Index

Acer. See maple
adaptation, 147, 184
aerobiological networks, 184
allergenic plant management, 106, 185
definition, 184
planting policies, 185
aerobiological networks, 11, 106, 172, 183
Europe, 11
North America, 11
standardisation, 105, 185
technology transfer, 185
aerosols, 5
Africa, 11, 35, 40, 159, 167, 183
air pollution, 168
human health, 139
impact of climate change, 137
models, 138
pollen
allergenicity, 145
atmosphere interactions, 145, 180
host interactions, 142
release of allergens, 146
primary, 140
projections, 138
secondary, 140
air-conditioning, 124, 130, 138
United States of America, 124
Albania, 159
alder, 12, 13, 15, 83
allergenicity, 74, 75
fungus spores
carbon dioxide, 84
plants, 74
pollen, 76, 77, 79, 81, 180
carbon dioxide, 82
allergic conjunctivitis, 158
allergic dermatitis, 31, 85
allergic diseases, 1, 2, 157, 158, 181, 186
allergic rhinitis, 1, 31, 32, 158, 162, 168, 181
prevalence, 158
allergic sensitisation, 74, 115, 119, 142, 143, 144, 160, 161, 162, 163, 164, 168, 171
allergy epidemics, 172, 181
Alnus. See alder
Alternaria, 21, 84, 94, 102, 118, 120, 122, 163, 165
spore concentration
temperature, 21
temperature, 21
amaranth, 32
Amaranthus. See pigweed
Ambrosia. See ragweed
American Housing Survey, 127, 130
annual pollen index, 10, 13, 19
ants, 35, 40–41
temperature, 40
Apidae. See bees
Arabidopsis, 100
Arachis. See peanut
Arctic, 5
Argentina, 14, 33, 34
Artemisia. See mugwort
ash, 13, 30, 33, 38
Asia, 11, 35, 40, 159, 167
aspen, 39, 102
Asteraceae, 100
Asthma, 1, 115, 119, 121, 122, 140, 141, 142, 144, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 181
economic burden, 159
atopic dermatitis, 170, 181
Australia, 34, 35, 40, 94, 159, 160, 163, 166, 184
Austria, 20, 30, 31, 32, 38
Baltic States, 66
Bassia. See fireweed
beech, 30, 38, 96
bees, 34, 35–36, 181
climate, 35
Belarus, 40
Betula. See birch

birch, 12, 13, 14, 15, 16, 18, 19, 20, 22, 30, 33, 38, 39, 51, 54, 57, 65, 66, 75, 76, 78, 79, 81, 83, 95, 96, 101, 142, 145, 146, 171

pollen allergenicity
temperature, 79
pollen production
temperature, 20
Blattodea. See cockroach
Bloomia. See house dust mite
Brazil, 35, 114
brome, 32
Bromus. See brome, grass

Canada, 94, 98, 160, 162, 164, 166, 169
carbon dioxide, 74
Mauna Loa, 3
observed, 3
projected, 5
carelessweed, 32
Caribbean, 167
Carpinus. See hornbeam
cedar, 30, 38
Chenopodiaceae, 13, 16
Chenopodium. See goosefoot
children, 1, 33, 114, 115, 121, 122, 123, 140, 141, 144, 145, 158, 159, 161, 162, 163, 164, 165, 166, 169
Chile, 34
China, 31, 33, 35, 40, 125, 159, 167, 183
Cladosporium, 21, 84, 102, 120, 163
temperature, 21
climate change, 1, 3, 5
atmospheric circulation, 4, 6
atmospheric moisture, 5
climate extremes, 4, 6
impacts
allergens and allergic diseases, 180–181
direct, 1
human health, 1
indirect, 1
monsoon, 6
precipitation, 3, 5
projections, 5
temperature. See temperature
climate extremes, 2
climate system, 3
co-benefits, 147, 184
cockroach, 1, 114, 115, 118, 122, 125, 130, 141, 144, 145, 170, 181
allergic sensitisation, 115
home characteristics, 117
Colombia, 114
Corylus. See hazel
Cryptomeria japonica. See Japanese cedar
Cupressaceae. See cypress
cypress, 12, 13, 16, 103, 146, 161
Health Impacts of Airborne Allergen Information Network

