Portfolio Management Under Stress

Portfolio Management Under Stress offers a novel way to apply the well-established Bayesian-net methodology to the important problem of asset allocation under conditions of market distress or, more generally, when an investor believes that a particular scenario (such as the break-up of the Euro) may occur. Employing a coherent and thorough approach, it provides practical guidance on how best to choose an optimal and stable asset allocation in the presence of user-specified scenarios or ‘stress conditions’. The authors place causal explanations, rather than association-based measures such as correlations, at the core of their argument, and insights from the theory of choice under ambiguity aversion are invoked to obtain stable allocations results. Step-by-step design guidelines are included to allow readers to grasp the full implementation of the approach, and case studies provide clarification. This insightful book is a key resource for practitioners and research academics in the post-financial-crisis world.

Riccardo Rebonato is Global Head of Rates and FX Analytics at PIMCO, and a visiting lecturer in Mathematical Finance at Oxford University (OCIAM). He has previously held positions as Head of Risk Management and Head of Derivatives Trading at several major international financial institutions. Dr Rebonato has been on the Board of ISDA (2002–2011), and still serves on the Board of GARP (2001 to present). He is the author of several books on finance and an editor for several journals (*International Journal of Theoretical and Applied Finance, Journal of Risk, Applied Mathematical Finance, Journal of Risk for Financial Institutions*).

Alexander Denev is a senior team leader in the Risk Models department at the Royal Bank of Scotland. He is specialized in Credit Risk, Regulations, Asset Allocation and Stress Testing, and has previously worked in management roles at European Investment Bank, Société Générale and National Bank of Greece.
Standard portfolio theory has been shown by recent events to have two major shortcomings: it does not deal well with extreme events and it is often based on mechanical statistical procedures rather than modelling of fundamental causal mechanisms. In this book, Rebonato and Denev put forward an interesting approach for dealing with both of these problems. Their method is flexible enough to accommodate individual views of underlying causal mechanisms, but disciplined enough to ensure that decisions do not ignore the data. Anyone with a serious interest in making good portfolio decisions or measuring risk will benefit from reading this book.

Ian Cooper, Professor of Finance, London Business School

This book is self-contained in that it covers a lot of familiar but diverse material from a fresh perspective. Its purpose is to take an ambitious new approach to combining this material into a coherent whole. The result is a new methodology for practical portfolio management based on Bayesian nets, which satisfactorily takes into simultaneous account both normal and extreme market conditions. While readers may themselves be under stress in absorbing the details of the new approach, serious fund managers and finance academics will ignore it at their peril.

M. A. H. Dempster, Emeritus Professor, Department of Mathematics, University of Cambridge; Cambridge Systems Associates Limited

Rebonato and Denev have demolished the status quo with their radical extension of best-practice portfolio management. The key is to integrate realistic “extreme” scenarios into risk assessment, and they show how to use Bayesian networks to characterize precisely those scenarios. The book is rigorous yet completely practical, and reading it is a pleasure, with the “Rebonato touch” evident throughout.

Francis X. Diebold, Paul F. and Warren S. Miller Professor of Economics, Professor of Finance and Statistics, and Co-Director, Wharton Financial Institutions Center, University of Pennsylvania

Here is a book that combines the soundest of theoretical foundations with the clearest practical mindset. This is a rare achievement, delivered by two renowned masters of the craft, true practitioners with an academic mind. Bayesian nets provide a flexible framework to tackle decision making under uncertainty in a post-crisis world. Modeling observations according to causation links, as opposed to mere association, introduces a structure that allows the user to understand risk, as opposed to just measuring it. The ability to define scenarios, incorporate subjective views, model exceptional events, etc., in a rigorous manner is extremely satisfactory. I particularly liked the use of concentration constraints, because history shows that high concentration with low risk can be more devastating than low.
concentration with high risk. I expect fellow readers to enjoy this work immensely, and monetize on the knowledge it contains.’

Marcos Lopez de Prado, Research Fellow, Harvard University; Head of Quantitative Trading, Hess Energy Trading Company

‘In a recent book of my own I bemoan rampant “confusion” among academics as well as practitioners of modern financial theory and practice. I am delighted to say that the authors of Portfolio Management Under Stress are not confused. It is heart-warming to find such clarity of thought among those with positions of great influence and responsibility.’

Harry M. Markowitz, Nobel Laureate, Economics 1990

‘Rebonato and Denev have ploughed for all of us the vast field of applications of Bayesian nets to quantitative risk and portfolio management, leaving absolutely no stone unturned.’

