lengths and directions
of all other steps in the sequence; in other words, the N steps are statistically independent.
We shall study random walks to find out how probable it is that a random walker ends up
a certain distance from its starting point after N steps, and how far on average the random
walker strays from its starting point.

Random walks are important for a number of reasons. Firstly, they illustrate some basic
results of probability theory. Secondly, their statistics are formally identical to those of
many key problems in physics and other disciplines, such as diffusion in fluids and solids
and the conformations of polymer molecules, some of which will be addressed later in this
book. Finally, random walks are particularly suitable vehicles for introducing Monte Carlo
simulation methods into statistical physics as they are simple but require many techniques
employed in the study of more complex systems.

1.2 Probability: basic definitions

When seeking to describe a system statistically (i.e., in probabilistic terms), it is often use-
ful to consider a statistical ensemble. This consists of a very large number N of virtual
copies of the system under study. The probability of some particular event occurring is
then defined with respect to the ensemble: it is the fraction of systems in the ensemble in
which the event actually occurs. Consider, for example, a die throw. One possible statis-
tical description is to assume that the die is thrown N times in succession, under identical
conditions. Alternatively, we can imagine a very large number N of identical dice (the rep-
resentative ensemble of the die) and that each of these is thrown once, all under identical
conditions.

We define the probability Pr of a random event r as the limiting value of the relative
frequency of r, when the number of trials N → ∞:

Pr = lim
N→∞ f(r), f(r) = Nr

N
, (1.1)
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2 1 Randomwalks

where Nr is the number of times that r occurs in N trials. This is the so-called ‘frequencist’
definition of probability, which is the one most commonly used in the physical sciences.
Coming back to the preceding example, the probability of a certain outcome is given by the
fraction of trials with that particular outcome. This ensemble probability is always defined
with respect to a specific ensemble. For example, the probability that the outcome of a
die throw is 6, defined with respect to the ensemble of perfect six-sided dice, is different
from the probability that the outcome is 6, defined with respect to the ensemble of perfect
ten-sided dice.

Consider now an experiment with L mutually exclusive possible outcomes (e.g., a die
throw), and label each of these outcomes with the index r: thus r = 1,2, . . . ,L. After N � 1
trials, outcome 1 was found N1 times, outcome 2 N2 times, . . . , and outcome L NL times.
Because the outcomes are mutually exclusive, we must have N1 + N2 + ·· · + NL = N.
Dividing both sides of this equation by N and using Eq. (1.1) we obtain

L∑
r=1

Pr = 1, (1.2)

i.e., the probability distribution is normalised to unity. If the outcomes are equally
probable, it follows straightforwardly from Eq. (1.2) that

Pr = 1

L
, for all r. (1.3)

The probability of that the outcome is r or s is

P(r or s) = Nr + Ns

N
= Pr + Ps, (1.4)

which is straightforwardly generalised to more than two outcomes. For example, when
throwing a die the probability that the outcome is 4 or 5 is 1/6 + 1/6 = 1/3

Now suppose that two separate experiments are performed: one with L mutually exclu-
sive possible outcomes r = 1,2, . . . ,L, and the other with M mutually exclusive possible
outcomes s = 1,2, . . . ,M. An example might be throwing a die (L = 6) and flipping a coin
(M = 2) simultaneously. The probability that outcomes r and s occur simultaneously is
called the joint probability of r and s. For each of the Nr possible trials of the first exper-
iment with outcome r, there are Ns possible trials of the second experiment with outcome
s, so the total number of trials with outcomes r and s is Nrs = NrNs. The joint probability
is then

Prs = Nrs

N
= NrNs

N
. (1.5)

Two events are said to be statistically independent when the probability that one event
has a particular outcome does not depend on the probability of the other event having a
particular outcome. In this case, for all Nr trials with outcome r of the first event, there
will be a fraction Ps for which the outcome of the second event is s, so that Nrs = NrPs,
leading to

Prs = Nrs

N
= Nr

N
Ps = PrPs. (1.6)
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3 1.3 Random variables and distribution functions

This is easily generalised to more than two independent events as: The joint probability of
statistically independent events is the product of the probabilities of the individual events.

