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1
Introduction

OPTIMIZATION IS A TECHNOLOGY that can be used to devise ef-
fective decisions or predictions in a variety of contexts, ranging from
production planning to engineering design and finance, to mention
just a few. In simplified terms, the process for reaching the decision
starts with a phase of construction of a suitable mathematical model
for a concrete problem, followed by a phase where the model is solved
by means of suitable numerical algorithms. An optimization model
typically requires the specification of a quantitative objective criterion
of goodness for our decision, which we wish to maximize (or, alterna-
tively, a criterion of cost, which we wish to minimize), as well as the
specification of constraints, representing the physical limits of our de-
cision actions, budgets on resources, design requirements that need
be met, etc. An optimal design is one which gives the best possible
objective value, while satisfying all problem constraints.

In this chapter, we provide an overview of the main concepts and
building blocks of an optimization problem, along with a brief his-
torical perspective of the field. Many concepts in this chapter are
introduced without formal definition; more rigorous formalizations
are provided in the subsequent chapters.

1.1 Motivating examples

We next describe a few simple but practical examples where opti-
mization problems arise naturally. Many other more sophisticated
examples and applications will be discussed throughout the book.

1.1.1  Oil production management

An oil refinery produces two products: jet fuel and gasoline. The
profit for the refinery is $0.10 per barrel for jet fuel and $0.20 per
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2 OPTIMIZATION MODELS

barrel for gasoline. Only 10,000 barrels of crude oil are available for
processing. In addition, the following conditions must be met.

1. The refinery has a government contract to produce at least 1,000
barrels of jet fuel, and a private contract to produce at least 2,000
barrels of gasoline.

2. Both products are shipped in trucks, and the delivery capacity of
the truck fleet is 180,000 barrel-miles.

3. The jet fuel is delivered to an airfield 10 miles from the refinery,
while the gasoline is transported 30 miles to the distributor.

How much of each product should be produced for maximum profit?

Let us formalize the problem mathematically. We let x1, x, repre-
sent, respectively, the quantity of jet fuel and the quantity of gasoline
produced, in barrels. Then, the profit for the refinery is described by
function go(x1, x2) = 0.1x7 + 0.2x,. Clearly, the refinery interest is to
maximize its profit gg. However, constraints need to be met, which
are expressed as

x1+x < 10,000 (limit on available crude barrels)
x1 > 1,000 (minimum jet fuel)
xp > 2,000 (minimum gasoline)

10x; +30xp < 180,000 (fleet capacity).

Therefore, this production problem can be formulated mathematically
as the problem of finding x1,x; such that go(x1,x) is maximized,
subject to the above constraints.

1.1.2  Prediction of technology progress

Table 1.1 reports the number N of transistors in 13 microprocessors
as a function of the year of their introduction.

If one observes a plot of the logarithm of N; versus the year y; (Fig-
ure 1.1), one sees an approximately linear trend. Given these data, we
want to determine the “best” line that approximates the data. Such
a line quantifies the trend of technology progress, and may be used
to estimate the number of transistors in a microchip in the future. To
model this problem mathematically, we let the approximating line be
described by the equation

z=x1y + x, (1.1)

where y is the year, z represents the logarithm of N, and xq,x; are
the unknown parameters of the line (x; is the slope, and x; is the

year: y; | no. transistors: N;
1971 | 2250
1972 | 2500
1974 | 5000
1978 | 29000
1982 | 120000
1985 | 275000
1989 | 1180000
1993 | 3100000
1997 | 7500000
1999 | 24000000
2000 | 42000000
2002 | 220000000
2003 | 410000000

Table 1.1 Number of transistors in a
microprocessor at different years.
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INTRODUCTION 3

intercept of the line with the vertical axis). Next, we need to agree on
a criterion for measuring the level of misfit between the approximat-
ing line and the data. A commonly employed criterion is one which
measures the sum of squared deviations of the observed data from
the line. That is, at a given year y;, Eq. (1.1) predicts xjy; + x; transis-
tors, while the observed number of transistors is z; = log N;, hence