Attilio Meucci, Chief Risk Officer and Director of Portfolio Construction at Kepos Capital LP
Portfolio Management
Under Stress
A Bayesian-Net Approach to
Coherent Asset Allocation

Riccardo Rebonato
and
Alexander Denev
To my father, my wife and my son.

[RR]

To my mother and brother. What I am today, I owe to them.

[AD]
Contents

List of figures page xviii
List of tables xxiii
Acknowledgements xxvi

Part I Our approach in its context 1

1 How this book came about 5
1.1 An outline of our approach 6
1.2 Portfolio management as a process 9
1.3 Plan of the book 10

2 Correlation and causation 13
2.1 Statistical versus causal explanations 13
2.2 A concrete example 19
2.3 Implications for hedging and diversification 22

3 Definitions and notation 23
3.1 Definitions used for analysis of returns 23
3.2 Definitions and notation for market risk factors 25

Part II Dealing with extreme events 27

4 Predictability and causality 31
4.1 The purpose of this chapter 31
4.2 Is this time different? 32
4.3 Structural breaks and non-linearities 34
4.4 The bridge with our approach 37

5 Econophysics 40
5.1 Econophysics, tails and exceptional events 40
5.2 The scope and methods of econophysics
5.3 ‘Deep analogies’
5.4 The invariance of physical and financial ‘laws’
5.5 Where we differ

6 Extreme Value Theory
6.1 A brief description
6.2 Applications to finance and risk management

Part III Diversification and subjective views

7 Diversification in Modern Portfolio Theory
7.1 Basic results
7.2 Important special cases
7.2.1 Optimal weights with linear constraints
7.2.2 Optimization when a riskless asset is available
7.3 The link with the CAPM – a simple derivation
7.3.1 Derivation of the links between Markowitz and CAPM
7.3.2 Obtaining the familiar β-formulation
7.4 Reverse-engineering the CAPM

Appendix 7.A: Asset allocation in the presence of linear equality constraints
Appendix 7.B: Derivation of the stochastic discount factor

8 Stability: a first look
8.1 Problems with the stability of the optimal weights
8.2 Where the instability comes from
8.3 The resampling (Michaud) approach
8.4 Geometric asset allocation

Appendix 8.A: Absolute and relative coefficients of risk aversion for power and quadratic utility functions
8.A.1 Local derivatives matching
8.A.2 The coefficient of relative risk aversion

9 Diversification and stability in the Black–Litterman model
9.1 What the Black–Litterman approach tries to achieve
9.2 Views as prior: the Satchell and Scowcroft interpretation
9.3 Doust’s geometric interpretation again
9.4 The link with our approach

10 Specifying scenarios: the Meucci approach
10.1 Generalizing: entropy pooling
10.2 The link with Bayesian nets (and Black–Litterman)
10.3 Extending the entropy-pooling technique
Part IV How we deal with exceptional events 101

11 Bayesian nets 105
11.1 Displaying the joint probabilities for Boolean variables 106
11.2 Graphical representation of dependence: Bayesian nets 108
11.3 Influencing and ‘causing’ 112
11.4 Independence and conditional independence 113
11.5 The link between Bayesian nets and probability distributions 116
11.5.1 Screening and Markov parents 116
11.5.2 The Master Equation 117
11.6 Ordering and causation – causal Bayesian nets 118
11.7 d-separation 122
11.7.1 Definition 122
11.7.2 A worked example 125
11.7.3 Hard and soft evidence 126
11.7.4 The link between d-separation and conditional independence 127
11.8 Are d-separation and conditional independence the same? 127
11.9 The No-Constraints Theorem 128
11.10 Why is this so important? 132
11.11 From Boolean to multi-valued variables 133

12 Building scenarios for causal Bayesian nets 136
12.1 What constitutes a root event? 137
12.2 The leaves: changes in market risk factors 139
12.3 The causal links: low-resistance transmission channels 140
12.4 Binary, discrete-valued or continuous? 140
12.5 The deterministic mapping 142

Part V Building Bayesian nets in practice 143

13 Applied tools 147
13.1 A word of caution 147
13.2 Why our life is easy (and why it can also be hard) 148
13.3 Sensitivity analysis 149
13.4 Assigning the desired dependence among variables 150
13.4.1 A worked example: a terrorist attack 151
13.5 Dealing with almost-impossible combinations of events 155
13.6 Biting the bullet: providing the full set of master conditional probabilities 157
13.7 Event correlation 160
13.7.1 Evaluation 161
13.7.2 Intuitive interpretation 163
Contents

