Cambridge University Press

978-1-107-04801-0 - Program Logics for Certified Compilers

Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds,
Gordon Stewart, Sandrine Blazy and Xavier Leroy

Excerpt

More information

Chapter 1

Introduction

An exciting development of the 21st century is that the 20th-century vision
of mechanized program verification is finally becoming practical, thanks
to 30 years of advances in logic, programming-language theory, proof-
assistant software, decision procedures for theorem proving, and even
Moore’s law which gives us everyday computers powerful enough to run all
this software.

We can write functional programs in ML-like languages and prove them
correct in expressive higher-order logics; and we can write imperative
programs in C-like languages and prove them correct in appropriately
chosen program logics. We can even prove the correctness of the verification
toolchain itself: the compiler, the program logic, automatic static analyzers,
concurrency primitives (and their interaction with the compiler). There
will be few places for bugs (or security vulnerabilities) to hide.

This book explains how to construct powerful and expressive program
logics based on separation logic and Indirection Theory. It is accompanied
by an open-source machine-checked formal model and soundness proof, the
Verified Software Toolchain' (VST), formalized in the Coq proof assistant.
The VST components include the theory of separation logic for reasoning
about pointer-manipulating programs; indirection theory for reasoning
with “step-indexing” about first-class function pointers, recursive types,

http://vst.cs.princeton.edu

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9781107048010
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-04801-0 - Program Logics for Certified Compilers

Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds,
Gordon Stewart, Sandrine Blazy and Xavier Leroy

Excerpt

More information

1. INTRODUCTION 2

recursive functions, dynamic mutual-exclusion locks, and other higher-
order programming; a Hoare logic (separation logic) with full reasoning
about control-flow and data-flow of the C programming language; theories
of concurrency for reasoning about programming models such as Pthreads;
theories of compiler correctness for connecting to the CompCert verified C
compiler; theories of symbolic execution for implementing foundationally
verified static analyses. VST is built in a modular way, so that major
components apply very generally to many kinds of separation logics, Hoare
logics, and step-indexing semantics.

One of the major demonstration applications comprises certified pro-
gram logics and certified static analyses for the C light programming
language. C light is compiled into assembly language by the CompCert?
certified optimizing compiler. [62] Thus, the VST is useful for verified for-
mal reasoning about programs that will be compiled by a verified compiler.
But Parts I, II, and V of this book show principles and Coq developments
that are quite independent of CompCert and have already been useful in
other applications of separation logics.

PROGRAM LOGICS FOR CERTIFIED COMPILERS. Software is complex and prone
to bugs. We would like to reason about the correctness of programs,
and even to prove that the behavior of a program adheres to a formal
specification. For this we use program logics: rules for reasoning about
the behavior of programs. But programs are large and the reasoning rules
are complex; what if there is a bug in our proof (in our application of the
rules of the program logic)? And how do we know that the program logic
itself is sound—that when we conclude something using these rules, the
program will really behave as we concluded? And once we have reasoned
about a program, we compile it to machine code; what if there is a bug in
the compiler?

We achieve soundness by formally verifying our program logics, static
analyzers, and compilers. We prove soundness theorems based on foun-
dational specifications of the underlying hardware. We check all proofs by
machine, and connect the proofs together end-to-end so there are no gaps.

’http://compcert.inria.fr

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9781107048010
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-04801-0 - Program Logics for Certified Compilers

Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds,
Gordon Stewart, Sandrine Blazy and Xavier Leroy

Excerpt

More information

1. INTRODUCTION 3

DEFINITIONS. A program consists of instructions written in a programming
language that direct a computer to perform a task. The behavior of a
program, i.e. what happens when it executes, is specified by the operational
semantics of the programming language. Some programming languages
are machine languages that can directly execute on a computer; others
are source languages that require translation by a compiler before they can
execute.

A program logic is a set of formal rules for static reasoning about the
behavior of a program; the word static implies that we do not actually
execute the program in such reasoning. Hoare logic is an early and still very
important program logic. Separation logic is a 21st-century variant of Hoare
logic that better accounts for pointer and array data structures.

