Wood Ant Ecology and Conservation

Wood ants play an ecologically dominant and conspicuous role in temperate boreal forests, making a keystone contribution to woodland ecosystem functions and processes. Wood ant taxonomy and global distributions set the scene for this text's exploration of wood ants as social insects, examining their flexible social structures, genetics, population ecology and behaviour; from nestmate recognition to task allocation. Wood ants' interactions with their environment and with other organisms are essential to their success: competition, predation and mutualism are described and analysed. Bringing together the expertise of ecological researchers and conservation practitioners, this book provides practical and theoretical advice about sampling and monitoring these insects, and outlines the requirements for effective conservation. This is an indispensable resource for wood ant researchers, entomologists, conservationists and ecological consultants, as well as anyone interested in social insects, keystone species and the management and conservation of forest ecosystems.

Jenni A. Stockan is an entomologist and environmental researcher at the Department of Environmental and Biochemical Sciences, James Hutton Institute, Aberdeen, UK. Her research covers tree–insect interactions, and riparian and wetland ecology.

Elva J. H. Robinson is a Lecturer in Ecology at the Department of Biology, University of York, UK. Her research area is the behavioural ecology of social animal groups, with particular focus on the organisation of ant societies.
ECOLOGY, BIODIVERSITY AND CONSERVATION

Series Editors
Michael Usher University of Stirling, and formerly Scottish Natural Heritage
Denis Saunders Formerly CSIRO Division of Sustainable Ecosystems, Canberra
Robert Peet University of North Carolina, Chapel Hill
Andrew Dobson Princeton University

Editorial Board
Paul Adam University of New South Wales, Australia
H. J. B. Birks University of Bergen, Norway
Lena Gustafsson Swedish University of Agricultural Science
Jeff McNeely International Union for the Conservation of Nature
R. T. Paine University of Washington
David Richardson University of Stellenbosch
Jeremy Wilson Royal Society for the Protection of Birds

The world’s biological diversity faces unprecedented threats. The urgent challenge facing the concerned biologist is to understand ecological processes well enough to maintain their functioning in the face of the pressures resulting from human population growth. Those concerned with the conservation of biodiversity and with restoration also need to be acquainted with the political, social, historical, economic and legal frameworks within which ecological and conservation practice must be developed. The new Ecology, Biodiversity and Conservation series will present balanced, comprehensive, up-to-date, and critical reviews of selected topics within the sciences of ecology and conservation biology, both botanical and zoological, and both ‘pure’ and ‘applied’. It is aimed at advanced final-year undergraduates, graduate students, researchers, and university teachers, as well as ecologists and conservationists in industry, government and the voluntary sectors. The series encompasses a wide range of approaches and scales (spatial, temporal, and taxonomic), including quantitative, theoretical, population, community, ecosystem, landscape, historical, experimental, behavioural and evolutionary studies. The emphasis is on science related to the real world of plants and animals rather than on purely theoretical abstractions and mathematical models. Books in this series will, wherever possible, consider issues from a broad perspective. Some books will challenge existing paradigms and present new ecological concepts, empirical or theoretical models, and testable hypotheses. Other books will explore new approaches and present syntheses on topics of ecological importance.

Ecology and Control of Introduced Plants
Judith H. Myers and Dawn Bazely

Invertebrate Conservation and Agricultural Ecosystems
T. R. New

Risks and Decisions for Conservation and Environmental Management
Mark Burgman

Ecology of Populations
Esa Ranta, Per Lundberg, and Veijo Kaitala
Wood Ant Ecology and Conservation

Edited by

JENNNI A. STOCKAN
Researcher, Department of Environmental and Biochemical Sciences,
The James Hutton Institute, Aberdeen, UK

ELVA J. H. ROBINSON
Lecturer in Ecology, Department of Biology,
University of York, York, UK
This book is dedicated to our families

Mark

Steve and David
Contents

- **List of contributors**
 xi
- **Foreword**
 xiii
- **Acknowledgements**
 xv

1. **Introducing wood ants: evolution, phylogeny, identification and distribution**
 Jenni A. Stockan, Elva J. H. Robinson, James C. Trager, Izumi Yao and Bernhard Seifert
 1

2. **Wood ant reproductive biology and social systems**
 Arnaud Maeder, Daniel Cherix, Christian Bernasconi, Anne Freitag and Samuel Ellis
 37

3. **Population genetics of wood ants**
 Pekka Pamilo, Perttu Seppä and Heikki Helanterä
 51

4. **Where and why? Wood ant population ecology**
 Anita C. Risch, Samuel Ellis and Hayley Wiswell
 81

5. **Colony and species recognition among the *Formica* ants**
 Stephen J. Martin
 106

6. **Interspecific competition and coexistence between wood ants**
 Therese Johansson and Heloise Gibb
 123

7. **Wood ant foraging and mutualism with aphids**
 Timo Domisch, Anita C. Risch and Elva J. H. Robinson
 145
Contents