14 More advanced topics: elicitation 165
 14.1 The nature of the elicitation problem: what are the problems? 165
 14.2 Dealing with elicitation: the Maximum-Entropy approach 166
 14.3 Range-only information for canonical probabilities 168
 14.4 Dealing with elicitation: Non-canonical-information 169
 14.4.1 Definitions 170
 14.4.2 An example 171
 14.4.3 Unique invertibility, uncertain equivalence 173
 14.4.4 Non-unique invertibility, uncertain equivalence 173
 14.4.5 A simple example 174
 14.4.6 Generalization 176
 14.5 Dealing with elicitation: exploiting causal independence 176
 14.5.1 Local restructuring of the net 177
 14.5.2 Spelling out the implicit assumptions 180
 14.5.3 Obtaining the conditional probabilities 181
 14.5.4 A few important cases 182
 14.5.5 Where do the probabilities of the inhibitors being active come from? 183
 14.5.6 A simple example 184
 14.5.7 Leak causes 187
 14.5.8 Extensions 187
 Appendix 14.A 188
 14.A.1 Knowledge about the range 188
 14.A.2 Knowledge about the expectation 189
 14.A.3 Knowledge about the expectation and the variance 191
 Appendix 14.B 191

15 Additional more advanced topics 195
 15.1 Efficient computation 195
 15.1.1 Pushing sums in 195
 15.2 Size constraints: Monte Carlo 197
 15.2.1 Obvious improvements 199
 15.2.2 More advanced improvements: adapting the Weighted Monte-Carlo Method 199
 15.3 Size constraints: joining nets 201

16 A real-life example: building a realistic Bayesian net 203
 16.1 The purpose of this chapter 203
 16.2 Step-by-step construction in a realistic case 203
 16.2.1 Roots, leaves and transmission channels 203
 16.2.2 A first attempt 205
 16.2.3 Quantifying the horizon and the magnitude of the ‘stress events’ 206
 16.2.4 The construction 208
16.3 Analysis of the joint distribution 229
16.4 Using Maximum Entropy to fill in incomplete tables 233
16.5 Determining the P&L distribution 234
16.6 Sensitivity analysis 235

Part VI Dealing with normal-times returns 239
17 Identification of the body of the distribution 243
17.1 What is ‘normality’? Conditional and unconditional interpretation 243
17.2 Estimates in the ‘normal’ state 247
17.3 Estimates in an excited state 249
17.4 Identifying ‘distant points’: the Mahalanobis distance 251
17.5 Problems with the Mahalanobis distance 254
17.6 The Minimum-Volume-Ellipsoid method 254
17.6.1 Definition 255
17.6.2 The intuition 255
17.6.3 Detailed description 256
17.6.4 An example and discussion of results 258
17.7 The Minimum-Covariance-Determinant method 267
17.8 Some remarks about the MVE, MCD and related methods 269

18 Constructing the marginals 271
18.1 The purpose of this chapter 271
18.2 The univariate fitting procedure 272
18.2.1 Other possible approaches 272
18.3 Estimating the vector of expected returns 274
18.3.1 What shrinkage fixes (and what it does not fix) 276

19 Choosing and fitting the copula 278
19.1 The purpose of this chapter 278
19.2 Methods to choose a copula 278
19.3 The covariance matrix and shrinkage 280
19.4 The procedure followed in this work 281
19.4.1 The algorithm for Gaussian copula 281
19.4.2 The algorithm for Student-t copula 282
19.5 Results 282

Part VII Working with the full distribution 291
20 Splicing the normal and exceptional distributions 295
20.1 Purpose of the chapter 295
20.2 Reducing the joint probability distribution 295
20.3 Defining the utility-maximization problem 297
20.4 Expected utility maximization 298
20.5 Constructing the joint spliced distribution 299
 20.5.1 The setting 299
 20.5.2 Building block 1: The excited-events distribution 300
 20.5.3 Building block 2: The ‘compacted’ normal-times distribution for the ith event 301
 20.5.4 ith event: the combined distribution 301
 20.5.5 The full spliced distribution 304
20.6 A worked example 305
20.7 Uncertainty in the normalization factor: a Maximum-Entropy approach 308
 20.7.1 Introducing the normalization factor 308
 20.7.2 Introducing uncertainty in the normalization factor 309
 Appendix 20.A 312
 Appendix 20.B 313
 20.B.1 Truncated exponential 314
 20.B.2 Truncated Gaussian 314
21 The links with CAPM and private valuations 316
 21.1 Plan of the chapter 316
 21.2 Expected returns: a normative approach 316
 21.3 Why CAPM? 317
 21.4 Is there an alternative to the CAPM? 318
 21.5 Using the CAPM for consistency checks 319
 21.6 Comparison of market-implied and subjectively assigned second and higher moments 321
 21.7 Comparison with market expected returns 322
 21.8 A worked example 324
 21.9 Private valuation: linking market prices and subjective prices 328
 21.9.1 Distilling the market’s impatience and risk aversion 331
 21.9.2 Obtaining our private valuation 332
 21.9.3 Sanity checks 333
 21.10 Conclusions 334
 Appendix 21.A: Derivation of $m_{t+1} = a + bG_{t+1} = a - bG_{t+1}^{MKT}$ 335
Part VIII A framework for choice 339
22 Applying expected utility 343
 22.1 The purpose of this chapter 343
 22.2 Utility of what? 344
 22.3 Analytical representation and stylized implied-behaviour 345
 22.4 The ‘rationality’ of utility theory 347
 22.5 Empirical evidence 348
22.6 Reduced-form utility functions 350
22.7 Imposing exogenous constraints 351

