INDEX

2.5D sketch, 50
3D sketch, 50
abduction, 486
absolute judgment, 20, 486
access consciousness, 464, 467
action potential, 95, 325, 486
activation space, 270
ACT-R/PM, 304-12, 484-5
affirming the consequent, 100-2
agent architecture, 279-85, 311
agent, 280
goal-based agent, 282
learning agent, 284
simple reflex agent, 281
algorithm, 13-14, 19, 122-9, 149, 486, 490,
see also
Turing machine
Allen, 431-5, see also
subsumption architecture
amnesia, 486,
see also
memory
anterograde, 119, 486
retrograde, 119, 493
amygdala, 391
anatomical connectivity, 211, 324, 349, 483,
486-7, see also
functional connectivity
connectivity matrix, 321
principle of segregation, 319
tract tracing, 321
wiring diagram, 321
A-not-B error, 414-19, see also
object
permanence
artificial neural networks, see
connectionist (neural) networks
attention, 21-3
Broadbent's model, 21-3, 25, 330
covert, 338, 487
early selection, 331, 488
global workspace, 471
late selection, 331, 490
locus of selection, 331-6, 349
selective, 337, 339-43, 349, 493
attractor, 410, 486, see also
dynamical systems
autism, 360-2, 364-6
Baars, R., 469
backpropagation, 74, 229-31, 486,
see also
connectionist (neural) networks
Baddeley, A., 119
Baillargeon, R., 255-61
balance beam problem, 266-9, see also
folk physics (infants)
Baron-Cohen, S., 354, 361-72
behavior-based architectures, 435-8, 486,
see also
situated cognition
behaviorism, 6-13, 486
binding problem, 335, 486
biorobotics, 424-31, 486, see also
situated cognition
bits/bytes, 43, 486
blindsight, 455, 457
Block, N., 464-5, 467
BOLD, 105-9, 343-4, 486
Boolean function, 216-20, 487
BRAIN initiative, 483
bridging principles (laws), 115
Broadbent, D., 19-24, 330, 471
Brodmann areas, 62, 319-20, 487
Brooks, R., 404, 423, 430-5, 440
buffer, 306-11
Busemeyer, J., 414-19
causation by content, 153-5,
see also
intentional realism
central executive, 119
cerebral cortex, 62, 487
Chalmers, D., 413
channel capacity, 21, 487, see also
information processing
chatterbot, 32-40, 487
cheater detection module, 296, 487,
see also
massive modularity; Wason selection task
Chilensis; R., 186
Chinese room, 160-8, 487, see also
physical symbol system; symbol grounding problem
robot reply, 164-5, 493
systems reply, 163-4, 494
vs. Turing test, 162-3
Chomsky, N., 16-18, 23, 30-1, 241
chunking, 21, 307, 487, see also
information processing
Churchland, P. S., 90
Church-Turing thesis, 16, 487, see also
Turing machine
Index