1.3 Random variables and distribution functions

A random variable is a variable X which takes values x in a set B according to a given
probability law or distribution function FX such that

FX(x) = P[X ≤ x], for all x ∈ B. (1.7)

In other words, the distribution function of X evaluated at x equals the probability that
X ≤ x. Two random variables are said to be equal in distribution if they have the same
distribution function.

Random variables may be discrete or continuous.
For a discrete random variable, there exists a function pX, called probability mass

function, such that

P[X ≤ x] =
∑
t≤x

pX(t), (1.8)

P[X = x] = pX(x), (1.9)

i.e., pX(x) equals the probability that X = x and the sum is over all possible values t of X
not greater than x. In this case, normalisation gives∑

x∈B

pX(x) = 1, (1.10)

where the sum is over all possible values x of X.
For a continuous random variable there exists a function fX(x) called probability density

function such that

P[X ≤ x] =
∫ x

−∞
fX(t)dt, (1.11)

P[X ∈ (x,x + dx)] = fX(x)dx, (1.12)

where in this case we have assumed that X may take any value between −∞ and +∞.
Normalisation now gives ∫ +∞

−∞
fX(x)dx = 1. (1.13)

We define the most probable value of a random variable X as that for which the probability
mass function of X, or the probability density function of X, is maximised (for discrete and
continuous X, respectively).

The mean, mean value, expected value or mathematical expectation of a random variable
X is defined as

E[X] =
∞∑

k=1

xkpk, pk = P[X = xk], (1.14)
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4 1 Randomwalks

if X is discrete, and

E[X] =
∫ +∞

−∞
xfX(x)dx, (1.15)

if X is continuous. The values of X cluster around its mean, which is therefore a measure
of the localisation of X, or of its distribution. Note that the mean is the weighted average
of all values of X.

Henceforth we shall often use x to denote both the random variable X and its values.
The mean of X will then be denoted x. For consistency we shall employ this notation for
discrete as well as continuous variables, although in probability theory x usually denotes
the arithmetic mean of a sample of X. Thus

E[X] = x. (1.16)

The nth central moment of a random variable X is defined as E[(X − E[X])n]. If the
distribution function of X is known, then the mean and all moments of X can be calcu-
lated. The converse is also true in the case of smooth distributions: this result is often
used when the mean and a few moments of a distribution are known, experimentally or
from computer simulations (‘numerical experiments’), to extract an approximation to the
probability distribution function.

The deviation from the mean is defined as X − E[X], which in the notation of Eq. (1.16)
may also be written

X − E[X] = x − x ≡�x. (1.17)

If a random variable X deviates very little from its mean, then the true value of the quantity
X may be replaced by the mean of X, with a very small error. This is a key issue in statistical
physics: in order to quantify how much the true value of X deviates from its mean, we shall
calculate the first and second centred moments of a continuous random variable. The same
results can easily be obtained for a discrete random variable. Because X − E[X] is also a
random variable, we find, from Eqs (1.13)–(1.17):

n = 1 (mean deviation from the mean):

E [X − E[X]] ≡�x =
∫

B
(x − x) fX(x)dx = 0. (1.18)

n = 2 (variance, mean square deviation or scatter):

Var(X) ≡ σ 2(X) = E
[
(X − [X])2

]
= (�x)2 =

∫
B
(x − x)2 fX(x)dx

=
∫

x2fX(x)dx − 2x
∫

xfX(x)dx + x2
∫

fX(x)dx

= x2 − x2. (1.19)

Clearly the variance cannot be negative, as (�x)2 ≥ 0. Equation (1.19) then implies that
x2 ≥ x2. The variance vanishes only if x = x for all x. The larger the variance, the greater
the scatter of x about its mean. If σ 2(X) is small, then X will always be close to x, and we
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5 1.4 The simple randomwalk

can replace the true value of X by its mean x. The relative error of this procedure is the
relative fluctuation:

δ(X) = σ (X)/E[X], (1.20)

where σ (X) =
√
σ 2(X) is the standard deviation of X.

