CAMBRIDGE TRACTS IN MATHEMATICS

General Editors

B. BOLLOBÁS, W. FULTON, A. KATOK, F. KIRWAN,
P. SARNAK, B. SIMON, B. TOTARO

203 A Primer on the Dirichlet Space
A complete list of books in the series can be found at www.cambridge.org/mathematics.
Recent titles include the following:

169. Quantum Stochastic Processes and Noncommutative Geometry. By K. B. Sinha and D. Goswami
170. Polynomials and Vanishing Cycles. By M. Tibăr
171. Orbifolds and Stringy Topology. By A. Adem, J. Leida, and Y. Ruan
172. Rigid Cohomology. By B. Le Stum
173. Enumeration of Finite Groups. By S. R. Blackburn, P. M. Neumann, and G. Venkataraman
174. Forcing Idealized. By J. Zapletal
175. The Large Sieve and its Applications. By E. Kowalski
176. The Monster Group and Majorana Involutions. By A. A. Ivanov
178. Analysis in Positive Characteristic. By A. N. Kochubei
179. Dynamics of Linear Operators. By F. Bayart and É. Matheron
180. Synthetic Geometry of Manifolds. By A. Kock
181. Totally Positive Matrices. By A. Pinkus
186. Dimensions, Embeddings, and Attractors. By J. C. Robinson
188. Modern Approaches to the Invariant Subspace Problem. By I. Chalendar and J. R. Partington
191. Malliavin Calculus for Lévy Processes and Infinite-Dimensional Brownian Motion. By H. Oswald
193. Distribution Modulo One and Diophantine Approximation. By Y. Bugeaud
194. Mathematics of Two-Dimensional Turbulence. By S. Kuksin and A. Shirikyan
196. The Theory of Hardy’s Z-Function. By A. Ivić
197. Induced Representations of Locally Compact Groups. By E. Kaniuth and K. F. Taylor
199. Combinatorics of Minuscule Representations. By R. M. Green
200. Singularities of the Minimal Model Program. By J. Kollár
201. Coherence in Three-Dimensional Category Theory. By N. Gurski
A Primer on the Dirichlet Space

OMAR EL-FALLAH
Université Mohammed V-Agdal,
Rabat, Morocco

KARIM KELLAY
Université Bordeaux 1,
Bordeaux, France

JAVAD MASHREGHI
Université Laval, Québec,
Canada

THOMAS RANSFORD
Université Laval, Québec,
Canada
To:
Zaïnab and Hiba,
Anna and Maël,
Dorsa, Parisa and Golsa,
Julian and Étienne
Contents

Preface

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>page xi</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Basic notions</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>The Dirichlet space</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Reproducing kernels</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Multiplication</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Composition</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>Douglas’ formula</td>
<td>8</td>
</tr>
<tr>
<td>1.6</td>
<td>Weighted Dirichlet spaces</td>
<td>11</td>
</tr>
<tr>
<td>Notes on Chapter 1</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Capacity</td>
<td>15</td>
</tr>
<tr>
<td>2.1</td>
<td>Potentials, energy and capacity</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Equilibrium measures</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Cantor sets</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Logarithmic capacity</td>
<td>24</td>
</tr>
<tr>
<td>Notes on Chapter 2</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Boundary behavior</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>The Cauchy transform</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>Beurling’s theorem</td>
<td>31</td>
</tr>
<tr>
<td>3.3</td>
<td>Weak-type and strong-type inequalities</td>
<td>35</td>
</tr>
<tr>
<td>3.4</td>
<td>Sharpness results</td>
<td>39</td>
</tr>
<tr>
<td>3.5</td>
<td>Exponentially tangential approach regions</td>
<td>45</td>
</tr>
<tr>
<td>Notes on Chapter 3</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Zero sets</td>
<td>50</td>
</tr>
<tr>
<td>4.1</td>
<td>Zero sets and uniqueness sets</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>Moduli of zero sets</td>
<td>54</td>
</tr>
<tr>
<td>4.3</td>
<td>Boundary zeros I: sets of capacity zero</td>
<td>61</td>
</tr>
<tr>
<td>4.4</td>
<td>Boundary zeros II: Carleson sets</td>
<td>64</td>
</tr>
</tbody>
</table>
Contents