23 Utility theory: problems and remedies 353
23.1 The purpose of this chapter 353
23.2 ‘Inside- and outside-the-theory’ objections 353
23.3 The two roles of the curvature of the utility function 354
23.4 Risk aversion ‘in the small’ and ‘in the large’ 356
23.5 Aversion to ambiguity 358
23.6 Dealing with uncertainty: the Bayesian route 360
23.6.1 Another effective coefficient of risk aversion 360
23.6.2 Modelling uncertainty using the Bayesian approach 362
23.6.3 Taking ambiguity aversion into account 364
23.7 Robust Decision-Making 367

Part IX Numerical implementation 371
24 Optimizing the expected utility over the weights 375
24.1 The purpose of this chapter 375
24.2 Utility maximization – the set-up 375
24.3 The general case
24.3.1 Enforcing the budget and non-negativity constraints 380
24.3.2 Enforcing the concentration constraints 381
24.4 Optimal allocation with k determined via Maximum Entropy 381

25 Approximations 384
25.1 The purpose of this chapter 384
25.2 Utility maximization – the Gaussian case 384
25.3 Matching the moments of the true and Gaussian distributions
25.3.1 First moment 387
25.3.2 Second moments: variance 387
25.3.3 Second moments: covariance 388
25.4 Efficient optimization for different values of k 389
25.4.1 Part I: Normal-times optimization 390
25.4.2 Part II: From normal times to full optimization 391
25.4.3 Positivity constraints 394
Appendix 25.A 395

Part X Analysis of portfolio allocation 399
26 The full allocation procedure: a case study 403
26.1 The scenario and the associated Bayesian net 403
26.2 Data description 404
Contents

26.3 Analysing the body of the distribution 407
 26.3.1 Correlations and volatilities before culling 407
 26.3.2 Truncation 409
 26.3.3 Correlations and volatilities after culling 409
26.4 Fitting the body of the joint distribution 414
26.5 CAPM and the total moments 416
 26.5.1 Are we using the right betas? 419
26.6 The optimal-allocation results 420
 26.6.1 Results for logarithmic utility function 420
 26.6.2 Sensitivity to different degrees of risk aversion 421
 26.6.3 Conclusions 423
26.7 The road ahead 424

27 Numerical analysis 425
 27.1 How good is the mean-variance approximation? 425
 27.2 Using the weight expansion for the \(k \) dependence 428
 27.2.1 Gaining intuition 429
 27.3 Optimal allocation with uncertain \(k \) via Maximum Entropy: results 430

28 Stability analysis 434
 28.1 General considerations 434
 28.2 Stability with respect to uncertainty in the conditional probability tables 436
 28.2.1 Analytical expressions for the sensitivities 436
 28.2.2 Empirical results 440
 28.3 Stability with respect to uncertainty in expected returns 441
 28.3.1 Sensitivity to stressed returns 442
 28.4 Effect of combined uncertainty 447
 28.5 Stability of the allocations for high degree of risk aversion 447
 28.6 Where does the instability come from? (again) 448

29 How to use Bayesian nets: our recommended approach 453
 29.1 Some preliminary qualitative observations 453
 29.2 Ways to tackle the allocation instability 454
 29.2.1 Optimizing variance for a given return 454
 29.2.2 The Black–Litterman stabilization 455
 29.2.3 The general Bayesian stabilization 455
 29.2.4 Calibrating the utility function to risk and ambiguity aversion 458
 29.3 The lay of the land 459
 29.4 The approach we recommend 460
 Appendix 29.A: The parable of Marko and Micha 462
Appendix I: The links with the Black–Litterman approach