hayfever. See allergic rhinitis
hazel, 12, 13, 14
Health Impacts of Airborne Allergen Information Network
heat waves, 4, 6, 14, 138
hemlock, 33
HALINE. See Health Impacts of Airborne Allergen Information Network
hop, 33
hornbeam, 12, 20
horns, 39
hospital
presentations, 140, 141, 162, 163, 164, 166, 167, 169
house dust mite, 1, 113, 118, 122, 124, 130, 142, 161, 170, 181
allergic sensitisation, 115
climate, 114
home characteristics, 117
humidifiers, 126
relative humidity, 113
temperature, 123
Hungary, 40, 52
Hurricane Katrina, 2, 105, 122, 123, 166
hurricanes, 4, 104, 120, 181
immunoglobulin E, 74, 75, 143, 144
India, 183
Indonesia, 159
insect sting allergy, 170, 181
Intergovernmental Panel on Climate Change, 1, 5, 52
International Study of Asthma and Allergies in Childhood, 75, 159, 186
IPCC. See Intergovernmental Panel on Climate Change
Ireland, 159
ISAAC. See International Study of Asthma and Allergies in Childhood
Italy, 31, 39, 97, 99, 125, 146, 161
Japan, 14, 17, 32, 168
Japanese cedar, 14, 17, 142, 168
Juglans. See walnut
juniper, 38
Juniperus. See juniper
knowledge gaps, 181
Korea, 33