)

the squared error at year y; is (x1y; + X — z;)?, and the accumulated

N (number of transistors
°

error over the 13 observed years is

13 °
2 10*
f()(xl,x2) = Z(qui-i-xZ—Zi) . K
i=1 10° °
1970 1975 1980 1985 1990 1995 200?/ ()‘3‘01(35
The best approximating line is thus obtained by finding the values of Figure 1.1 Semi-logarithmic plot of

the number of transistors in a micro-

parameters x1, xp that minimize the function f. :
processor at different years.

1.1.3 An aggregator-based power distribution model

In the electricity market, an aggregator is a marketer or public agency
that combines the loads of multiple end-use customers in facilitat-
ing the sale and purchase of electric energy, transmission, and other
services on behalf of these customers. In simplified terms, the ag-
gregator buys wholesale ¢ units of power (say, Megawatt) from large
power distribution utilities, and resells this power to a group of n
business or industrial customers. The i-th customer, i = 1,...,n,
communicates to the aggregator its ideal level of power supply, say
c; Megawatt. Also, the customer dislikes to receive more power than
its ideal level (since the excess power has to be paid for), as well
as it dislikes to receive less power that its ideal level (since then the
customer’s business may be jeopardized). Hence, the customer com-
municates to the aggregator its own model of dissatisfaction, which
we assume to be of the following form

di(xi) = zxi(xl-—cl-)z, i=1,...,n,

where x; is the power allotted by the aggregator to the i-th customer,
and a; > 0 is a given, customer-specific, parameter. The aggregator
problem is then to find the power allocations x;, i = 1,...,n, so as
to minimize the average customer dissatisfaction, while guaranteeing
that the whole power c is sold, and that no single customer incurs a

level of dissatisfaction greater than a contract level d.
The aggregator problem is thus to minimize the average level of

customer dissatisfaction

1 1& 2
folxi, oo o) = Y di(x;) = " Y ai(xi—ci)?,

i=1 i=1
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4 OPTIMIZATION MODELS

while satisfying the following constraints:

, (all aggregator power must be sold)
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, (supplied power cannot be negative)
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a;(x; —cp) ..,n, (dissatisfaction cannot exceed d).

1.1.4 An investment problem

An investment fund wants to invest (all or in part) a total capital of
c dollars among 7 investment opportunities. The cost for the i-th
investment is w; dollars, and the investor expects a profit p; from
this investment. Further, at most b; items of cost w; and profit p;
are available on the market (b; < c¢/w;). The fund manager wants
to know how many items of each type to buy in order to maximize
his/her expected profit.

This problem can be modeled by introducing decision variables
xi, i = 1,...,n, representing the (integer) number of units of each
investment type to be bought. The expected profit is then expressed
by the function

n
folx1,...,x0) = Zpixi.
i=1
The constraints are instead
n
Z w;x; < ¢, (limit on capital to be invested)
i=1
x;€{0,1,...,b;}, i=1,...,n (limiton availability of items).

The investor goal is thus to determine xy,...,x, so as to maximize
the profit fp while satisfying the above constraints. The described
problem is known in the literature as the knapsack problem.

Remark 1.1 A warning on limits of optimization models. Many, if not all,
real-world decision problems and engineering design problems can, in
principle, be expressed mathematically in the form of an optimization
problem. However, we warn the reader that having a problem expressed
as an optimization model does not necessarily mean that the problem can
then be solved in practice. The problem described in Section 1.1.4, for in-
stance, belongs to a category of problems that are “hard” to solve, while
the examples described in the previous sections are “tractable,” that is,
easy to solve numerically. We discuss these issues in more detail in Sec-
tion 1.2.4. Discerning between hard and tractable problem formulations
is one of the key abilities that we strive to teach in this book.
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1.2 Optimization problems

1.2.1  Definition

A standard form of optimization. We shall mainly deal with optimiza-
tion problems® that can be written in the following standard form:

p* =min  fo(x) (1.2)

subject to:  fi(x) <0, i=1,...,m,
where

e vector? x € R" is the decision variable;
* fo:R" = R is the objective function,? or cost;
e fi:R" - R,i=1,...,m, represent the constraints;

* p*is the optimal value.

