Nanowire Transistors

Physics of Devices and Materials in One Dimension

From quantum mechanical concepts to practical circuit applications, this book presents a self-contained and up-to-date account of the physics and technology of nanowire semiconductor devices. It includes:

- An account of the critical ideas central to low-dimensional physics and transistor physics, suitable to both solid-state physicists and electronic engineers.
- Detailed descriptions of novel quantum mechanical effects such as quantum current oscillations, the semimetal-to-semiconductor transition, and the transition from classical transistor to single-electron transistor operation are described in detail.
- Real-world applications in the fields of nanoelectronics, biomedical sensing techniques, and advanced semiconductor research.

Including numerous illustrations to help readers understand these phenomena, this is an essential resource for researchers and professional engineers working on semiconductor devices and materials in academia and industry.

Jean-Pierre Colinge is a Director in the Chief Technology Office at TSMC. He is a Fellow of the IEEE, a Fellow of TSMC and received the IEEE Andrew Grove Award in 2012. He has over 30 years’ experience in conducting research on semiconductor devices and has authored several books on the topic.

James C. Greer is Professor and Head of the Graduate Studies Centre at the Tyndall National Institute and Co-founder and Director of EOLAS Designs Ltd, having formerly worked at Mostek, Texas Instruments, and Hitachi Central Research. He received the inaugural Intel Outstanding Researcher Award for Simulation and Metrology in 2012.
Nanowire Transistors

Physics of Devices and Materials in One Dimension

JEAN-PIERRE COLINGE
TSMC

JAMES C. GREER
Tyndall National Institute
For Cindy and Sue, to our children, and to the memory of our parents
Contents

Preface xi

1 Introduction 1
 1.1 Moore’s law 2
 1.2 The MOS transistor 4
 1.3 Classical scaling laws 8
 1.4 Short-channel effects 8
 1.5 Technology boosters 9
 1.5.1 New materials 10
 1.5.2 Strain 11
 1.5.3 Electrostatic control of the channel 11
 1.6 Ballistic transport in nanotransistors 12
 1.6.1 Top-of-the-barrier model 12
 1.6.2 Ballistic scaling laws 14
 1.7 Summary 15
 References 16

2 Multigate and nanowire transistors 18
 2.1 Introduction 18
 2.2 The multigate architecture 19
 2.3 Reduction of short-channel effects using multigate architectures 20
 2.3.1 Single-gate MOSFET 22
 2.3.2 Double-gate MOSFET 23
 2.3.3 Triple- and quadruple-gate MOSFETs 24
 2.3.4 Cylindrical gate-all-around MOSFET 25
 2.4 Quantum confinement effects in nanoscale multigate transistors 29
 2.4.1 Energy subbands 29
 2.4.2 Increase of band gap energy 36
 2.4.3 Quantum capacitance 37
 2.4.4 Valley occupancy and transport effective mass 38
 2.4.5 Semimetal–semiconductor nanowire transitions 40
 2.4.6 Topological insulator nanowire transistor 43
 2.4.7 Nanowire-SET transition 43
 2.5 Other multigate field-effect devices 44
2.5.1 Junctionless transistor 44
2.5.2 Tunnel field-effect transistor 45
2.6 Summary 46
Further reading 47
References 47

3 Synthesis and fabrication of semiconductor nanowires 54
3.1 Top-down fabrication techniques 54
 3.1.1 Horizontal nanowires 54
 3.1.2 Vertical nanowires 57
3.2 Bottom-up fabrication techniques 58
 3.2.1 Vapor–liquid–solid growth technique 59
 3.2.2 Growth without catalytic particles 63
 3.2.3 Heterojunctions and core-shell nanowires 64
3.3 Silicon nanowire thinning 66
 3.3.1 Hydrogen annealing 66
 3.3.2 Oxidation 67
 3.3.3 Mechanical properties of silicon nanowires 69
3.4 Carrier mobility in strained nanowires 72
3.5 Summary 73
References 74

4 Quantum mechanics in one dimension 81
4.1 Overview 81
4.2 Survey of quantum mechanics in 1D 81
 4.2.1 Schrödinger wave equation in one spatial dimension 82
 4.2.2 Electron current in quantum mechanics 83
 4.2.3 Quantum mechanics in momentum space 84
4.3 Momentum eigenstates 85
4.4 Electron incident on a potential energy barrier 88
4.5 Electronic band structure 92
 4.5.1 Brillouin zone 93
 4.5.2 Bloch wave functions 94
4.6 LCAO and tight binding approximation 95
 4.6.1 Linear combination of atomic orbitals (LCAO) 95
 4.6.2 Tight binding approximation 97
4.7 Density of states and energy subbands 100
 4.7.1 Density of states in three spatial dimensions 100
 4.7.2 Density of states in two spatial dimensions 102
 4.7.3 Density of states in one spatial dimension 104
 4.7.4 Comparison of 3D, 2D, and 1D density of states 104
4.8 Conclusions 105
Further reading 106
References 106
5 Nanowire electronic structure