If a discrete random variable X can take only a finite number N of values all with the
same probability pk, normalisation implies that pk = 1/N as in Eq. (1.3). By Eq. (1.14) the
statistical mean then coincides with the arithmetic mean:

x = 1

N

N∑
k=1

xk. (1.21)

In this case the discrete version of Eq. (1.18) is just that the deviations from the mean add
up to zero.

In the limit N → ∞, the statistical mean and the arithmetic mean of a discrete random
variable are related through a theorem known as the law of large numbers, which can
be stated as follows (Apostol, 1969): Let X1,X2, . . . ,XN be a sequence of N independent
random variables, all equal in distribution to some random variable X of finite mean and
variance. If we define a new random variable X, the arithmetic mean of X1,X2, . . . ,XN, as

X = 1

N

N∑
k=1

Xk, (1.22)

then

lim
N→∞X = E[X]. (1.23)

We close this section with a brief reference to functions of random variables. For sim-
plicity we shall drop the X subscript. The mean of a function g(X) of random variable X is
then defined as

g(X) =
∑

x

g(x)p(x) or g(X) =
∫

g(x)f(x)dx, (1.24)

where p(x) and f(x) are given by Eqs. (1.9) and (1.12), respectively.

1.4 The simple randomwalk

1.4.1 The binomial distribution

We shall start by deriving the probability distribution for a one-dimensional random walk.
Here steps are all the same length � and can be taken either to the right or to the left.
Out of N steps, n1 are rightward steps and n2 = N − n1 are leftward steps. Assuming that
consecutive steps are statistically independent, then at each moment in time the probability
of taking a step right is p and the probability of taking a step left is q = 1−p. If we view a
random walk as N trials of a Bernoulli experiment where a step right is a success and a step
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6 1 Randomwalks

left is a failure, then the probability of n1 successes out of N trials is given by the binomial
distribution:

P(X = n1) ≡ P(n1) =
(

N
n1

)
pn1qn2 , n1 = 0,1, . . . ,N,

P(n1) = 0, any other value of n1,
(1.25)

where X is the random variable equal to the number of successes in N independent
Bernoulli experiments, n2 = N− n1 is the number of failures, and(

N
n1

)
= N!

n1!(N− n1)!
(1.26)

is the binomial coefficient.

Proof of Eq. (1.25) For N Bernoulli experiments, the probability of n1 consecutive suc-
cesses is pn1 (because all outcomes are independent). Likewise, the probability of n2

consecutive failures is qn2 . Hence the probability that n1 consecutive successes are fol-
lowed by n2 consecutive failures is pn1qn2 . The probability of n1 successes and n2 failures
in any other order is also pn1qn2 , since each of the N outcomes is either a success or a
failure. Then the probability of n1 successes and n2 failures regardless of order equals the
probability of n1 successes and n2 failures in some order, times the number of possible
ways in which n1 out of N experiments are successes, which is given by the binomial
coefficient.

The mean of n1 can be found using Eqns. (1.14) and (1.25):

n1 =
N∑

n1=0

n1P(n1) =
N∑

n1=0

n1

(
N
n1

)
pn1qn2 . (1.27)

Noting that

n1pn1qn2 = p
∂

∂p

(
pn1qn2

)
, (1.28)

that the binomial theorem implies

N∑
n1=0

P(n1) = (p + q)N, (1.29)

and that P(n1) is normalised to unity, Eq. (1.10), we obtain

n1 =
N∑

n1=0

p
∂

∂p
P(n1) = p

∂

∂p

⎛
⎝ N∑

n1=0

P(n1)

⎞
⎠

= p
∂

∂p

[
(p + q)N] = Np(p + q)N−1 = Np. (1.30)