In the above, the term “subject to” is sometimes replaced with the

"

shorthand “s.t.:,” or simply by colon notation “:”.

Example 1.1 (An optimization problem in two variables) Consider the prob-
lem

min 0.9x2 — 0.4x1xp + 0.6x3 — 6.4x; —0.8xy: —1<x <2, 0<x <3.
The problem can be put in the standard form (1.2), where:

e the decision variable is x = (x1,x;) € R?;

e the objective function f : R> — R, takes values
fo(x) = 0.9x% — 0.4x;x) — 0.6x3 — 6.4x1 — 0.8x;
e the constraint functions f; : R” — R, i = 1,2, 3,4 take values

f(x)=—x1 =1, fo(x) = x1 =2, f3(x) = —x2, fa(x) = x2 — 3.

Problems with equality constraints. Sometimes the problem may present
explicit equality constraints, along with inequality ones, that is

*

p* =min  fo(x)
st: fi(x) <0, i=1,...,m,
hi(x) =0, i=1,...,p,
where the ks are given functions. Formally, however, we may reduce
the above problem to a standard form with inequality constraints

only, by representing each equality constraint via a pair of inequal-
ities. That is, we represent h;(x) = 0 as h;(x) < 0 and h;(x) > 0.

INTRODUCTION 5

*Often an optimization problem is
referred to as a “mathematical pro-
gram.” The term “programming” (or
“program”) does not refer to a com-
puter code, and is used mainly for
historical reasons.

2 A vector x of dimension n is sim-
ply a collection of real numbers
X1,X2,...,%;,. We denote by R" the
space of all possible vectors of dimen-
sion n.

3 A function f describes an operation
that takes a vector x € R" as an in-
put, and assigns a real number, de-
noted f(x), as a corresponding out-
put value. The notation f : R” — R
allows us to define the input space
precisely.
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6 OPTIMIZATION MODELS

Problems with set constraints. Sometimes, the constraints of the prob-
lem are described abstractly via a set-membership condition of the
form x € X, for some subset X of R". The corresponding notation is

p* =min fo(x),

xeX

or, equivalently,

p* =min fo(x)

st. xeX.

Problems in maximization form. Some optimization problems come in
the form of maximization (instead of minimization) of an objective
function, i.e.,

p* = max go(x). (1.3)
xeX

Such problems, however, can be readily recast in standard minimiza-
tion form by observing that, for any gy, it holds that

max go(x) = —min —go(x).

Therefore, problem (1.3) in maximization form can be reformulated
as one in minimization form as

—p" =min fo(x),

where fy = —go.

Feasible set.  The feasible set* of problem (1.2) is defined as
X ={xeR"st: fi(x) <0, i=1,...,m}.

A point x is said to be feasible for problem (1.2) if it belongs to the
feasible set X, that is, if it satisfies the constraints. The feasible set
may be empty, if the constraints cannot be satisfied simultaneously.
In this case the problem is said to be infeasible. We take the conven-
tion that the optimal value is p* = 4o for infeasible minimization
problems, while p* = —oo for infeasible maximization problems.

1.2.2  What is a solution?

In an optimization problem, we are usually interested in computing
the optimal value p* of the objective function, possibly together with
a corresponding minimizer, which is a vector that achieves the opti-
mal value, and satisfies the constraints. We say that the problem is
attained if there is such a vector.>

4In the optimization problem of Ex-
ample 1.1, the feasible set is the “box”
in R?, described by -1 < x <2
0< xy < 3.