cocktail party phenomenon, 22-3, 330, see also attention
cognitive maps, 10-11
Colby, C., 340
computation, 13-14, 487, see also biorobotics; connectionist (neural) networks; physical symbol system; Turing machine
digital computer, 43-6
vs. dynamical systems, 419-20
computational governor, 408-11, see also dynamical systems
computational neuroscience, 212, 487
conditioning, 6-7, see also behaviorism
classical, 7, 487
operant, 491
connectionist (neural) networks, 60, 72-6, 82-3, 446, 487
activation functions, 214-15, 486
activation space, 270-1
AND-gate, 219
backpropagation, 74, 229-31, 486
biological plausibility, 230-2, 236
competitive networks, 231, 487
feedforward networks, 227, 488
folk physics, 261-8
graceful degradation, 72
hidden layer, 227, 489
key features, 232-8, 236
language learning, 245-54
levels of explanation, 269-72
linear separability, 223-6
mine/rock detector, 74-6
multilayer network, 225-6, 232-3, 235, 491
neurally inspired, 215-20, 235
perceptron convergence, 223-7
recurrent network, 264-6, 493
single-layer network, 215-23, 235
units, 213, 489
vs. physical symbol systems, 269-73
connectivity matrix, 321-2, see also anatomical connectivity
Connell, J., 435
consciousness
function of, 457-69, 470-5
information processing, 449-63
centrality, 65, 487
convergence rule, 492, see also perceptron
Cooper, L., 40-8
coopted system, 487
Corbetta, M., 341
corpus callosum, 67, 487
Cosmides, L., 103, 295
counterfactual, 380, 487
Cox, J., 102
cross-lesion disconnection experiments, 66, 488
cross-talk, 488
Cummins, R., 117
decision trees, 173-5, 488, see also expert systems
default mode, 483
Dehaene, S., 469-72
delayed saccade task, 340
Dennett, D., 128-9
dichotic listening task, 22-3, 488
dishabitation, 255-61, 488, see also folk physics (infants)
domain generality/specificity, 126-7, 132, 286, 471, 488, see also module (Fodorean)dorsal pathway, 66-70, 324, 459-60, 462, 488, see also visual processing
double dissociation, 118, 450, 488
down syndrome, 362-8
drawbridge experiment, 255-62
Duncan, J., 331
dynamical systems, 404-20, 441, 488, see also information processing
attractor dynamics, 419
computational vs. Watt governor, 407-12
continual dynamics, 417
dynamic field model, 416
object permanence, 414-19
state space, 405
vs. computational models, 419-20
vs. representations, 406-12
walking, 412-14
Ebbinghaus illusion, 461
ELG (electroencephalography), 327-8, 332-6, 488
effective connectivity, 345-8, 488
ELIZA, 31-2
embraced cognition, see situated cognition
emotion detector system (TED), 370, 392, see also mindreading
empathy system (TESS), 372-3
see also mindreading
entropy, 178-81, 488, see also machine learning
ERP (event-related potential), 325, 332-6, 488
evolutionarily stable strategy, 103-5
expert systems, 172, 205, 488
eye-direction detector (EDD), see mindreading
factual states, 362
faculty psychology, 285-8, see also module (Fodorean)
false belief task, 362-9, 374-8, 397, 488, see also mindreading
neuroimaging, 386-90
false photograph task, 389, see also false belief task
Fellemann, D., 321
fixed neural architectures, 489
fMRI (functional magnetic resonance imaging), 108-9, 329-30, see also functional neuroimaging
Fodor, J., 151–9, 243–5, 285–8, 303
Fodor–Pylyshyn dilemma, 273
folk physics (infants) 256–68, 273, 489
balance beam problem, 266–8
connectionist networks, 261–8
dishabituation, 254–61
drawbridge experiment, 255–62
object permanence, 256–60, 265–8, 414–19
principles, 255–60
formal property, 154, 489
foxes and chickens problem, 148–9,
see also General Problem Solver (GPS)
frame problem, 128, 489
Frege, G., 217, 242–3
Frith, U., 361–8
functional connectivity, 350, 489,
see also anatomical connectivity
functional networks, 317
principle of integration, 325
vs. effective connectivity, 345–8
functional decomposition, 117, 489,
see also levels of explanation
functional networks, 317
functional neuroimaging, 59, 77, 83, 329–30, 489
BOLD, 105–9
connectivity, 345–8
default mode, 483
fMRI, see fMRI
limitations, 343–8
local field potential, 109
PET, 77–81, 338, 492
spiking rate, 108
functional systems, 60–2, 70, 489
Funt, B., 172, 189
Gall, F., 285
Gardner, H., 89
General Problem Solver (GPS), 142–51,
see also physical symbol system
global workspace theory, 469, 470–4
Goel, V., 387
GOFAI (good old-fashioned artificial
intelligence), 172, 489, see also physical
symbol system; situated cognition
Goldman, A., 382–3
Gorman, P., 74–6
graceful degradation, 72, 489,
see also connectionist (neural) networks
Griggs, R., 102
gyrus, 316
H.M., 118
halting problem, 13–14, 16–18, 489
Hamilton, W., 298
hard problem of consciousness, 466
Harris, P., 382–3
Heal, J., 384
Hebb, D., 220
Hebbian learning, 220, 489
heuristic search, 148–9, 175–88, 190, 205, 489
Human Connectome Project, 482,
see also anatomical connectivity
Hutchin, E., 96
ID3, 176–88, 205, see also machine learning
information gain, 178–81, see also machine learning
information processing, 3, 23, 130–1, 152,
see also computation; connectionist
(neural) networks; dynamical systems;
physical symbol system; situated
cognition
bottleneck, 21
channel capacity, 21
chunking, 21
eyearly models, 20–5
Fodor–Pylyshyn dilemma, 270–3
information channel, 19–20, 489
information flow, 25
information theory, 19–23
neuronal populations, 93–5
subconscious, 12–13
vs. storage, 233–4
without consciousness, 449–50
informational encapsulation, 127, 287, 471, 489,
see also module (Fodorean)
insula, 391
integration challenge, 85, 95–8, 113, 135, 490,
see also mental architecture
dimensional representation, 97
intentional realism, 153, 490, see also language
of thought
intentionality, 166–7, 490
intentionality detector (ID), 369–72,
see also mindreading
interocular suppression, 462
Jackson, F., 448
James, W., 254–68
Jenkins, E., 267
joint visual attention, 371–3, 490,
see also mindreading
shared attention mechanism (SAM), 372–3
K.F., 117
Kanwisher, N., 387–90
Kelly, W., 394
Kieras, D., 308
kin selection, 300
Knowledge Argument, 448–9
knowledge (declarative vs. procedural), 307–11
Koch, C., 108
Fodor–Pylyshyn dilemma, 273
folk physics (infants) 256–68, 273, 489
balance beam ... selection, 300
Knowledge Argument, 448–9
knowledge (declarative vs. procedural),
307–11
Koch, C., 108
<table>
<thead>
<tr>
<th>Index</th>
<th>517</th>
</tr>
</thead>
</table>