A compiler is correct with respect to the specification of the operational
semantics of its source and its target languages if, whenever a source
program has a particular defined behavior, and when the compiler translates
that program, then the target program has a corresponding behavior. [38]
The correspondence is part of the correctness specification of the compiler,
along with the two operational semantics. A compiler is proved correct if
there is a formal proof that it meets this specification. Since the compiler
is itself a program, this formal proof will typically be using the rules of a
program logic for the implementation language of the compiler.

Proofs in a logic (or program logic) can be written as derivation trees in
which each node is the application of a rule of the system. The validity of a
proof can be checked using a computer program. A machine-checked proof
is one that has been checked in this way. Proof-checking programs can be
quite small and simple, [12] so one can reasonably hope to implement a
proof-checker free of bugs.

It is inconvenient to construct derivation trees “by hand.” A proof
assistant is a tool that combines a proof checker with a user interface that
assists the human in building proofs. The proof assistant may also contain
algorithms for proof automation, such as tactics and decision procedures.

A certified compiler is one proved correct with a machine-checked proof.
A certified program logic is one proved sound with a machine-checked proof.
A certified program is one proved correct (using a program logic) with a
machine-checked proof.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9781107048010
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-04801-0 - Program Logics for Certified Compilers

Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds,
Gordon Stewart, Sandrine Blazy and Xavier Leroy

Excerpt

More information

1. INTRODUCTION 4

A static analysis algorithm calculates properties of the behavior of a
program without actually running it. A static analysis is sound if, whenever
it claims some property of a program, that property holds on all possible
behaviors (in the operational semantics). The proof of soundness can be
done using a (sound) program logic, or it can be done directly with respect
to the operational semantics of the programming language. A certified static
analysis is one that is proved sound with a machine-checked proof—either
the static analysis program is proved correct, or each run of the static
analysis generates a machine-checkable proof about a particular instance.

In Part I we will review Hoare logics, operational semantics, and
separation logics. For a more comprehensive introduction to Hoare
logic, the reader can consult Huth and Ryan [54] or many other books;
For operational semantics, see Harper [47, Parts I & II] or Pierce [75].
For an introduction to theorem-proving in Coq, see Pierce’s Software
Foundations[76] which also covers applications to operational semantics
and Hoare logic.

THE VST SEPARATION LOGIC FOR C LIGHT is a higher-order impredicative
concurrent separation logic certified with respect to CompCert. Separation
logic means that its assertions specify heap-domain footprints: the assertion
(pPx) *(qPy) describes a memory with exactly two disjoint parts; one
part has only the cell at address p with contents x, and the other has
only address q with contents y, with p # q. Concurrent separation logic
is an extension that can describe shared-memory concurrent programs
with Dijkstra-Hoare synchronization (e.g., Pthreads). Higher-order means
that assertions can use existential and universal quantifiers, the logic can
describe pointers to functions and mutex locks, and recursive assertions can
describe recursive data types such as lists and trees. Impredicative means
that the 3 and V quantifiers can even range over assertions containing
quantifiers. Certified means that there is a machine-checked proof of
soundness with respect to the operational semantics of a source language
of the CompCert C compiler.

A separation logic has assertions p— x where p ranges over a particular
address type A, x ranges over a specific type V of values, and the assertion
as a whole can be thought of as a predicate over some specific type of

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9781107048010
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-04801-0 - Program Logics for Certified Compilers

Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds,
Gordon Stewart, Sandrine Blazy and Xavier Leroy

Excerpt

More information

1. INTRODUCTION 5

“heaps” or “computer memories” M. Then the logic will have theorems
such as (p—x)*(gP y) F (g y)*(pHx).

We will write down generic separation logic as a theory parameterizable
by types such as A, V, M, and containing generic axioms such as P*Q - Q*P.
For a particular instantiation such as CompCert C light, we will instantiate
the generic logic with the types of C values and C expressions.