Along the same lines, it may be easily shown that

n2
1 = Np + N(N− 1)p2, (1.31)
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7 1.4 The simple randomwalk

whence from Eq. (1.19) with Eqs. (1.30) and (1.31) we find for the variance:

σ 2(n1) = n2
1 − n1

2 = Npq. (1.32)

Up till now we have concentrated on a description of the one-dimensional random walk
in terms of the random variable n1, the number of rightward steps out of N total steps. If,
however, we wish to study the displacement, it is convenient to introduce a new variable,
the effective number of rightward steps, as (Reif, 1985)

n = n1 − n2, (1.33)

where n1 +n2 = N (recall that n2 is the total number of leftward steps). We can then define
the effective rightward displacement as

L = nl, (1.34)

where l is the step length.
The mean of n is easily calculated from Eq. (1.30):

n = n1 − n2 = n1 − n2 = N(p − q). (1.35)

Because n = n1 − n2 = 2n1 − N, n takes only integer values with spacing δn = 2, whence

�n ≡ n − n = (2n1 − N) − (2n1 − N) = 2�n1, (1.36)

where �n1 = n1 − n1. From Eq. (1.32) we then get the variance of n:

σ 2(n) =�n2 = 4Npq. (1.37)

The mean and variance of the displacement then follow easily from Eqs. (1.34)–(1.37):

L = Nl(p − q), (1.38)

σ 2(L) = 4Nl2pq. (1.39)

The variance of n is thus quadratic in l, whence the standard deviation σ (L) is a measure
of the linear scatter of L values.

As mentioned before, a suitable measure of the width of a distribution is its relative
fluctuation, given by Eq. (1.20). For n1 this is, from Eqs. (1.30) and (1.32):

δ(n1) ≡ σ (n1)

n1
=

√
q

p

1√
N

, (1.40)

i.e., the relative fluctuation decays with N−1/2 when N increases (see Figure 1.1).
In the special case where p = q = 1/2, i.e., rightward and leftward steps are equally

probable, we have the following results:

n = 0; σ 2(n) = N; σ (n) =
√

N; (1.41)

L = 0; σ 2(L) = Nl2; σ (n) =
√

Nl; (1.42)

δ(n1) = 1√
N

. (1.43)
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8 1 Randomwalks
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Figure 1.1 Examples of binomial distributions, Eq. (1.25.) (a) N= 40; p= 0.5; n1 = 20; σ 2(n1) = 10;
δ(n1) = 0.16. (b) N= 400; p= 0.5; n1 = 200; σ 2 (n1)= 100; δ(n1) = 0.05. (c) N= 400;
p= 0.3; n1 = 120; σ 2(n1) = 84; δ(n1) = 0.076. .

We thus conclude that, for the symmetric one-dimensional random walk, N is a measure
of the variance, N1/2 is a measure of the standard deviation, and N−1/2 is a measure of the
relative fluctuation, with l a scale factor. Moreover, because rightward and leftward steps
are equally probable, the mean effective displacement vanishes, as might be intuitively
expected.

1.4.2 The Gaussian distribution

For large N, the binomial distribution P(n1) given by Eq. (1.25) acquires a very pronounced
maximum at n1 = n1, dropping rapidly as n1 moves away from n1 (see Figure 1.1). This
enables us to find an approximate expression for P(n1) when N → ∞:

P(n1) = 1√
2πσ 2(n1)

exp

[
−1

2

(n1 − n1)
2

σ 2(n1)

]
, (1.44)

where n1 and σ 2(n1) are given by Eqs. (1.30) and (1.32), respectively. Equation (1.44) is
known as the Gaussian distribution or standard normal distribution. Gaussian distributions

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-05378-6 - Introduction to Statistical Physics and to Computer Simulations
Joao Paulo Casquilho and Paulo Ivo Cortez Teixeira
Excerpt
More information

˜

http://www.cambridge.org/9781107053786
http://www.cambridge.org
http://www.cambridge.org


9 1.4 The simple randomwalk

occur very often (but by no means in all cases!) in statistics when one has to deal with large
numbers of trials.

Proof of Eq. (1.44) Start by making the change of variables n1 = n1 + k, with n1 given
by Eq. (1.30), in Eq. (1.25):

P(k) = N!

(Np + k)!(Np − k)!
pNp+kqNp−k.

Now use Stirling’s formula, Eq. (1.126), for N! when N � 1:

N! 
√

2πNNNe−N,

with the result

P(k) =
√

2πNNNe−N × pNp+k√
2π(Np + k)(Np + k)Np+ke−(Np+k)

× qNq−k√
2π(Nq − k)(Nq − k)Nq−ke−(Nq−k)

= 1√
2πN(p + k/N)(q − k/N)(1 + k/Np)Np+k(1 − k/Nq)Nq−k

,

whence

lnP(k) = −1

2
ln[2πN(p + k/N)(q − k/N)]

−(Np + k) ln (1 + k/Np)− (Nq − k) ln (1 − k/Nq) .

For k/Np � 1 and k/Nq � 1 we can truncate the series expansions of the logarithms at
low order:

ln

(
1 + k

Np

)
 k

Np
− k2

2N2p2
+ k3

3N3p3
,

ln

(
1 − k

Nq

)
 − k

Nq
− k2

2N2q2
− k3

3N3q3
.

Substitution into the expression for lnP(k) then yields:

lnP(k) = −1

2
ln

{
2πN

[
pq − k

N
(p − q)− k2

N2

]}

− k2

2Np
− k2

2Nq
+ k3

6N2p2
− k3

6N2q2
,

or, equivalently,

P(k) =
exp

(
− k2

2Npq − k3

6N2
p−q
p2q2

)
√

2πN
[
pq − k

N (p − q) k2

N2

] .
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10 1 Randomwalks

Further neglecting terms of order k/N or higher, we find:

P(k) =
exp

(
− k2

2Npq

)
√

2πNpq

Changing variables back to n1 then gives Eq. (1.44).

The probability that, after a very large number of steps N, the effective number of right-
ward steps, as defined by Eq. (1.33), is n, follows from Eq. (1.44) combined with Eqs.
(1.30) and (1.32), noting that n1 = (N+ n)/2 (Reif, 1985):

P(n) = 1√
2πNpq

exp

{
− [n − N(p − q)]2

8Npq

}
, (1.45)

where we have used the fact that n1 − Np = (N + n − 2Np)/2 = [n − N(p − q)]/2. This
result may be seen as a special case of the central limit theorem, to which we shall come
back later: if a random variable (the effective number of rightward steps) is the sum of
a very large number of other, statistically independent, random variables (all individual
steps), then its distribution is Gaussian.

The above distribution can be re-expressed in terms of the effective rightward dis-
placement, defined by Eq. (1.34). If the step length l is much smaller than the relevant
lengthscale of the system under study (e.g., its linear dimension), the discrete variable L
with increment δL = 2l may be replaced by a continuous, ‘macroscopic’ variable x with
increment dx � l. Then the probability that after N � 1 steps the effective rightward dis-
placement lies between x and x + dx is, by definition (1.11), the sum of P(n) over all n
in dx, of which there are dx/2l. Because P(n) is approximately constant in such a narrow
interval, to a good approximation the probability we seek is just P(n) times dx/2l, whence
we can write

f(x)dx = P(n)
dx

2l
, (1.46)

where f(x) is the probability density, according to definition (1.12). Equations (1.45) and
(1.46) finally yield

f(x)dx = 1√
2πσ 2

exp

[
−1

2

(x −μ)2

σ 2

]
dx, (1.47)

where

μ= Nl(p − q), (1.48)

σ 2 = 4Nl2pq. (1.49)

Equation (1.47) is the most common form of the Gaussian distribution for a continuous
variable. It gives the probability that after N steps of size l each, the random walker will
find itself at a distance between x and x + dx from its starting point. This distribution is
symmetric aboutμ, which as we shall see shortly is its mean value. Figure 1.2 shows some
exemplary Gaussian distributions.
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