5In the optimization problem of Ex-
ample 1.1, the optimal value p* =
—10.2667 is attained by the optimal
solution x] = 2, x5 = 1.3333.
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INTRODUCTION 7

Feasibility problems. Sometimes an objective function is not provided.
This means that we are just interested in finding a feasible point, or
determining that the problem is infeasible. By convention, we set f
to be a constant in that case, to reflect the fact that we are indifferent
to the choice of a point x, as long as it is feasible. For problems in
the standard form (1.2), solving a feasibility problem is equivalent
to finding a point that solves the system of inequalities f;j(x) < 0,
i=1,...,m.

Optimal set. The optimal set, or set of solutions, of problem (1.2) is
defined as the set of feasible points for which the objective function
achieves the optimal value: ‘

Xopt = {x e R" s.t.x fo(x) =p*, fi(x) <0, i=1,...,m}. :
A standard notation for the optimal set is via the arg min notation:

Xopt = arg ;rg/{} fo(x).

A point x is said to be optimal if it belongs to the optimal set, see

Figure 1.2. A

Figure 1.2 A toy optimization prob-
When is the optimal set empty? ~Optimal points may not exist, and the lem, with lines showing the points
with constant value of the objective
function. The optimal set is the sin-
the problem is infeasible, i.e., X itself is empty (there is no point that gleton Xope = {x*}.

optimal set may be empty. This can be for two reasons. One is that

satisfies the constraints). Another, more subtle, situation arises when
X is nonempty, but the optimal value is only reached in the limit.
For example, the problem

Ko s —x

p" =min e

has no optimal points, since the optimal value p* = 0 is only reached
in the limit, for x — +o00. Another example arises when the con-
straints include strict inequalities, for example with the problem

p*= mxin xst: 0<x<1. (1.4)

In this case, p* = 0 but this optimal value is not attained by any x
that satisfies the constraints. Rigorously, the notation “inf” should be
used instead of “min” (or, “sup” instead of “max”) in situations when
one doesn’t know a priori if optimal points are attained. However, in
this book we do not dwell too much on such subtleties, and use the
min and max notations, unless the more rigorous use of inf and sup
is important in the specific context. For similar reasons, we only con-
sider problems with non-strict inequalities. Strict inequalities can be
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8 OPTIMIZATION MODELS

safely replaced by non-strict ones, whenever the objective and con-
straint functions are continuous. For example, replacing the strict
inequality by a non-strict one in (1.4) leads to a problem with the
same optimal value p* = 0, which is now attained at a well-defined
optimal solution x* = 0.

Sub-optimality. We say that a point x is e-suboptimal for problem (1.2)
if it is feasible, and satisfies

p* < folx) <p*+e

In other words, x is e-close to achieving the best value p*. Usually,
numerical algorithms are only able to compute suboptimal solutions,
and never reach true optimality.

1.2.3 Local vs. global optimal points

A point z is locally optimal for problem (1.2) if there exists a value
R > 0 such that z is optimal for problem

mxinfo(x) st fi(x) <0, i=1,...,m, |x;—z]| <R, i=1,...,n.

In other words, a local minimizer x minimizes fy, but only for nearby
points on the feasible set. The value of the objective function at that
point is not necessarily the (global) optimal value of the problem.

Locally optimal points might be of no practical interest to the user.

The term globally optimal (or optimal, for short) is used to distin-

guish points in the optimal set Xopt from local optima. The existence T e s

Figure 1.3 Local (gray) vs. global
(black) minima. The optimal set is
algorithms tend to be trapped in local minima, if these exist, thus the singleton Xopt = {0.5}. The point

of local optima is a challenge in general optimization, since most

failing to produce the desired global optimal solution. ¥ =2 is a local minimum.

1.2.4 Tractable vs. non-tractable problems

Not all optimization problems are created equal. Some problem
classes, such as finding a solution to a finite set of linear equalities
or inequalities, can be solved numerically in an efficient and reliable
way. On the contrary, for some other classes of problems, no reliable
efficient solution algorithm is known.