Chapter 3 will give an example of an informal program verification
in “pencil-and-paper” separation logic. Then Part V shows the VST tools
applied to build a foundationally sound toolchain for a toy language, with
a machine-verified separation-logic proof of a similar program. Part III
demonstrates the VST tools applied to the C language, connected to the
CompCert compiler, and shows machine-checked verification C programs.

. . Specification of Hoare C light program logic,
Chent VICW axioms for C light Chapter 24

|
Assertion operators of Assertions, Ch. 23
VST separation logic

|
C light expression Shares, Ch. 11
semantics
|
C light Local/global var.

ST environments
Values P

Separation logic
with indirection,
Ch. 8,11,12,15-21

Generic axioms of
separation logic &
indirection theory

Figure 1.1: Client view of VST separation logic

FIGURE 1.1 sHOWS THE client view of the VST separation logic for C light—
that is, the specification of the axiomatic semantics. Users of the program
logic will reason directly about CompCert values (integers, floats, pointers)
and C-light expression evaluation. Users do not see the operational

semantics of C-light commands, or CompCert memories. Instead, they use

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9781107048010
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-04801-0 - Program Logics for Certified Compilers

Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds,
Gordon Stewart, Sandrine Blazy and Xavier Leroy

Excerpt

More information

1. INTRODUCTION 6

the axiomatic semantics—the Hoare judgment and its reasoning rules—to
reason indirectly about memories via assertions such as p— x.

The modular structure of the client view starts (at bottom left of Fig. 1.1)
with the specification of the C light language, a subset of C chosen for its
compatibility with program-verification methods. We have C values (such
as integers, floats, and pointers); the abstract syntax of C light, and
the mechanism of evaluating C light expressions. The client view treats
statements such as assignment and looping abstractly via an axiomatic
semantics (Hoare logic), so it does not expose an operational semantics.

At bottom right of Figure 1.1 we have the operators and axioms of
separation logic and of indirection theory. At center are the assertions of
our program logic for C light, which (as the diagram shows) make use of
C-light expressions and of our logical operators. At top, the Hoare axioms
for C light complete the specification of the program logic.

Readers primarily interested in using the VST tools may want to read
Parts I through III, which explain the components of the client view.

THE SOUNDNESS PROOF OF THE VST SEPARATION LOGIC is constructed by
reasoning in the model of separation logic. Figure 1.2 shows the structure
of the soundness proof. At bottom left is the specification of C-light
operational semantics. We have a generic theory of safety and simulation
for shared-memory programs, and we instantiate that into the “C light
safety” theory.

At bottom right (Fig. 1.2) is the theory of separation algebras, which form
models of separation logics. The assertions of our logic are predicates on the
resource maps that, in turn, model CompCert memories. The word predicate
is a technical feature of our Indirection Theory that implicitly accounts
for “resource approximation,” thus allowing higher-order reasoning about
circular structures of pointers and resource invariants.

We construct a semantic model of the Hoare judgment, and use this
to prove sound all the judgment rules of the separation logic. All this is
encapsulated in a Coq module called SeparationLogicSoundness.

Parts IV through VI explain the components of Figure 1.2, the semantic
model and soundness proof of higher-order impredicative separation logic
for CompCert C light.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9781107048010
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-04801-0 - Program Logics for Certified Compilers
Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds,
Gordon Stewart, Sandrine Blazy and Xavier Leroy

Excerpt
More information
1. INTRODUCTION 7
SOU.IldIleSS Certified separation logic for C light
Proof (SeparationLogicSoundness)
\
. Specification of Hoare
proof: SOIEhiEE proofs axioms for C light
Chapter 43 of Hoare axioms (SeparationLogic)
I

Model of Hoare

Model of Hoare

judgment: judgment (semax)
Chapter 43 CTieht sater N\
ight safe
= 4 Model of assertions in
: VST separation logic
Safety: Generic theory
Chapter 33 of safety and Environments | Resource maps
simulation (environ) | (rmap) sep. alg.
|
- Generic operators
cohte . C light . .
gﬁlght- ; C light synta% & of separation logic
apter 34 ggnn:;ll?iléc; GXPTGS?O" | Shares | | Ageable sep. algs.
c c St Generic theory of Indirection
ompLert: NMemories | Values i
Chapter 31 separation algebras theory

Figure 1.2: Structure of the separation-logic soundness proof

The Coq development of the Verified Software Toolchain is available at
vst.cs.princeton.edu and is structured in a root directory with several

subdirectories:

compcert: A few files copied from the CompCert verified C compiler, that
comprise the specification of the C light programming language.