The Lancet, 1, 186
Lantana, 39
Ligustrum. See privet
Lolium. See grass
maize, 97
maple, 33, 103, 161
masting, 15, 22
Mediterranean, 14, 32, 38, 39, 55, 159, 171
Mexico, 31, 32, 35, 169
mitigation, 5, 137, 184, 185
definition, 184
modelling
eco physiological, 35
pollen dispersion, 50, 69, 70
mould spores. See fungal spores
mouse, 114, 115, 118, 122, 125, 130, 144, 181
allergic sensitisation, 115
home characteristics, 117
mugwort, 12, 13, 14, 16, 54, 97
Mas. See mouse
National Allergy Bureau (USA), 98
National Health and Nutrition Examination Survey (USA), 186
Nature Climate Change, 2
Nerium. See oleander
The Netherlands, 13, 16, 97, 99
nettles, 15, 97
New Zealand, 34, 35, 40, 41, 159
NHANES. See National Health and Nutrition Examination Survey (USA)
niche
conservation of, 37
North America, 2, 14, 31, 32, 34, 40, 41, 98, 99, 159, 183
Northern Hemisphere, 3, 29, 54, 99, 183
Norway, 30, 66, 145
nutrients, 14
oak, 13, 15, 18, 30, 37, 38, 39, 96
flowering, 95
Olea. See olive
oleander, 38
olive, 15, 16, 20, 39, 51, 54, 57, 77, 79, 81, 161, 162
Ostrya, 38
ozone, 17, 64, 103, 137, 138, 139, 140, 141, 146, 147, 168, 169
health effects, 139
Pacific Decadal Oscillation, 32
Parietaria, 83, 161
particulate matter, 64, 139, 140, 143, 144, 145, 168, 169
health effects, 139
peanut, 85, 171
Penicillium, 21, 120, 163, 164, 168
Phleum pratense. See timothy grass
Picea. See spruce
pigweed, 39, 100
Pinaceae, 13
pine, 18
pollen production
carbon dioxide, 18
Pinus. See pine
Pistacia, 38
Plantago, 12, 162
<table>
<thead>
<tr>
<th>Page</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>192</td>
<td>Platanus, 12, 13</td>
</tr>
<tr>
<td></td>
<td>Poaceae. See grass</td>
</tr>
<tr>
<td></td>
<td>poison ivy, 85, 181</td>
</tr>
<tr>
<td></td>
<td>Poland, 33, 40, 97, 101</td>
</tr>
<tr>
<td></td>
<td>pollen, 1, 10, 142, 145, 181</td>
</tr>
<tr>
<td></td>
<td>asthma hospital, 162</td>
</tr>
<tr>
<td></td>
<td>release, 96, 97, 104</td>
</tr>
<tr>
<td></td>
<td>precipitation, 65</td>
</tr>
<tr>
<td></td>
<td>relative humidity, 59</td>
</tr>
<tr>
<td></td>
<td>resuspension, 51</td>
</tr>
<tr>
<td></td>
<td>scavenging, 51, 53</td>
</tr>
<tr>
<td></td>
<td>sedimentation, 51</td>
</tr>
<tr>
<td></td>
<td>transport, 14, 50, 65, 70, 180</td>
</tr>
<tr>
<td></td>
<td>precipitation, 53, 64</td>
</tr>
<tr>
<td></td>
<td>relative humidity, 61</td>
</tr>
<tr>
<td></td>
<td>wind speed, 55</td>
</tr>
<tr>
<td></td>
<td>vertical mixing, 51, 54</td>
</tr>
<tr>
<td></td>
<td>pollen concentrations, 180</td>
</tr>
<tr>
<td></td>
<td>near-plant wind speed, 69</td>
</tr>
<tr>
<td></td>
<td>observed, 12, 13</td>
</tr>
<tr>
<td></td>
<td>pollen seasonality, 94, 180</td>
</tr>
<tr>
<td></td>
<td>carbon dioxide, 99</td>
</tr>
<tr>
<td></td>
<td>carbon dioxide and temperature, 100</td>
</tr>
<tr>
<td></td>
<td>pollutants, 14</td>
</tr>
<tr>
<td></td>
<td>polycyclic aromatic hydrocarbons, 141, 142, 143, 144</td>
</tr>
<tr>
<td></td>
<td>Populus. See aspen</td>
</tr>
<tr>
<td></td>
<td>Portugal, 20, 79, 81</td>
</tr>
<tr>
<td></td>
<td>privet, 39</td>
</tr>
<tr>
<td></td>
<td>Proceedings of the National Academy of Sciences of the United States of America, 2</td>
</tr>
<tr>
<td></td>
<td>Prunus, 39</td>
</tr>
<tr>
<td></td>
<td>Puerto Rico, 114</td>
</tr>
<tr>
<td></td>
<td>Quercus. See oak</td>
</tr>
<tr>
<td></td>
<td>ragweed, 12, 13, 14, 15, 16, 17, 18, 22, 31, 33, 52, 54, 76, 81, 82, 83, 94, 98, 99, 100, 101, 103, 104, 106, 143, 145, 146, 161, 162, 163</td>
</tr>
<tr>
<td></td>