4.5 Arguments of zero sets 67
Notes on Chapter 4 69

5 Multipliers 71
5.1 Definition and elementary properties 71
5.2 Carleson measures 76
5.3 Pick interpolation 84
5.4 Zeros of multipliers 89
Notes on Chapter 5 91

6 Conformal invariance 93
6.1 Möbius invariance 93
6.2 Composition operators 96
6.3 Compactness criteria 102
Notes on Chapter 6 106

7 Harmonically weighted Dirichlet spaces 108
7.1 D_{μ}-spaces and the local Dirichlet integral 108
7.2 The local Douglas formula 110
7.3 Approximation in D_{μ} 115
7.4 Outer functions 117
7.5 Lattice operations in D_{μ} 122
7.6 Inner functions 125
Notes on Chapter 7 130

8 Invariant subspaces 132
8.1 The shift operator on D_{μ} 132
8.2 Characterization of the shift operator 135
8.3 Invariant subspaces of D_{μ} 140
Notes on Chapter 8 145

9 Cyclicity 146
9.1 Cyclicity in D_{μ} 146
9.2 Cyclicity in D and boundary zero sets 151
9.3 The Brown–Shields conjecture 154
9.4 Measure conditions and distance functions 159
9.5 Cyclicity via duality 166
9.6 Bergman–Smirnov exceptional sets 171
Notes on Chapter 9 179

Appendix A Hardy spaces 181
A.1 Hardy spaces 181
A.2 Inner and outer functions 183
A.3 The Smirnov class 185
Contents

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>The Hardy–Littlewood maximal function</td>
<td>187</td>
</tr>
<tr>
<td>B.1</td>
<td>Weak-type inequality for the maximal function</td>
<td>187</td>
</tr>
<tr>
<td>C</td>
<td>Positive definite matrices</td>
<td>189</td>
</tr>
<tr>
<td>C.1</td>
<td>Basic facts about positive definite matrices</td>
<td>189</td>
</tr>
<tr>
<td>C.2</td>
<td>Hadamard products</td>
<td>190</td>
</tr>
<tr>
<td>D</td>
<td>Regularization and the rising-sun lemma</td>
<td>193</td>
</tr>
<tr>
<td>D.1</td>
<td>Increasing regularization</td>
<td>193</td>
</tr>
<tr>
<td>D.2</td>
<td>Proof of the regularization lemma</td>
<td>195</td>
</tr>
</tbody>
</table>

References		197
Index of notation		205
Index		207
Preface

The three classical Hilbert spaces of holomorphic functions in the unit disk are the Hardy, Bergman and Dirichlet spaces. There are several excellent texts covering the Hardy space and the Bergman space. However, to the best of our knowledge, up to now there has been no book devoted to the Dirichlet space. When we began our respective researches into the Dirichlet space, we found ourselves handicapped by the fact that the necessary background information was scattered around the literature, sometimes contained in articles that were difficult to follow. For this reason we began to think about writing an introduction that would be suitable for researchers and graduate students seeking a solid background in the subject. The more we learned about this topic, the more we became convinced that it contains many beautiful ideas that deserve a systematic exposition.

The name Dirichlet space derives from its definition in terms of the so-called Dirichlet integral, arising in Dirichlet’s method for solving Laplace’s equation (sometimes called the Dirichlet principle). As far as we can determine, the first appearance of the Dirichlet space under that name dates back to two articles of Beurling and Deny in 1958 and 1959, but in fact the notion existed and had been studied at least since Beurling’s thesis, which was published in 1933 and written even a little earlier. In the years that followed, Beurling and Carleson laid the foundations of the theory and, after their pioneering work, many other distinguished mathematicians made important contributions.

Why study the Dirichlet space? Here are a few reasons.