1 The Black–Litterman 'regularization' 465
2 The likelihood function 466
3 The prior 468
4 The posterior 470

References

Index 485
Figures

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The example of Bayesian net discussed in the text</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>The simple Bayesian net used to explain the dramatic changes in correlations</td>
<td>21</td>
</tr>
<tr>
<td>7.1</td>
<td>The efficient frontier</td>
<td>63</td>
</tr>
<tr>
<td>8.1</td>
<td>Traditional unconstrained mean-variance</td>
<td>78</td>
</tr>
<tr>
<td>8.2</td>
<td>A region of acceptability in ω-space is transformed by the linear mapping into a region of acceptability in μ-space</td>
<td>79</td>
</tr>
<tr>
<td>8.3</td>
<td>The distance between the investors views and the acceptability region in μ-space</td>
<td>79</td>
</tr>
<tr>
<td>8.4</td>
<td>A quadratic and a power utility function, when the level and the first and second derivatives have been matched</td>
<td>81</td>
</tr>
<tr>
<td>9.1</td>
<td>An example of mapping from an acceptable allocation to an acceptable set of expected returns</td>
<td>88</td>
</tr>
<tr>
<td>9.2</td>
<td>The distance between the investors’ views and the acceptability region in μ-space</td>
<td>88</td>
</tr>
<tr>
<td>9.3</td>
<td>The prior distribution and the likelihood function in the case of a reasonable overlap between the two</td>
<td>89</td>
</tr>
<tr>
<td>9.4</td>
<td>The prior distribution and the likelihood function in the case of negligible overlap between the two</td>
<td>89</td>
</tr>
<tr>
<td>9.5</td>
<td>A comparison of the Black–Litterman and the Geometric Mean-Variance allocation</td>
<td>90</td>
</tr>
<tr>
<td>11.1</td>
<td>The Bayesian net associated with four variables, A, B, C and D</td>
<td>109</td>
</tr>
<tr>
<td>11.2</td>
<td>A Bayesian net depicting a feedback-loop</td>
<td>112</td>
</tr>
<tr>
<td>11.3</td>
<td>A Bayesian net showing a case of conditional independence</td>
<td>114</td>
</tr>
<tr>
<td>11.4</td>
<td>The step-by-step construction of the arcs for the Bayesian net associated with the burglary story discussed in the text</td>
<td>120</td>
</tr>
<tr>
<td>11.5</td>
<td>Same as Figure 11.4, for the ordering of variables ${M, J, A, B, E}$</td>
<td>120</td>
</tr>
<tr>
<td>11.6</td>
<td>Same as Figure 11.4, for the ordering of variables ${M, J, E, B, A}$</td>
<td>121</td>
</tr>
<tr>
<td>11.7</td>
<td>An example of serial connection (chain)</td>
<td>123</td>
</tr>
<tr>
<td>11.8</td>
<td>An example of diverging connection (fork)</td>
<td>123</td>
</tr>
<tr>
<td>11.9</td>
<td>An example of converging connection (inverted fork, or collider)</td>
<td>124</td>
</tr>
<tr>
<td>List of figures</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>11.10 The sprinkler example discussed in the text revisited to illustrate the concept of (d)-separation</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>11.11 The Bayesian net for which the joint probabilities used in the discussion of the No-Constraints Theorem are built</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>13.1 A simple Bayesian net describing the effect of a terrorist attack on two equity indices</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>13.2 A possible modification of the Bayesian net in Figure 13.1 to describe a more realistic correlation</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>14.1 Bayesian net with several parents</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>14.2 Bayesian net with several parents (causes) and one child (effect) after introducing the inhibitors and the deterministic functions of the causes and of the inhibitors</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>15.1 The Bayesian net discussed in the text to illustrate the technique of ‘pushing the sums in’</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>15.2 The Bayesian net used to discuss the Monte-Carlo application discussed in the text</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>16.1 The first version of the Bayesian net associated with the scenario described in the text</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>16.2 First revision of the original Bayesian net shown in Figure 16.1</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>16.3 Simplification of the Bayesian net as discussed in the text</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>16.4 A further simplification of the Bayesian net as discussed in the text</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>16.5 Evolution of the Bayesian net, as discussed in the text</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>16.6 Possible values of (P(B</td>
<td>C)) as a function of (P(C</td>
<td>\tilde{A}, \tilde{B}))</td>
</tr>
<tr>
<td>16.7 Evolution of the Bayesian net</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>16.8 The simplification of the Bayesian net discussed in the text</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>16.9 A plot of the 1203 joint probabilities obtained with the Bayesian net in Figure 16.8</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>16.10 The highest-probability events sorted in order of increasing magnitude associated with the Bayesian net in Figure 16.8</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>16.11 Plot of the joint probabilities after the adjustment to the conditional probability, (P(E</td>
<td>\tilde{A}, \tilde{B}, \tilde{C})), as described in the text</td>
<td>231</td>
</tr>
<tr>
<td>16.12 Same as Figure 16.11, after sorting</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>16.13 The profit-and-loss distribution resulting from the Bayesian net in Figure 16.8, and from the assumed stress gains and losses</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>16.14 The joint probabilities associated with significant joint events as a function of the random draw of the conditional probabilities within the assigned bounds</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>17.1 The rolling correlation between changes in the time series Bond and Credit before culling the outliers</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>17.2 The rolling correlation between changes in the time series Bond and Credit after culling the outliers</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>17.3 The rolling correlation between changes in the time series Bond and Equity before culling the outliers</td>
<td>246</td>
<td></td>
</tr>
</tbody>
</table>
List of figures