5.1 Overview

5.2 Semiconductor crystal structures: group IV and III-V materials

5.2.1 Group IV bonding and the diamond crystal structure

5.2.2 III-V compounds and the zincblende structure

5.2.3 Two-dimensional materials

5.3 Insulators, semiconductors, semimetals, and metals

5.4 Experimental determination of electronic structure

5.4.1 Temperature variation of electrical conductivity

5.4.2 Absorption spectroscopy

5.4.3 Scanning tunneling spectroscopy

5.4.4 Angle resolved photo-emission spectroscopy

5.5 Theoretical determination of electronic structure

5.5.1 Quantum many-body Coulomb problems

5.5.2 Self-consistent field theory

5.5.3 Optimized single determinant theories

5.5.4 \(GW\) approximation

5.6 Bulk semiconductor band structures

5.7 Applications to semiconductor nanowires

5.7.1 Nanowire crystal structures

5.7.2 Quantum confinement and band folding

5.7.3 Semiconductor nanowire band structures

5.8 Summary

Further reading

References

6 Charge transport in quasi-1D nanostructures

6.1 Overview

6.2 Voltage sources

6.2.1 Semi-classical description

6.2.2 Electrode Fermi–Dirac distributions

6.3 Conductance quantization

6.3.1 Subbands in a hard wall potential nanowire

6.3.2 Conductance in a channel without scattering

6.3.3 Time reversal symmetry and transmission

6.3.4 Detailed balance at thermodynamic equilibrium

6.3.5 Conductance with scattering

6.3.6 Landauer conductance formula: scattering at non-zero temperature

6.4 Charge mobility

6.5 Scattering mechanisms

6.5.1 Ionized impurity scattering

6.5.2 Resonant backscattering

6.5.3 Remote Coulomb scattering
6.5.4 Alloy scattering 194
6.5.5 Surface scattering 195
6.5.6 Surface roughness 195
6.5.7 Electron–phonon scattering 196
6.5.8 Carrier–carrier scattering 198
6.6 Scattering lengths 200
 6.6.1 Scattering lengths and conductance regimes 200
 6.6.2 Multiple scattering in a single channel 201
6.7 Quasi-ballistic transport in nanowire transistors 206
6.8 Green’s function treatment of quantum transport 210
 6.8.1 Green’s function for Poisson’s equation 210
 6.8.2 Green’s function for the Schrödinger equation 211
 6.8.3 Application of Green’s function to transport in nanowires 213
6.9 Summary 217
Further reading 217
References 217

7 Nanowire transistor circuits 221
7.1 CMOS circuits 221
 7.1.1 CMOS logic 221
 7.1.2 SRAM cells 224
 7.1.3 Non-volatile memory devices 227
7.2 Analog and RF transistors 231
7.3 Crossbar nanowire circuits 234
7.4 Input/output protection devices 237
7.5 Chemical and biochemical sensors 238
7.6 Summary 242
References 242

Index 249
Preface

After the era of bulk planar CMOS, trigate field-effect transistors (FinFETs), and fully depleted silicon-on-insulator (SOI), the semiconductor industry is now moving into the era of nanowire transistors. This book gives a comprehensive overview of the unique properties of nanowire transistors. It covers the basic physics of one-dimensional semiconductors, the electrical properties of nanowire devices, their fabrication, and their application in nanoelectronic circuits.

The book is divided into seven chapters:

Chapter 1: Introduction serves as an introduction to the other chapters. The reader is reminded of the exponential increase in complexity of integrated circuit electronics over the last 50 years, better known as “Moore’s law.” Key to this increase has been the reduction in transistor size, which has occurred in a smooth, evolutionary fashion up to the first decade of the twenty-first century. Despite the introduction of technology boosters such as metal silicides, high-κ dielectric gate insulators, copper metallization, and strained channels, evolutionary scaling reached a brick wall called “short-channel effects” in the years 2010–2015. Short-channel effects are a fundamental device physics showstopper and prevent proper operation of classical bulk MOSFETs at gate lengths below 20 nm. The only solution to this problem is the adoption of new transistor architectures such as fully depleted silicon-on-insulator (FDSOI) devices [1,2] or trigate/FinFET devices [3]. Ballistic transport of channel carriers, which replaces classical drift-diffusion transport, is also introduced in this chapter.

Chapter 2: Multigate and nanowire transistors first explains the origin of the short-channel effects that preclude the use of bulk MOS transistors for gate lengths smaller than 20 nm. Based on Maxwell’s electrostatics equations, this chapter shows how the use of multigate and gate-all-around nanowire transistor architectures will allow one to push the limits of integration to gate lengths down to 5 nm and possibly beyond, provided the diameters of the nanowires are decreased accordingly. In semiconductor nanowire with diameters below approximately 10 nm (this value is temperature dependent and varies from one semiconductor material to another), the coherence length of electrons and holes can become comparable to or larger than the wire cross-sectional dimensions, and

3 J.P. Colinge (ed.), FinFETs and Other Multi-Gate Transistors, Springer (2007).
one-dimensional (1D) quantum confinement effects become observable. The formation of 1D energy subbands in narrow nanowire transistors gives rise to several effects such as an increase of energy band gap, oscillations of drain current when gate voltage is increased, and oscillations of gate capacitance with gate voltage (quantum capacitance effect). Some collateral effects can be predicted, such as a semimetal-to-semiconductor transition in thin semimetal nanowires, and a MOSFET to single-electron transistor transition in nanowire transistors with non-uniform channel properties.

Chapter 3: Synthesis and fabrication of semiconductor nanowires lists the different top-down and bottom-up techniques used to grow or etch and pattern nanowires. Vertical nanowires can be grown by the VLS (vapor–liquid–solid) technique or confined epitaxy, or formed using lithography and etching. Horizontal nanowires can also be grown using the VLS technique, by patterning an SOI layer, or by patterning heteroepitaxial layers, such as Si/SiGe/Si. Examples of nanowire transistor fabrication processes are given. Chapter 3 also describes methods for smoothing and thinning down silicon nanowires. The properties of heterojunction nanowires (core-shell nanowires and axial heterojunctions) are described. Finally, strain effects in nanowires are explored, including carrier mobility enhancement, Young’s modulus, and fracture strength.

Chapter 4: Quantum mechanics in one dimension provides a résumé of the physical description of one-dimensional systems in quantum mechanics. A brief summary of the principles of quantum mechanics is given. Particular emphasis is given to topics that are related to describing nanowire transistors including momentum eigenstates, energy dispersion, scattering states in one dimension, probability current density, and transmission at potential energy barriers. A description of materials and nanowires using the concept of electronic band structures is provided and calculation of simple band structures is provided using simple examples such as a linear chain of atoms. The relation of electronic band structures to the density of states and how the density of states can be used to characterize three-dimensional (3D) bulk, two-dimensional (2D) electron and hole gases, and (1D) nanowire material systems is presented.

Chapter 5: Nanowire electronic structure examines in greater detail the impact of fabricating nanometer scale devices with one or more critical dimension comparable to or smaller than the Fermi wavelength of the confined charge carriers. The crystal structure of semiconductors commonly used in electronics such as silicon, germanium, and gallium arsenide are introduced. Mention is made of two-dimensional materials such as graphene and the transition metal dichalcogenides, and carbon nanotubes are briefly discussed in relation to applications in electronics. Emphasis is placed on the experimental measurement and theoretical calculation of electronic structure. Quantum mechanical effects become apparent below 10 nm critical dimensions and below 6 nm confinement and surface effects begin to dominate silicon nanowire properties. A greater understanding of the dependence of orientation, surface chemistry, disorder, doping effects, and other factors arising for nanopatterned materials is needed to optimize the use of nanowires in transistor configurations. This chapter highlights how these factors can influence electronic structure and demonstrates their impact with examples for silicon nanowires with diameters below 10 nm.
Chapter 6: Charge transport in quasi-1D nanostructures investigates how charge carriers flow through nanowires. The operation of voltage sources as charge carrier reservoirs interacting with nanowires is introduced, and the relationship of voltage to current flow on the nanometer length scale leads to conductance quantization and the Landauer conductance formula. Charge carrier mobility is introduced and the length scales associated with scattering mechanisms leading to macroscopic mobilities are outlined. For charge transport on length scales shorter than the scattering lengths, ballistic and quasi-ballistic charge transport emerges. The chapter ends with a brief introduction to the Green’s function approach to charge transport in nanowires as it possesses the capability to describe charge transport from quantum ballistic to classical drift and diffusion regimes.

Chapter 7: Nanowire transistor circuits describes the potential and performances of nanowire transistors in logic, analog, and RF circuit applications. This includes an in-depth analysis of SRAM and flash memory cells. New types of circuit architectures are enabled by the use of nanowire devices, such as crossbar circuits and “nanoscale application specific integrated circuits” (NASICs). The large surface area-to-volume ratio of nanowires makes them ideal for sensing minute amounts of chemicals and biochemicals. Nanowire transistors have proven to be efficient sensing devices, capable of detecting chemicals in concentrations as low as a few tens of attomoles.