1. The Hardy space corresponds to ℓ^2, the Hilbert space of square-summable sequences. One of the main advantages of thinking of it as a function space is that the shift operator on ℓ^2 becomes simply multiplication by z. If one is interested in weighted shifts on ℓ^2, which are very important in operator theory, then one should consider multiplication by z on a weighted function
space. The two most basic non-constant weights lead one immediately to the Dirichlet and Bergman spaces.

(2) The Dirichlet integral of a holomorphic function f has a very natural geometric interpretation. It is exactly the area of the image of f, counted according to multiplicity. Seen this way, it is obviously invariant under precomposition with every Möbius automorphism of the unit disk. It is a remarkable fact that this Möbius-invariance property characterizes the Dirichlet space among all Hilbert function spaces on the disk.

(3) The Dirichlet space is closely related to logarithmic potential theory. In particular, the notions of energy and logarithmic capacity play a prominent role in the theory. This reflects Beurling’s vision of the subject, and yields interesting interactions with physics.

(4) The Dirichlet integral is the motivating example of the abstract notion of a Dirichlet form, first introduced by Beurling and Deny in the articles mentioned above. Dirichlet forms have become a fundamental tool in probability and semigroup theory (though this is not an aspect that will be developed in this book).

(5) From many points of view, the Dirichlet space is a borderline case. For example, it is very nearly an algebra, but not quite. This borderline nature makes it an interesting and challenging example of a function space. Many important questions remain unsolved, and the Dirichlet space is still an active area of research.

What is in the book? To get a quick idea, imagine being presented with a function space on the unit disk. Several standard questions naturally arise. For example:

- What can be said about the boundary behavior of functions in the space?
- Are there simple characterizations of zero sets and uniqueness sets?
- What can we say about interpolation?
- Is the space an algebra? If not, then what are the multipliers?
- How rich is the operator theory on this function space? For example, can we classify the shift-invariant subspaces? Which functions are cyclic?

In the case of the Hardy space, the answers to all these questions are well known and important. By contrast, in the Dirichlet space, some of the questions have been only partially answered, and even where the complete answers are known, they are more subtle. This is the subject of this book.

Perhaps it is also worth mentioning what is not in the book. As it is meant to be a primer, we do not pretend to give an exhaustive treatment of the subject, and certain topics, such as interpolating sequences and the corona problem, have been omitted completely (with much regret). We have decided to
Preface

restrict ourselves to the classical Dirichlet space, treating other variants such as weighted Dirichlet spaces when they contribute directly to understanding the classical case.

The prerequisites are a knowledge of standard complex analysis, measure theory and functional analysis. Also, we have taken for granted a certain familiarity with Hardy spaces, the necessary background being summarized briefly in an appendix. We do however develop the notion of logarithmic capacity \textit{ab initio}, since it turns up throughout the book.

There are exercises at the end of most of the sections, ranging from routine calculations to barely disguised theorems. We have tried our best to attribute results correctly, in notes at the end of each chapter. However, history is sometimes complicated, and we apologize if we have fallen short of our aim.

In the course of writing the book, we have benefited from discussions with many mathematicians. In particular, we thank Alexandru Aleman, Nicola Arcozzi, Sasha Borichev, Håkan Hedenmalm, Stefan Richter, Bill Ross, Kristian Seip and Andrew Wynn. Also we thank Jérémie Rostand for his help with the illustrations. We are grateful to Roger Astley and his colleagues at Cambridge University Press for their advice and encouragement. Part of this book was written at the CIRM (Luminy), and we express our gratitude to the CIRM for its hospitality. We gratefully acknowledge the financial support of the following granting bodies: CNRST and the Hassan II Academy of Science and Technology (OE), PICS-CNRS (KK), NSERC (JM and TR) and the Canada research chairs program (TR). Of course, we owe a huge debt of gratitude to our spouses, Salma, Nathalie, Shahzad and Line, for supporting us and putting up with us while the book was being written. Last, but not least, we thank our children for constantly reminding us that there are things even more important than mathematics. We dedicate the book to them.