17.4 The rolling correlation between changes in the time series Bond and Equity after culling the outliers 246
17.5 The distance from the centre of a distribution of two points on an equiprobability contour does not provide a useful identification of outliers 251
17.6 In the case of zero correlation between two variables, after normalizing by the standard deviation the distance from the centre does help in identifying outliers 252
17.7 Even after normalizing by the standard deviations, in the case of non-zero correlation two arrows of identical length originating from the centre can reach points on different equiprobability contours 253
17.8 The volume of the ellipsoid as a function of the number of points removed 259
17.9 The changes in the volume of the ellipsoid as a function of the number of points removed 259
17.10 The determinant of the covariance matrix as a function of the number of points removed 260
17.11 The changes in the determinant of the covariance matrix as a function of the number of points removed. 260
17.12 The determinant of the correlation matrix as a function of the number of points removed 261
17.13 The changes in the determinant of the correlation matrix as a function of the number of points removed 261
17.14 The individual elements $\rho_{ij} = Bond, Credit, Mortgage, Equity$ of the correlation matrix as a function of the number of points removed 263
17.15 Variation of the individual elements $\rho_{ij} = Bond, Credit, Mortgage, Equity$ of the correlation matrix as a function of the number of points removed. 264
17.16 Changes in the four eigenvalues of the correlation matrix as a function of the number of points removed 265
17.17 The body and the outliers for the Equity, Bond and Credit returns 265
17.18 The robust Mahalanobis distances calculated with the FASTMCD approach as a function of the observation date in the data set 266
17.19 The influence plot for Credit and Bond 266
17.20 The influence plot for Equity and Bond 267
17.21 The robust Mahalanobis distances calculated with the FASTMCD approach as a function of the observation date in the data set 268
18.1 The fit to the S&P daily returns obtained using a Gaussian and a Student-t distribution. 273
18.2 The quantile–quantile plot for the two fits in Figure 18.1 273
19.1 Gaussian copula: cumulative distributions of the four distances used to assess the goodness of fit of the copula for the last subset 285
19.2 Same as Figure 19.1 for the Student-t copula 285
<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3</td>
<td>Scatter plot between Bond and Mortgage for the five different subsets</td>
</tr>
<tr>
<td>19.4</td>
<td>Scatter plot between Bond and Equity for the five different subsets</td>
</tr>
<tr>
<td>19.5</td>
<td>The correlation coefficient between Bond and Equity calculated using a sliding window of 250 data points</td>
</tr>
<tr>
<td>19.6</td>
<td>Scatter plot of the random numbers generated with the fitted copula (and mapped inversely from [0, 1] to the real axis with the help of the fitted marginals) for asset classes Bond and Mortgage</td>
</tr>
<tr>
<td>20.1</td>
<td>The Johnson distribution for different values of the variance Ω^2 for $m = 0.16$</td>
</tr>
<tr>
<td>26.1</td>
<td>The Bayesian net used in this section of the text</td>
</tr>
<tr>
<td>26.2</td>
<td>Correlations between the asset classes calculated using a sliding window of 40 data points on the full sample (before culling)</td>
</tr>
<tr>
<td>26.3</td>
<td>Volatilities between the asset classes calculated using a sliding window of 40 data points on the full sample (before culling)</td>
</tr>
<tr>
<td>26.4</td>
<td>Key quantities monitored during the truncation</td>
</tr>
<tr>
<td>26.5</td>
<td>Correlations between the asset classes calculated using a sliding window of 40 data points after the culling</td>
</tr>
<tr>
<td>26.6</td>
<td>Volatilities between the asset classes calculated using a sliding window of 40 data points after the culling</td>
</tr>
<tr>
<td>26.7</td>
<td>Correlations between the four asset classes calculated in a sliding window of 40 data points on a long sample (no culling)</td>
</tr>
<tr>
<td>26.8</td>
<td>Correlations between the four asset classes calculated in a sliding window of 40 data points on a long sample after culling</td>
</tr>
<tr>
<td>26.9</td>
<td>An example of the fits for the Market returns, which displays both the Gaussian and the Student-t distribution best fits</td>
</tr>
<tr>
<td>26.10</td>
<td>The CAPM procedure described in the text</td>
</tr>
<tr>
<td>26.11</td>
<td>Allocations as a function of the probability of normal state ($1 - k$)</td>
</tr>
<tr>
<td>26.12</td>
<td>Same as Figure 26.11 for a power utility function with an exponent $\beta = 0.6$, corresponding to less risk aversion than in the logarithmic-utility case</td>
</tr>
<tr>
<td>26.13</td>
<td>Same as Figure 26.11 for a power utility function with an exponent $\beta = 1.4$, corresponding to greater risk aversion than in the logarithmic-utility case</td>
</tr>
<tr>
<td>27.1</td>
<td>Allocations as a function of the probability of ‘normal’ state ($1 - k$) for a logarithmic utility and using full Monte-Carlo simulation</td>
</tr>
<tr>
<td>27.2</td>
<td>Same as Figure 27.1 using the Gaussian approximation</td>
</tr>
<tr>
<td>27.3</td>
<td>Comparison of the allocations with the three different methods: full Monte-Carlo, Gaussian approximation, expansion in weights as a function of the probability of ‘normal’ state ($1 - k$)</td>
</tr>
<tr>
<td>27.4</td>
<td>The allocations produced using the expansion-in-weights approximation when the utility function used for the maximization is logarithmic</td>
</tr>
</tbody>
</table>
List of figures