© in this web service Cambridge University Press

www.cambridge.org

http://www.cambridge.org/9781107048010
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-04801-0 - Program Logics for Certified Compilers

Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds,
Gordon Stewart, Sandrine Blazy and Xavier Leroy

Excerpt

More information

1. INTRODUCTION 8

sepcomp: Theory of how to specify shared-memory interactions of
CompCert-compiled programs.

msl: Mechanized Software Library, the theory of separation algebras, share
accounting, and generic separation logics.

veric: The program logic: a higher-order splittable-shares concurrent
separation logic for C light.

floyd: A proof-automation system of lemmas and tactics for semiautomated
application of the program logic to C programs (named after Robert
W. Floyd, a pioneer in program verification).

progs: Applications of the program logic to sample programs.
veristar: A heap theorem prover using resolution and paramodulation.

A proof development, like any software, is a living thing: it is continually
being evolved, edited, maintained, and extended. We will not tightly couple
this book to the development; we will just explain the key mathematical
and organizational principles, illustrated with snapshots from the Coq code.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9781107048010
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-04801-0 - Program Logics for Certified Compilers

Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds,
Gordon Stewart, Sandrine Blazy and Xavier Leroy

Excerpt

More information

Part1

Generic separation logic

Synopsis: Separation logic is a formal system for static reasoning about
pointer-manipulating programs. Like Hoare logic, it uses assertions that
serve as preconditions and postconditions of commands and functions. Unlike
Hoare logic, its assertions model anti-aliasing via the disjointness of memory
heaplets. Separation algebras serve as models of separation logic. We can
define a calculus of different kinds of separation algebras, and operators
on separation algebras. Permission shares allow reasoning about shared
ownership of memory and other resources. In a first-order separation logic
we can have predicates to describe the contents of memory, anti-aliasing of
pointers, and simple (covariant) forms of recursive predicates. A simple case
study of straight-line programs serves to illustrate the application of separation
logic.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9781107048010
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-04801-0 - Program Logics for Certified Compilers

Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds,
Gordon Stewart, Sandrine Blazy and Xavier Leroy

Excerpt

More information

10

Chapter 2

Hoare logic

Hoare logic is an axiomatic system for reasoning about program behavior
in a programming language. Its judgments have the form {P} ¢ {Q}, called
Hoare triples.! The command c is a statement of the programming language.
The precondition P and postcondition Q are assertions characterizing the
state before and after executing c.

In a Hoare logic of total correctess, {P} c {Q} means, “starting from any
state on which the assertion P holds, execution of the command ¢ will
safely terminate in a state on which the assertion Q holds.”

In a Hoare logic of partial correctness, {P}c {Q} means, “starting from
any state on which the assertion P holds, execution of the command ¢ will
either infinite loop or safely terminate in a state on which the assertion Q
holds.” This book mainly addresses logics of partial correctness.>

"Hoare wrote his triples P{c}Q with the braces quoting the commands, which makes
sense when quoting program commands within a logical statement. Wirth used the braces as
comment brackets in the Pascal language to encourage assertions as comments, leading to
the style {P}c{Q}, which makes more sense when quoting assertions within a program. The
Wirth style is now commonly used everywhere, regardless of where it makes sense.

2 Some of our semantic techniques work best in a partial-correctness setting. We make
the excuse that total correctness—knowing that a program terminates—is little comfort
without also knowing that it terminates in less than the lifetime of the universe. It is better
to have a resource bound, which is actually a form of partial correctness. Our techniques do
extend to logics of resource-bounds [39].

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9781107048010
http://www.cambridge.org
http://www.cambridge.org

	http://www:
	cambridge:
	org:

	9781107048010:

