Contents

List of figures xvi
List of tables xxiii
Acknowledgements xxvi

Part I Our approach in its context 1

1 How this book came about 5
 1.1 An outline of our approach 6
 1.2 Portfolio management as a process 9
 1.3 Plan of the book 10

2 Correlation and causation 13
 2.1 Statistical versus causal explanations 13
 2.2 A concrete example 19
 2.3 Implications for hedging and diversification 22

3 Definitions and notation 23
 3.1 Definitions used for analysis of returns 23
 3.2 Definitions and notation for market risk factors 25

Part II Dealing with extreme events 27

4 Predictability and causality 31
 4.1 The purpose of this chapter 31
 4.2 Is this time different? 32
 4.3 Structural breaks and non-linearities 34
 4.4 The bridge with our approach 37

5 Econophysics 40
 5.1 Econophysics, tails and exceptional events 40
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>The scope and methods of econophysics</td>
<td>40</td>
</tr>
<tr>
<td>5.3</td>
<td>‘Deep analogies’</td>
<td>43</td>
</tr>
<tr>
<td>5.4</td>
<td>The invariance of physical and financial ‘laws’</td>
<td>45</td>
</tr>
<tr>
<td>5.5</td>
<td>Where we differ</td>
<td>46</td>
</tr>
<tr>
<td>6</td>
<td>Extreme Value Theory</td>
<td>48</td>
</tr>
<tr>
<td>6.1</td>
<td>A brief description</td>
<td>48</td>
</tr>
<tr>
<td>6.2</td>
<td>Applications to finance and risk management</td>
<td>49</td>
</tr>
<tr>
<td>Part III</td>
<td>Diversification and subjective views</td>
<td>51</td>
</tr>
<tr>
<td>7</td>
<td>Diversification in Modern Portfolio Theory</td>
<td>55</td>
</tr>
<tr>
<td>7.1</td>
<td>Basic results</td>
<td>56</td>
</tr>
<tr>
<td>7.2</td>
<td>Important special cases</td>
<td>58</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Optimal weights with linear constraints</td>
<td>59</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Optimization when a riskless asset is available</td>
<td>62</td>
</tr>
<tr>
<td>7.3</td>
<td>The link with the CAPM – a simple derivation</td>
<td>63</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Derivation of the links between Markowitz and CAPM</td>
<td>64</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Obtaining the familiar β-formulation</td>
<td>65</td>
</tr>
<tr>
<td>7.4</td>
<td>Reverse-engineering the CAPM</td>
<td>66</td>
</tr>
<tr>
<td>Appendix</td>
<td>Asset allocation in the presence of linear equality constraints</td>
<td>67</td>
</tr>
<tr>
<td>Appendix</td>
<td>Derivation of the stochastic discount factor</td>
<td>69</td>
</tr>
<tr>
<td>8</td>
<td>Stability: a first look</td>
<td>71</td>
</tr>
<tr>
<td>8.1</td>
<td>Problems with the stability of the optimal weights</td>
<td>71</td>
</tr>
<tr>
<td>8.2</td>
<td>Where the instability comes from</td>
<td>72</td>
</tr>
<tr>
<td>8.3</td>
<td>The resampling (Michaud) approach</td>
<td>75</td>
</tr>
<tr>
<td>8.4</td>
<td>Geometric asset allocation</td>
<td>76</td>
</tr>
<tr>
<td>Appendix</td>
<td>Absolute and relative coefficients of risk aversion for power and quadratic utility functions</td>
<td>79</td>
</tr>
<tr>
<td>8.A.1</td>
<td>Local derivatives matching</td>
<td>80</td>
</tr>
<tr>
<td>8.A.2</td>
<td>The coefficient of relative risk aversion</td>
<td>82</td>
</tr>
<tr>
<td>9</td>
<td>Diversification and stability in the Black–Litterman model</td>
<td>83</td>
</tr>
<tr>
<td>9.1</td>
<td>What the Black–Litterman approach tries to achieve</td>
<td>83</td>
</tr>
<tr>
<td>9.2</td>
<td>Views as prior: the Satchell and Scowcroft interpretation</td>
<td>84</td>
</tr>
<tr>
<td>9.3</td>
<td>Doust’s geometric interpretation again</td>
<td>87</td>
</tr>
<tr>
<td>9.4</td>
<td>The link with our approach</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>Specifying scenarios: the Meucci approach</td>
<td>92</td>
</tr>
<tr>
<td>10.1</td>
<td>Generalizing: entropy pooling</td>
<td>95</td>
</tr>
<tr>
<td>10.2</td>
<td>The link with Bayesian nets (and Black–Litterman)</td>
<td>97</td>
</tr>
<tr>
<td>10.3</td>
<td>Extending the entropy-pooling technique</td>
<td>98</td>
</tr>
</tbody>
</table>
Part IV How we deal with exceptional events

11 Bayesian nets
11.1 Displaying the joint probabilities for Boolean variables
11.2 Graphical representation of dependence: Bayesian nets
11.3 Influencing and ‘causing’
11.4 Independence and conditional independence
11.5 The link between Bayesian nets and probability distributions
 11.5.1 Screening and Markov parents
 11.5.2 The Master Equation
11.6 Ordering and causation – causal Bayesian nets
11.7 d-separation
 11.7.1 Definition
 11.7.2 A worked example
 11.7.3 Hard and soft evidence
 11.7.4 The link between d-separation and conditional independence
11.8 Are d-separation and conditional independence the same?
11.9 The No-Constraints Theorem
11.10 Why is this so important?
11.11 From Boolean to multi-valued variables

12 Building scenarios for causal Bayesian nets
12.1 What constitutes a root event?
12.2 The leaves: changes in market risk factors
12.3 The causal links: low-resistance transmission channels
12.4 Binary, discrete-valued or continuous?
12.5 The deterministic mapping

Part V Building Bayesian nets in practice

13 Applied tools
13.1 A word of caution
13.2 Why our life is easy (and why it can also be hard)
13.3 Sensitivity analysis
13.4 Assigning the desired dependence among variables
 13.4.1 A worked example: a terrorist attack
13.5 Dealing with almost-impossible combinations of events
13.6 Biting the bullet: providing the full set of master conditional probabilities
13.7 Event correlation
 13.7.1 Evaluation
 13.7.2 Intuitive interpretation
14	More advanced topics: elicitation	165
14.1	The nature of the elicitation problem: what are the problems?	165
14.2	Dealing with elicitation: the Maximum-Entropy approach	166
14.3	Range-only information for canonical probabilities	168
14.4	Dealing with elicitation: Non-canonical-information	169
14.4.1	Definitions	170
14.4.2	An example	171
14.4.3	Unique invertibility, uncertain equivalence	173
14.4.4	Non-unique invertibility, uncertain equivalence	173
14.4.5	A simple example	174
14.4.6	Generalization	176
14.5	Dealing with elicitation: exploiting causal independence	176
14.5.1	Local restructuring of the net	177
14.5.2	Spelling out the implicit assumptions	180
14.5.3	Obtaining the conditional probabilities	181
14.5.4	A few important cases	182
14.5.5	Where do the probabilities of the inhibitors being active come from?	183
14.5.6	A simple example	184
14.5.7	Leak causes	187
14.5.8	Extensions	187
Appendix 14.A		188
14.A.1	Knowledge about the range	188
14.A.2	Knowledge about the expectation	189
14.A.3	Knowledge about the expectation and the variance	191
Appendix 14.B		191
15	Additional more advanced topics	195
15.1	Efficient computation	195
15.1.1	Pushing sums in	195
15.2	Size constraints: Monte Carlo	197
15.2.1	Obvious improvements	199
15.2.2	More advanced improvements: adapting the Weighted Monte-Carlo Method	199
15.3	Size constraints: joining nets	201
16	A real-life example: building a realistic Bayesian net	203
16.1	The purpose of this chapter	203
16.2	Step-by-step construction in a realistic case	203
16.2.1	Roots, leaves and transmission channels	203
16.2.2	A first attempt	205
16.2.3	Quantifying the horizon and the magnitude of the ‘stress events’	206
16.2.4	The construction	208
Table of Contents

16.3 Analysis of the joint distribution 229
16.4 Using Maximum Entropy to fill in incomplete tables 233
16.5 Determining the P&L distribution 234
16.6 Sensitivity analysis 235

Part VI Dealing with normal-times returns 239
17 Identification of the body of the distribution 243
17.1 What is ‘normality’? Conditional and unconditional interpretation 243
17.2 Estimates in the ‘normal’ state 247
17.3 Estimates in an excited state 249
17.4 Identifying ‘distant points’: the Mahalanobis distance 251
17.5 Problems with the Mahalanobis distance 254
17.6 The Minimum-Volume-Ellipsoid method 254
 17.6.1 Definition 255
 17.6.2 The intuition 255
 17.6.3 Detailed description 256
 17.6.4 An example and discussion of results 258
17.7 The Minimum-Covariance-Determinant method 267
17.8 Some remarks about the MVE, MCD and related methods 269

18 Constructing the marginals 271
18.1 The purpose of this chapter 271
18.2 The univariate fitting procedure 272
 18.2.1 Other possible approaches 272
18.3 Estimating the vector of expected returns 274
 18.3.1 What shrinkage fixes (and what it does not fix) 276

19 Choosing and fitting the copula 278
19.1 The purpose of this chapter 278
19.2 Methods to choose a copula 278
19.3 The covariance matrix and shrinkage 280
19.4 The procedure followed in this work 281
 19.4.1 The algorithm for Gaussian copula 281
 19.4.2 The algorithm for Student-t copula 282
19.5 Results 282

Part VII Working with the full distribution 291
20 Splicing the normal and exceptional distributions 295
 20.1 Purpose of the chapter 295
 20.2 Reducing the joint probability distribution 295
 20.3 Defining the utility-maximization problem 297
 20.4 Expected utility maximization 298
Contents

20.5 Constructing the joint spliced distribution 299
 20.5.1 The setting 299
 20.5.2 Building block 1: The excited-events distribution 300
 20.5.3 Building block 2: The ‘compacted’ normal-times distribution for the \(i \)th event 301
 20.5.4 \(i \)th event: the combined distribution 301
 20.5.5 The full spliced distribution 304

20.6 A worked example 305

20.7 Uncertainty in the normalization factor: a Maximum-Entropy approach 308
 20.7.1 Introducing the normalization factor 308
 20.7.2 Introducing uncertainty in the normalization factor 309
 Appendix 20.A 312
 Appendix 20.B 313
 20.B.1 Truncated exponential 314
 20.B.2 Truncated Gaussian 314

21 The links with CAPM and private valuations 316
 21.1 Plan of the chapter 316
 21.2 Expected returns: a normative approach 316
 21.3 Why CAPM? 317
 21.4 Is there an alternative to the CAPM? 318
 21.5 Using the CAPM for consistency checks 319
 21.6 Comparison of market-implied and subjectively assigned second and higher moments 321
 21.7 Comparison with market expected returns 322
 21.8 A worked example 324
 21.9 Private valuation: linking market prices and subjective prices 328
 21.9.1 Distilling the market’s impatience and risk aversion 331
 21.9.2 Obtaining our private valuation 332
 21.9.3 Sanity checks 333
 21.10 Conclusions 334

 Appendix 21.A: Derivation of \(m_{t+1} = a + bct = a - bGR^{MKT} \) 335

Part VIII A framework for choice 339

22 Applying expected utility 343
 22.1 The purpose of this chapter 343
 22.2 Utility of what? 344
 22.3 Analytical representation and stylized implied-behaviour 345
 22.4 The ‘rationality’ of utility theory 347
 22.5 Empirical evidence 348
Contents

26.3 Analysing the body of the distribution 407
 26.3.1 Correlations and volatilities before culling 407
 26.3.2 Truncation 409
 26.3.3 Correlations and volatilities after culling 409
26.4 Fitting the body of the joint distribution 414
26.5 CAPM and the total moments 416
 26.5.1 Are we using the right betas? 419
26.6 The optimal-allocation results 420
 26.6.1 Results for logarithmic utility function 420
 26.6.2 Sensitivity to different degrees of risk aversion 421
 26.6.3 Conclusions 423
26.7 The road ahead 424

27 Numerical analysis 425
 27.1 How good is the mean-variance approximation? 425
 27.2 Using the weight expansion for the \(k \) dependence 428
 27.2.1 Gaining intuition 429
 27.3 Optimal allocation with uncertain \(k \) via Maximum Entropy: results 430

28 Stability analysis 434
 28.1 General considerations 434
 28.2 Stability with respect to uncertainty in the conditional probability tables 436
 28.2.1 Analytical expressions for the sensitivities 436
 28.2.2 Empirical results 440
 28.3 Stability with respect to uncertainty in expected returns 441
 28.3.1 Sensitivity to stressed returns 442
 28.4 Effect of combined uncertainty 447
 28.5 Stability of the allocations for high degree of risk aversion 447
 28.6 Where does the instability come from? (again) 448

29 How to use Bayesian nets: our recommended approach 453
 29.1 Some preliminary qualitative observations 453
 29.2 Ways to tackle the allocation instability 454
 29.2.1 Optimizing variance for a given return 454
 29.2.2 The Black–Litterman stabilization 455
 29.2.3 The general Bayesian stabilization 455
 29.2.4 Calibrating the utility function to risk and ambiguity aversion 458
 29.3 The lay of the land 459
 29.4 The approach we recommend 460

Appendix 29.A: The parable of Marko and Micha 462
Appendix I: The links with the Black–Litterman approach
1 The Black–Litterman ‘regularization’ 465
2 The likelihood function 466
3 The prior 468
4 The posterior 470

References 471
Index 485