Kosslyn, S., 45
Kuczaj, S., 247

landmark task, 68
language learning, 243–6
connectionist networks, 249–54
language of thought, 243–5
past tense acquisition, 246–9, 273

language of thought (LOT), 151–9, 168, 292–4
argument for, 155–6, 159
learning, 243–5
LOT hypothesis, 151–9, 490
modularity, 292–4
vs. formal language, 155–6

language processing, 273, see also ELIZA,
SHRDLU
linguistic understanding, 241–3
word processing, 76–81

Lashley, K., 12–13, 197
lateral intraparietal area (LIP), 340

laws vs. effects, 117
learning, see conditioning
latent learning, 6–13
place vs. response learning, 10–11, 24
Leibniz’s Mill, 447

Leslie, A., 354, 361–9
levels of explanation, 46–8, see also functional
decomposition; functional systems;
integration challenge; Marr’s tri-level hypothesis; reduction (intertheoretic)
algorithmic level, 47, 269–72
bottom-up explanation, 60
computational level, 47–50, 269–72
implementation level, 47, 269–72
neuroscience, 91–5
psychology, 90–3
top-down explanation, 48–53, 59
lexical access, 78, 490, see also language processing
lexical decision task, 453
limbic system, 391
linear separability, 223–7, 490,
see also connectionist (neural) networks

linguistic structure, 16
deep (phrase) structure, 17, 488
deep vs. surface structure, 17
surface structure, 494
local algorithm, 490
local field potential (LFP) 109, 490
locus of selection problem, 330–6, 349, 490,
see also attention
logical consequence, 156, 490
logical deducibility, 156, 490
Logothetis, N., 108
Luria, A., 317–18

machine learning, 175–7, 490
algorithms, 175–88, 490

entropy, 178–81
ID3, 172, 176–88
information gain, 178–81

Macrae, N., 395
mammalian brain, 61–2
mapping function, 216–20, see also Boolean
function
Marchman, V., 252
Marcus, G., 253
Marr, D., 29, 46–53, 59, 70, 425
Marr’s tri-level hypothesis, 46–70, 122–9, 135,
269–72, see also integration challenge;
levels of explanation
frame problem, 128
problem of non-modular systems, 127

massive modularity, 277, 294–304, 311, 312, 491
argument from error, 298
argument from learning, 298
arguments against, 304
Darwinian modules, 296
module vs. body of knowledge, 301
prosopagnosia, 297

Wason selection task, 295
Mataric ´, M., 404–19, 436, 438–40
McClelland, J., 72
McCullough, W., 220, 225

Meltzoff, A., 260
MEG (magnetoencephalography), 327, 491

Marr
Marr, D., 29, 46

Marcus, G., 253
Marchman, V., 252
mammalian brain, 61

levels of explanation, 46–8, see also functional
decomposition; functional systems;
integration challenge; Marr’s tri-level hypothesis; reduction (intertheoretic)
algorithmic level, 47, 269–72
bottom-up explanation, 60
computational level, 47–50, 269–72
implementation level, 47, 269–72
neuroscience, 91–5
psychology, 90–3
top-down explanation, 48–53, 59
lexical access, 78, 490, see also language processing
lexical decision task, 453
limbic system, 391
linear separability, 223–7, 490,
see also connectionist (neural) networks

linguistic structure, 16
deep (phrase) structure, 17, 488
deep vs. surface structure, 17
surface structure, 494
local algorithm, 490
local field potential (LFP) 109, 490
locus of selection problem, 330–6, 349, 490,
see also attention
logical consequence, 156, 490
logical deducibility, 156, 490
Logothetis, N., 108
Luria, A., 317–18