8. Wood ants and their interaction with other organisms
 Elva J. H. Robinson, Jenni A. Stockan and Glenn R. Iason
 177

9. Contribution of wood ants to nutrient cycling and ecosystem function
 Jan Frouz, Veronika Jílková and Jouni Sorvari
 207

10. Diversity, ecology and conservation of wood ants in North America
 James C. Trager
 221

11. Sampling and monitoring wood ants
 Anne Freitag, Jenni A. Stockan, Christian Bernasconi,
 Arnaud Maeder and Daniel Cherix
 238

12. Threats, conservation and management
 Jouni Sorvari
 264

13. Future directions for wood ant ecology and conservation
 Elva J. H. Robinson and Jenni A. Stockan
 287

Index

300
Contributors

CHRISTIAN BERNASCONI
Museum of Zoology, Lausanne, Switzerland

DANIEL CHERIX
Department of Ecology and Evolution, University of Lausanne, Lausanne-Dorigny, Switzerland

TIMO DOMISCH
Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Joensuu, Finland

SAMUEL ELLIS
Department of Biology, University of York, Heslington, York, UK

ANNE FREITAG
Museum of Zoology, Lausanne, Switzerland

JAN FROUZ
Institute for Environmental Studies, Faculty of Science, Charles University, Praha, Czech Republic

HELOISE GIBB
Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Australia

HEIKKI HELANTERÄ
Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Finland

GLENN R. IASON
Ecological Sciences, The James Hutton Institute, Aberdeen, UK

VERONIKA JÍLKOVÁ
Institute for Environmental Studies, Faculty of Science, Charles University, Praha, Czech Republic
Contributors

Therese Johansson
Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden

Arnaud Maeder
Museum of Natural History, La Chaux-de-Fonds, Switzerland

Stephen J. Martin
School of Environmental and Life Sciences, University of Salford, Greater Manchester, UK

Pekka Pamilo
Department of Biosciences and Tvärminne Zoological Station, University of Helsinki, Finland

Anita C. Risch
Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland

Elva J. H. Robinson
Department of Biology, University of York, Heslington, York, UK

Bernhard Seifert
Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany

Perttu Seppä
Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Finland

Jouni Sorvari
Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland

Jenni A. Stockan
Environmental and Biochemical Sciences, The James Hutton Institute, Aberdeen, UK

James C. Trager
Shaw Nature Reserve, Missouri Botanical Garden, Gray Summit, Missouri, USA

Hayley Wiswell
Cairngorms Natural Park Authority, Grantown on Spey, UK

Izumi Yao
Department of Ecology and Systematics, Hokkaido University, Sapporo, Japan
Foreword

Ants are everywhere. They are dominant components in much of the terrestrial world as premier soil turners, predators of other arthropods, dispersers of seeds and, in neotropical regions, the attine leafcutter ants must be considered the major herbivores in rainforests and cultivated fields. Approximately 14 000 species of ants are known to science, but the number continues to grow and it is hard to say how many species actually live on our planet.

Science has revealed many unique and fascinating natural histories for a large diversity of ant species, but certain groups stand out. Clearly, the pinnacles in ant evolution include the army ants of the neotropics and the driver ants of Africa, the tree-dwelling weaver ants of Africa, Asia and Australia, the fungus growers of the tribe Attini in Central and South America, and the migrating herdsmen of the genus Dolichoderus of the Malaysian peninsula. The mound-building wood ants, the so-called Formica rufa group, must also be considered one of the pinnacles of ant evolution.

In 1960, as an advanced biology student at the University of Würzburg in Germany, I was charged with the wonderful task of spending about 2 months in Finland collecting wood ants in forests from the south to the north beyond the Arctic Circle to send these samples to the Institute of Applied Zoology at the University of Würzburg. The general abundance of Formica mounds in Finnish forests, especially in primeval forests, was most impressive. Unfortunately, wood ant mounds are now rare or totally absent in most Central European forests mostly due to negligence, despite the fact that entomologists had already recognised in the nineteenth century the decisive role wood ants play in biological pest control. The undisputed founder of forest entomology, Julius Theodor Christian Ratzeburg (1801–71), observed that the surrounds of wood ant mounds resembled green islands during pest insect outbreaks. According to Auguste Forel (1848–1931) the inhabitants of a single large Formica rufa nest can retrieve 100 000 insects in one day; this adds up to 10 million prey insects in one
summer. These numbers are astonishing and perhaps somewhat exaggerated, or perhaps not? In any case, mound-building wood ants are very beneficial to the health of forests, and therefore Ratzeburg proposed to propagate and resettle *Formica* nests by artificial fission. Ever since Ratzeburg's proposal, subsequent generations of forest entomologists, such as Karl Escherich (1871–1951) followed by Gustav Wellenstein (1906–97) and Karl Gößwald (1907–96) have worked to develop methods for wood ant propagation. He designed clever techniques for collecting hundreds to thousands of alate queens and males before the nuptial flights and let them mate under controlled conditions in the laboratory. He then introduced freshly mated queens to several thousand workers taken from established colonies in nature and after some incubation time released the newly created colonies in forests devoid of wood ants at what he considered appropriate nest sites. Though some of these introduced wood ant colonies settled well and subsequently flourished, many perished. What was missing was a sufficient scientific foundation for such artificial propagation. Karl Gößwald and many of his collaborators made a number of important contributions to several facets of the natural history and ecology of the *Formica rufa* group, summarised by Gößwald in two volumes published in 1989 and 1990. More recently multiple researchers have made substantial progress in understanding the systematics, ecology, population biology, behaviour, conservation biology and management of the *Formica rufa* group. A number of them are contributors to this book *Wood Ant Ecology and Conservation*.

This book is a very welcome volume because it synthesises a large amount of literature scattered in many journals and it sets the stage for future research that serves the conservation, and hopefully propagation, of the mound-building wood ants.

Bert Hölldobler

References

Acknowledgements

This book is the culmination of a huge amount of work by many talented authors. The editors are very grateful to all the authors for agreeing to contribute to the book and providing chapters of such high quality. We also thank the authors for their patience in responding to requests for changes and for putting up with many delays along the way. The key to North American species was produced with the assistance of Brendon Boudinot, Aaron Ellison, John LaPolla and Sean Menke, who tried out the key and made useful comments to improve it. Richard Harrington and Mark Taylor advised on aphid identification and nomenclature for Chapter 7. We thank Chris Cathrine and Phil Attewell for useful discussions on wood ant translocation methods (Chapter 12) and Sam Ellis for providing radio-tagging information for Chapter 11. Astrid Taylor and Ljudmila Skoglund provided identification and information about ant–mite associations (Chapter 8).

Many people generously contributed figures to the book. We thank William and Emma Mackay for permission to use images contained in the North American key (Chapter 1). The distribution maps (Chapter 1) were made possible with the assistance of Russell Hooper (Scottish Natural Heritage), Margaret McKeen (James Hutton Institute), Phil Roberts (University of York) and Brian Fisher (AntWeb). Sue Shemilt permitted the use of Figure 5.4, Angela Winner Figure 10.1, James Gasier Figures 10.2a–c and Doug Collicutt Figure 10.3. Ian Williamson (James Hutton Institute) designed Figure 8.1 and Sam Ellis (University of York) constructed Figure 7.6. Evelyne Delbos assisted with the scanning electron micrograph image of Figure 7.4. Judith Robinson kindly provided permission to use photographs taken by the late Neil Robinson and assisted with locating and scanning suitable images (Chapters 7 and 8). We gratefully acknowledge the photographic skills of Gabor Pozsgai who contributed several images: Figures 1.2, 5.1, 8.4 and those on the cover (www.photogabor.com). The copyright for these images remains with
Acknowledgements

Gabor Pozsgai. Figures 7.1 and 7.5 are respectively reproduced with permission of Springer and John Wiley & Sons, Inc.

The work involved in producing the book was supported financially by a number of sources. Chapters 2 and 4: Sam Ellis’ contribution was supported by a NERC/National Trust CASE studentship awarded to Elva Robinson. Chapter 9: Work was supported by grant of Charles University in Prague GAUK 574213 awarded to Veronika Jílková. Elva J. H. Robinson’s role in editing and contributions to Chapters 1, 7, 8 and 13 were supported by a Royal Society Dorothy Hodgkin Fellowship awarded to Elva Robinson. The involvement of Jenni A. Stockan and Glenn Iason in Chapter 8 was supported by funding from the Scottish Government.

The following people provided invaluable comments on chapter drafts and proofread chapters: Chapter 1: Margaret Couvillon and Jonny Hughes; Chapter 2: Margaret Couvillon; Chapter 3: Margaret Couvillon and Sam Gandy; Chapter 4: Benedict Coffin and Nick Littlewood; Chapter 5: Duncan Procter, Judith Robinson and Mark Stockan; Chapter 6: Catherine Parr and Judith Robinson; Chapter 7: Phillip Buckham-Bonnett; Chapter 8: Phillip Buckham-Bonnett and Pete Goddard; Chapter 9: Bruce Jafee (JafeeEdit), Ainoa Pravia and Judith Robinson; Chapter 10: Judith Robinson; Chapter 11: Phillip Buckham-Bonnett and Duncan Procter; Chapter 12: Benedict Coffin and Gabrielle Flinn; Chapter 13: Benedict Coffin, Simon Hoy, Jonny Hughes and James Trager. The editors take responsibility for any remaining errors.

This book was conceived following the 2011 Wood Ant Symposium hosted by the James Hutton Institute and Buglife at the suggestion of Cambridge University Press. The editors are extremely grateful to Michael Usher and Megan Waddington (Cambridge University Press) for their support and patience, and to Bert Hölldobler for his enthusiasm and encouragement.

Finally, the editors thank their families for supporting them through all the long evenings and weekends of work on this book.