<td>pollen concentration, 2</td>
</tr>
<tr>
<td></td>
<td>carbon dioxide and temperature, 19</td>
</tr>
<tr>
<td></td>
<td>pollen diameter temperature, 19</td>
</tr>
<tr>
<td></td>
<td>pollen production, 17 temperature, 19</td>
</tr>
<tr>
<td></td>
<td>pollen season, 2</td>
</tr>
<tr>
<td></td>
<td>observed, 98</td>
</tr>
<tr>
<td></td>
<td>range shifts, 29, 180</td>
</tr>
<tr>
<td></td>
<td>arthropods observed, 33</td>
</tr>
<tr>
<td></td>
<td>projected, 39</td>
</tr>
<tr>
<td></td>
<td>barriers, 41</td>
</tr>
<tr>
<td></td>
<td>plants observed, 30</td>
</tr>
<tr>
<td></td>
<td>projected, 37</td>
</tr>
<tr>
<td></td>
<td>tools, 36</td>
</tr>
<tr>
<td></td>
<td>Index</td>
</tr>
<tr>
<td></td>
<td>Representative Concentration Pathways, 5</td>
</tr>
<tr>
<td></td>
<td>research needs, 181</td>
</tr>
<tr>
<td></td>
<td>allergic diseases, 184</td>
</tr>
<tr>
<td></td>
<td>experiments, 182</td>
</tr>
<tr>
<td></td>
<td>fungal spores, 183</td>
</tr>
<tr>
<td></td>
<td>house dust mite, 183</td>
</tr>
<tr>
<td></td>
<td>range shifts, 183</td>
</tr>
<tr>
<td></td>
<td>Romania, 159</td>
</tr>
<tr>
<td></td>
<td>roof ice dams, 120</td>
</tr>
<tr>
<td></td>
<td>Rumex. See dock</td>
</tr>
<tr>
<td></td>
<td>Russia, 31, 66</td>
</tr>
<tr>
<td></td>
<td>rye, 103</td>
</tr>
<tr>
<td></td>
<td>Salix, 38, 103</td>
</tr>
<tr>
<td></td>
<td>sassafras, 30</td>
</tr>
<tr>
<td></td>
<td>Scandinavia, 30, 38, 40</td>
</tr>
<tr>
<td></td>
<td>seasonal allergic rhinoconjunctivitis, 161</td>
</tr>
<tr>
<td></td>
<td>Silene, 100</td>
</tr>
<tr>
<td></td>
<td>South Africa, 34</td>
</tr>
<tr>
<td></td>
<td>South America, 11, 34, 35, 159, 183</td>
</tr>
<tr>
<td></td>
<td>South Korea, 34</td>
</tr>
<tr>
<td></td>
<td>Southern Hemisphere, 29, 183</td>
</tr>
<tr>
<td></td>
<td>Spain, 13, 18, 30, 31, 32, 37, 54, 81, 94, 146, 162, 163</td>
</tr>
<tr>
<td></td>
<td>species distribution models, 36</td>
</tr>
<tr>
<td></td>
<td>assumptions, 37</td>
</tr>
<tr>
<td></td>
<td>correlative, 31, 36, 37</td>
</tr>
<tr>
<td></td>
<td>mechanistic, 31, 37</td>
</tr>
<tr>
<td></td>
<td>Sporobolomyces, 166</td>
</tr>
<tr>
<td></td>
<td>spruce, 20, 30</td>
</tr>
<tr>
<td></td>
<td>Sweden, 30, 75, 82, 125</td>
</tr>
<tr>
<td></td>
<td>Switzerland, 12, 14, 15, 16, 19, 83, 99</td>
</tr>
<tr>
<td></td>
<td>System for Integrated modeling of Atmospheric composition, 65</td>
</tr>
<tr>
<td></td>
<td>Taiwan, 35, 167</td>
</tr>
<tr>
<td></td>
<td>Taxus, 12</td>
</tr>
<tr>
<td></td>
<td>temperature global mean surface observed, 3</td>
</tr>
<tr>
<td></td>
<td>projected, 5</td>
</tr>
<tr>
<td></td>
<td>land and ocean observed, 3</td>
</tr>
<tr>
<td></td>
<td>projected, 5</td>
</tr>
<tr>
<td></td>
<td>thunderstorm asthma, 2, 83, 105, 166, 167</td>
</tr>
<tr>
<td></td>
<td>Tilia, 30, 38</td>
</tr>
<tr>
<td></td>
<td>timothy grass, 103, 142, 146</td>
</tr>
<tr>
<td></td>
<td>pollen production, 17</td>
</tr>
<tr>
<td></td>
<td>Toxicodendron. See poison ivy tropical cyclones. See hurricanes</td>
</tr>
<tr>
<td></td>
<td>Ulmus. See elm</td>
</tr>
<tr>
<td></td>
<td>United Kingdom, 11, 17, 21, 99, 102, 117, 159, 160, 166, 169</td>
</tr>
</tbody>
</table>
Index

urban environment, 14, 16, 19, 20, 33, 34, 35, 113, 114, 138, 146
Urtica, 14
Urticaceae, 162
vernalisation, 96
Vespidae. See wasps, hornets, yellow jackets
volatile organic compounds, 118, 138
walnut, 30, 38
wasps, 34, 40, 181
temperature, 34
West Indies, 35
WHO. See World Health Organization
World Health Organization, 158
wormwood, 32
yellow jackets, 34