machine learning, 175–7, 490
algorithms, 175–88, 490

entropy, 178–81
ID3, 172, 176–88
information gain, 178–81

Macrae, N., 395
mammalian brain, 61–2
mapping function, 216–20, see also Boolean
function
Marchman, V., 252
Marcus, G., 253
Marr, D., 29, 46–53, 59, 70, 425
Marr’s tri-level hypothesis, 46–70, 122–9, 135,
269–72, see also integration challenge;
levels of explanation
frame problem, 128
problem of non-modular systems, 127

massive modularity, 277, 294–304, 311, 312, 491
argument from error, 298
argument from learning, 298
arguments against, 304
Darwinian modules, 296
module vs. body of knowledge, 301
prosopagnosia, 297

Wason selection task, 295
Mataric ´, M., 404–19, 436, 438–40
McClelland, J., 72–4, 249–54
McCullough, W., 220, 225
means-end analysis, 148–9

MEG (magnetoencephalography), 327, 491
Meltzoff, A., 260

memory, see also amnesia
distinct processes, 118
episodic vs. semantic, 121
implicit vs. explicit, 119
short- vs. long-term, 117
working memory, 340

working memory hypothesis, 119

mental architecture, 114, 129–36, 277, 491,
see also ACT-R/FM; integration challenge;
massive modularity; module (Fodorean)
agent architecture, 279–85
modular vs. subsumption architectures, 435–7
non-modular, see non-modular architectures
three questions, 130–2, 279
vs. cognitive architecture, 132
mental imagery, 29–30, 39–48, 186

Metzler, J., 40–6
Meyer, D., 308
Michalski, R., 186
micro-world, 491

Miller, G., 19–22, 88–90
Milner, B., 118, 458–60
Milward, T., 232
mindreading, 277, 333–96, see also simulation
theory; theory of mind mechanism (TOMM)
mindreading (cont.)
autism, 361
empathy, 372–4
evidence from neuroscience, 385–96
false belief task, 362–9
high-level, 394–5
ID/EDD/TED, 369–72, 396–7
joint attention, 371–2
low-level, 385–94
neuroscientific evidence, 397
physical symbol system, 358
pretense, 356, 359–60, 366
representational mind, 376–81
mirror neurons, 325, 392–4, 491,
see also mindreading; simulation
theory
Mishkin, M., 59, 63–70
module (Fodorean) 128, 285–8, 311–12, 471, 491,
see also massive modularity; mental
architecture
central systems, 290–1
isotropic systems, 290
language of thought, 292–4
modularity thesis, 132
Quinean systems, 290–3
semantic priming, 453
vs. Darwinian, 296, 301
modus tollens, 99, 100
morphological computation, 491,
see also biorobotics
multiple realizability, 61–2, 491
Munakata, Y., 261–8
MYCIN, 172–3
Nerd Herd, 438–40, see also behavior-based
architectures
neuroeconomics, 485
neuroprosthetics, 484
neurotransmitters, 491
Newell, A., 141–51
non-modular architectures
behavior-based, 435–8
SSS, 435
subsumption, 430–5
object permanence, 254–60, 263–5, 273, 414–19,
491, see also dynamical systems; folk
physics (infants)
over-regularization errors, 247, 491,
see also language learning
paired-image subtraction paradigm, 491
Papert, S., 225
parallel vs. serial processing, 72–6, 492,
see also connectionist (neural) networks
word processing, 78
perceptron, 220, 492, see also connectionist
(neural) networks
Perner, J., 354–60, 377–81
PET (positron emission tomography), 329–30,
337, 492, see also functional neuroimaging
Petersen, S., 77–81, 347
phenomenal consciousness, 464, 467
phonological loop, 119
phonotaxis, 426, see also biorobotics
phrase structure grammar, 492
physical symbol system, 142–53, 446, 492,
see also computation
argument against, see Chinese room
digital computer, 143
ID3, 176–88
language of thought, 154
levels of explanation, 269–72
machine learning, 175–7
mindreading, 358
physical symbol system hypothesis, 133,
141–53, 168, 305, 492
SHAKEY, see SHAKEY
SHRDLU, see SHRDLU
symbol grounding problem, 165–8
Turing machine, 143
vs. connectionist networks, 269–72
WHISPER, see WHISPER
Piaget, J., 354–60
physicalism, 449
Pinker, S., 248
Pitts, W., 220–5
PLANEX, 204, see also SHAKEY
plans, 12–13
Plunkett, K., 252–3
Polizzi, P., 375–6
poverty of stimulus, 301, 492
pragmatics, 38, 492
predicate calculus, 155–6, 196, 492
prestriate cortex, 492
pretense, 354–60
Leslie’s model, 359
mindreading, 356, 360, 366
quarantined representations, 356
various forms, 355
primal sketch, 50
primary visual cortex, 335, 492
Prince, A., 248
priming, 450–3
congruence, 451
masked, 463
semantic, 452–3, 457
principle of cohesion, 257–60, 492, see also folk
physics (infants)
principle of contact, 258, 492, see also folk
physics (infants)
principle of continuity, 259, see also folk
physics (infants)
principle of integration, 325, 349, 490
principle of segregation, 319, 348, 493
principle of solidity, 259, 492, see also folk
physics (infants)
prisoner’s dilemma, 103-5, 296
production rules, 308
propositional attitude, 152, 354-60, 376-81, 493
propositional calculus, 493
prosopagnosia, 297
psychophysics, 22-3, 117, 493
Pylyshyn, Z., 270-1
Quinlan, R., 172, 176-88
reasoning, 99-100
c conditional reasoning, 100-2
c counterfactual thinking, 380
logic and probability, 99-100
physical reasoning, 254-68
Wason selection task, 100-2, 295
recursive definition, 493
reduction (intertheoretic) 114-22, 135, 493
Rees, G., 108
reinforcement, 7, see also conditioning
replication see simulation theory
representation, 10-11, 24
digital vs. imagistic, 43-6
distributed, 232-3, 488
metarepresentation, 356, 378-9, 491
primary, 354
quarantined, 356
representational primitives, 50
representational mind, 376-81,
see also mindreading
reverse engineering, 46-8, 60-2, 407-12
Rizzolatti, G., 325, 392
Rosenblatt, F., 221
Rosenbloom, J., 306
Rumelhart, D., 72-4, 249-54
saccadic eye movements, 338, 493
Saxe, R., 387-90
search-space, 145
Searle, J., 151, 160-7
Sejnowski, T., 7-4-6
selection processor, 493
selective attention, 337, 339-43,
see also attention
semantics
semantic analysis, 34, 35
semantic property, 154-5, 493
vs. syntax, 155-6
SHAKEY, 172, 196-206, 281, 421
Shallice, T., 118
Shannon, C., 19-23
shared attention mechanism (SAM), 373,
see also joint visual attention
Shepard, R., 40-6
SHRDLU, 29, 31-40, 171, 421-3
Siegler, R., 266
Simon, H., 142-53
simulation theory, 354-60, 381-4, 397,
see also mindreading
neuroscientific evidence, 395
radical, 384, 493
standard, 382-3, 394, 493
single-cell recording, 106, 326, 336
situational cognition, 404-41, 493,
see also information processing
biorobotics, 424-30
vs. GOFAI, 421
sketchpad, 121
Sloan hexagon, 88, see also integration
challenge
Smith, L., 413-19
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatial resolution, 494
Spelke, E., 257
spatial resolution, 494
Soar (state operator and result), 306
spatia
top-down vs. bottom-up, see also levels of explanation
TOTO, 435–8, see also behavior-based architectures
Townsend, T., 414
transformational grammar, 17-18, 494
traveling salesman problem, 146-7
truth condition, 244, 494
truth rule, 494
truth table, 218
Turing, A., 13-16, 162-3
Turing machine, 14-15, 24, 150, 494, see also computation; physical symbol system
Turing test, 162-3
Ungerleider, L., 59, 63-70, 82-3, 459
unilateral spatial neglect, 68, 337, 453-4, 457, 494
unity of science, 114, see also integration challenge
Van Essen, D., 321, 345
Van Gelder, T., 406-12, 419-20
ventral pathway, 66-70, 324, 459-60, 494, see also visual processing
ventral stream, 462
visual form agnosia, 460
visual processing
Marr's model, 47-53, 98
two systems hypothesis, 63-70, 82-3, 458
voxel, 344
walking, 412-14
WANDA, 427-8, see also biorobotics
Warrington, E., 48-53, 118
Wason selection task, 101-2, 295, 494, see also reasoning
Watt, J., 407-11
Watt governor, 408-11, see also dynamical systems
Webb, B., 426
Weizenbaum, J., 31-2
well-formed formula, 145, 494
Werbos, P., 227
“what” system, see ventral pathway
“where” system, see dorsal pathway
WHISPER, 189-95, 205, 266-8, see also physical symbol system
Wickelfeatures, 249-54
Wimmer, H., 362-8
Winograd, T., 29, 33-40, 421-3
Yokoi, H., 427
zero-crossings, 53
zombie twin, 468