Without entering a discussion on the computational complexity of
optimization problems, we shall here refer to as “tractable” all those
optimization models for which a globally optimal solution can be
found numerically in a reliable way (i.e., always, in any problem
instance), with a computational effort that grows gracefully with the
size of the problem (informally, the size of the problem is measured
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INTRODUCTION 9

by the number of decision variables and/or constraints in the model).
Other problems are known to be “hard,” and yet for other problems
the computational complexity is unknown.

The examples presented in the previous sections all belong to
problem classes that are tractable, with the exception of the prob-
lem in Section 1.1.4. The focus of this book is on tractable models,
and a key message is that models that can be formulated in the form
of linear algebra problems, or in convex® form, are typically tractable. 6See Chapter 8.
Further, if a convex model has some special structure,” then solutions 7See Section 1.3, Chapter 9, and sub-
can typically be found using existing and very reliable numerical sequent chapters.
solvers, such as CVX, Yalmip, etc.

It is also important to remark that tractability is often not a prop-
erty of the problem itself, but a property of our formulation and
modeling of the problem. A problem that may seem hard under a
certain formulation may well become tractable if we put some more
effort and intelligence in the modeling phase. Just to make an exam-
ple, the raw data in Section 1.1.2 could not be fit by a simple linear
model. However, a logarithmic transformation in the data allowed a
good fit by a linear model.

One of the goals of this book is to provide the reader with some
glimpse into the “art” of manipulating problems so as to model them
in a tractable form. Clearly, this is not always possible: some prob-
lems are just hard, no matter how much effort we put in trying to
manipulate them. One example is the knapsack problem, of which the
investment problem described in Section 1.1.4 is an instance (actu-
ally, most optimization problems in which the variable is constrained
to be integer valued are computationally hard). However, even for
intrinsically hard problems, for which exact solutions may be unaf-
fordable, we may often find useful tractable models that provide us
with readily computable approximate, or relaxed, solutions.

1.2.5 Problem transformations

The optimization formalism in (1.2) is extremely flexible and allows
for many transformations, which may help to cast a given problem
in a tractable formulation. For example, the optimization problem

min \/(xl +1)24 (xp —2)2 st x>0
X
has the same optimal set as
min ((x; +1)% + (x2 —2)?) s.t: x; > 0.
X

The advantage here is that the objective is now differentiable. In
other situations, it may be useful to change variables. For example,
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10 OPTIMIZATION MODELS
the problem
max x1x§x3 st: x>0, i=1,2,3, xyxp <2, x%xg <1
X

can be equivalently written, after taking the log of the objective, in
terms of the new variables z; = logx;, i =1,2,3, as

max z1 +3zp +z3 s.t: z1 +2zp <log2, 2z;4+2z3 <0.
z

The advantage is that now the objective and constraint functions are
all linear. Problem transformations are treated in more detail in Sec-
tion 8.3.4.

1.3 Important classes of optimization problems

In this section, we give a brief overview of some standard optimiza-

tion models, which are then treated in detail in subsequents parts of
this book.

1.3.1 Least squares and linear equations

A linear least-squares problem is expressed in the form

2
m n
mxin Z <Z Al]x] — bl> ’ (15)
i=1 \j=1

where Ai]-, b;, 1 <i<m,1<j<mn,are given numbers, and x € R”
is the variable. Least-squares problems arise in many situations, for
example in statistical estimation problems such as linear regression.?

An important application of least squares arises when solving a
set of linear equations. Assume we want to find a vector x € R"” such

that

n
. 1Al-]-xj:bi, 1:1,,m

]

Such problems can be cast as least-squares problems of the form (1.5).
A solution to the corresponding set of equations is found if the op-
timal value of (1.5) is zero; otherwise, an optimal solution of (1.5)
provides an approximate solution to the system of linear equations.
We discuss least-squares problems and linear equations extensively
in Chapter 6.

8 The example in Section 1.1.2 is an il-
lustration of linear regression.
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