27.5 Logarithmic utility (z-axis) for two sets of expected returns as a function of the allocations to three assets 431
27.6 Allocations as a function of the confidence parameter Ω in the case of truncated Gaussian distribution with mode equal to 0.2808 432
27.7 Same as Figure 27.6 for the Johnson distribution with $b = 1$ 432
28.1 Region of variability (± 3 standard deviations) of the perturbed probabilities for $s = 0.05$ 437
28.2 Same as Figure 28.1 for $s = 0.1$ 437
28.3 Histograms of the distribution of the allocations as the conditional probabilities are perturbed with $s = 0.05$ in 2000 simulations 441
28.4 Same as Figure 28.3 for $s = 0.1$ 442
28.5 Same as Figure 28.3 after enforcing the ranking of returns 443
28.6 Same as Figure 28.4 after enforcing the ranking of returns 444
28.7 Histograms of the distribution of the allocations as the stressed returns are perturbed in 2000 simulations without enforcing CAPM ranking 445
28.8 Same as Figure 28.7 after enforcing CAPM ranking 446
28.9 Histograms of the distribution of the allocations as both the stressed returns and conditional probabilities ($s = 0.05$) are perturbed 448
28.10 Histograms of the distribution of the allocations as both the stressed returns and conditional probabilities (now $s = 0.1$) are perturbed with the risk aversion coefficient, β, increased to $\beta = 6$ 449
29.1 A logarithmic utility function for a portfolio made up of a 50−50 combination of asset 1 and asset 2 457

The figures of the Bayesian net were drawn with Netica from Norsys Software Corp. (www.norsys.com).
Tables

2.1 The marginal probabilities of the four events at time T
2.2 The true (event) correlation matrix between events A, B, C, D at time T
2.3 The marginal probabilities of four events at time $T + \tau$
2.4 The true correlation matrix between events A, B, C, D at time $T + \tau$
2.5 The difference between the correlation matrix at time T and the correlation matrix at time $T + \tau$
9.1 The matrix P to represent absolute and relative views
9.2 The vector Q to represent the excess returns associated with the views in Table 9.1
11.1 The truth table for the case of three Boolean variables
11.2 The g-matrix for the Boolean net depicted in Figure 11.1
11.3 The truth table and the joint probabilities for variables A, B and C in Figure 11.1
11.4 The construction to prove the No-Constraints Theorem
11.5 The full construction to prove the No-Constraints Theorem
11.6 Multi-state joint truth table
13.1 The event correlation between the three variables in the net in Figure 13.1 for the base probabilities discussed in the text
13.2 The event correlation between the three variables in the net in Figure 13.1 for the stretched probabilities discussed in the text
13.3 The event correlation associated with the four variables in Figure 13.2
14.1 Auxiliary table used for the calculations in the text
16.1 The joint probabilities for the variables A and B
16.2 The joint probabilities for the variables A,B and C
16.3 The revised joint probability table for the first three variables
16.4 The new joint probabilities table for the variables A,B and C
16.5 The expected value and the standard deviation of the individual probabilities, and the expectation and standard deviation of the profit or loss from the portfolio

Page 19

Page 19

Page 20

Page 20

Page 20

Page 86

Page 86

Page 106

Page 113

Page 130

Page 131

Page 132

Page 134

Page 152

Page 153

Page 155

Page 186

Page 208

Page 209

Page 212

Page 217

Page 236
List of tables

19.1 p-values representing the probability of error if H_0 is rejected for the entire data set, where H_0 is the null hypothesis that the empirical multivariate distribution comes from the type of copula in the top row 283
19.2 Same as Table 19.1 for the first data subset 283
19.3 Same as Table 19.1 for the second data subset 283
19.4 Same as Table 19.1 for the third data subset 284
19.5 Same as Table 19.1 for the fourth data subset 284
19.6 Same as Table 19.1 for the fifth data subset 284
20.1 The reduced joint probability table associated with the three terminal leaves 306
21.1 The payoffs and the associated probabilities for each asset i in each state j for the example discussed in the text 324
21.2 The correlations between the three assets in our example 325
21.3 The expected returns and the standard deviations in the subjective measure obtained using the statistical analysis of the body of the distribution and the Bayesian net 325
21.4 The betas for the three assets given our subjective distribution 326
21.5 The expected returns from our subjective distribution and the expected returns that would obtain, given the views we have expressed, through the spliced distribution 326
21.6 Same as Table 21.5 but obtained by raising the π_i^{Stress} probabilities from 5% to 10%, and by reducing by 2.5% the probabilities in the normal Up and Down states 327
26.1 Joint probabilities of the market-risk-factor variables 405
26.2 Joint probabilities of the market-risk-factor variables after integrating out the variable Market 405
26.3 The gains or losses associated with the terminal leaves 406
26.4 The individual elements of the correlation matrix before and after the culling 412
26.5 The volatilities of the four asset classes after the culling 415
26.6 The p-test for the marginals of the four asset classes for the Gaussian and the Student-t distribution 416
26.7 The standard deviations for the four asset classes obtained for the full (spliced) distribution 417
26.8 The correlation matrix for the total distribution and (in parentheses) the same quantity after the culling 417
26.9 The betas obtained using the spliced distribution as described in the text 418
26.10 The normal-times, stressed and total returns obtained from spliced distribution, shown alongside the CAPM-implied returns 419
27.1 Opportunity cost, c, of the weight-expansion approximation for the logarithmic utility as a function of $1 - k$ 430
List of tables

28.1 The change in total expected return for each asset class obtained by increasing by 10% the excited return from its originally assigned value for the different values of the normalization constant k 445
28.2 Sensitivity of the allocation weights to changes in expected returns for all the asset classes and for different values of risk aversion 451
We would like to thank the many friends, colleagues, academics and professionals who have helped us by providing suggestions and correcting our errors.

In particular, we would like to acknowledge the help received by Professor Didier Sornette for the parts of book on econophysics, Sir David Forbes Hendry for his comments on our discussion of predictability in finance, Dr Attilio Meucci for the parts on entropy pooling, Professors Uppal and Garlappi for reviewing our treatment of ambiguity aversion, Professor Stoyan Stoyanov, who gave us useful pointers on the conceptual links between Extreme Value Theory, Pareto distributions and econophysics, Dr Vasant Naik for discussing with us the sections on private valuation, Professor Diebold for his support of the general approach, Dr Marcos Lopez de Prado, Ms Jean Whitmore, Mr Sebastien Page, Dr Vineer Bhansali and Dr Richard Barwell for general discussions and comments on the structure of the book, and two anonymous referees, whose comments have substantively improved both the content of the book and the presentation of the material.

We are very grateful to Cambridge University Press, and Dr Chris Harrison in particular, for the enthusiasm with which they have accepted our proposal, and for the rigour and constructive nature of the reviewing process. We found in Ms Mairi Sutherland an excellent editor, who has managed to navigate successfully the difficulties inherent in dealing with a manuscript which had patently been written a quattro mani.

We are, of course, responsible for all the remaining errors.