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Introduction

Our book is devoted to the structure of the general solution of the Einstein

equations with a cosmological singularity. We cover Einstein-matter systems in

four and higher space-time dimensions.

Under the terminology “cosmological singularity,” we mean a singularity in

time, i.e., a spacelike singularity on a “submanifold” that can be viewed as

the limit of a family of regular spacelike hypersurfaces forming (locally) a

Gaussian foliation, such that the curvature invariants together with invariant

characteristics of matter fields diverge as one tends to this submanifold.

The nonlinearities of the Einstein equations are notably known to prevent the

construction of an exact general solution. From this perspective, the BKL work

which describes the asymptotic general behavior of the gravitational field in four

space-time dimensions as one approaches a spacelike singularity, is quite unique

and exceptional. The central attainment of the BKL theory is the analysis of

the delicate relationship between the time derivatives and the spatial gradients

in the gravitational field equations near the singularity. The main technical idea

of the BKL approach consists in identifying among the huge number of spatial

gradients, those terms that are of the same importance as the time derivatives.

In the vicinity of the singularity, these terms are in no way negligible. They act

during the whole course of evolution up to the singularity, and it is actually due

to these spatial gradients that oscillations do arise.

A remarkable simplifying feature nevertheless emerges as one tends to the sin-

gularity. This is the fact that the spatial gradient terms that must be retained in

the dynamical equations of motion can be asymptotically represented as the

products of some functions of the undifferentiated (in space) “scale factors”

(which represent how distances along independent spatial directions evolve with

time) by some slowly varying coefficients containing spacelike derivatives. This

nontrivial separation springing up in the vicinity of the singularity leads to grav-

itational equations of motion which effectively reduce to a system of ordinary

differential equations in time for the scale factors – one such system at each

point of 3-space – because in the leading approximation, all relevant coefficients
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2 Introduction

containing spacelike derivatives enter these equations solely as external (albeit,

dynamically crucial) time-independent parameters.

Our presentation of the structure of the general solution of the Einstein

equations with a cosmological singularity starts with vacuum gravity in four

dimensions, where we follow the original BKL derivation. All key ideas and

ingredients are already present in this model. We derive the effective dynam-

ics and exhibit its oscillatory, chaotic behavior in Chapter 1. The effect of the

“rotation of the Kasner axes,” which appears in addition to the never-ending

changes of Kasner exponents, is in particular carefully discussed. Some of the

more technical derivations regarding this chapter are relegated to Appendix A.

The effective description of the asymptotic evolution in terms of ordinary

differential equations can be reformulated as the motion of a particle in some

external potential. Furthermore, it is possible to mimic the essential features of

the BKL system of ordinary differential equations at any given point by con-

sidering spatially homogeneous cosmological models that have the property that

their (non-abelian) homogeneity group leads to a spatial curvature for which the

aforementioned dominating spatial gradients are nonzero. Such is the case for

the spatially homogeneous models of so-called Bianchi types VIII and IX. The

spatial curvature terms become, in the particle picture, the reflecting sharp wall

potentials responsible for the oscillatory regime.

For the case of diagonal homogeneous cosmological models of Bianchi IX type,

the potential has been introduced and investigated by C. Misner and D. Chitre

[130, 35]. A billiard picture grew out from the work of these authors, which was

very inspirational for future developments.

Chapter 2 is devoted to homogeneous cosmological models and an explana-

tion of these developments. We also exhibit the rotation of the Kasner axes for

non-diagonal spatial metrics. Appendix B provides more information about spa-

tial homogeneity and gives, in particular, the Bianchi classification of spatially

homogeneous models.

Chapter 3 discusses then the nature of the chaotic behavior near the cosmo-

logical singularity. The interesting phenomenon of “gravitational turbulence” is

exhibited. Due to this phenomenon, a systematic growth of the spatial gradients

arises when one approaches the singularity. At the end of this chapter we indicate

that such growth does not invalidate the BKL analysis.

The BKL analysis was originally carried out for pure gravity in four space-time

dimensions. However, the BKL approach can readily be extended to include

matter, or by going to higher dimensions. One finds then that the same analysis

of the delicate relationship between the time derivatives and the spatial gradients

in the field equations near the singularity goes through, ending up again with an

effective description of the dynamics at each spatial point in terms of a system of

ODEs with respect to time of the “scale factors” (which also now include some

of the scalar fields, if any).

What is new is that for some systems, spatial gradients are subdominant

and the assertion that “only time derivatives are relevant near the singularity”
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Introduction 3

becomes literally correct. Such singularities are “velocity-dominated” in the ter-

minology of [66]. In some of the velocity-dominated models, the general solution

is of non-oscillatory character and has simple Kasner-like power-law asymp-

totics near the singularity (at each spatial point). Examples are given by gravity

coupled to a scalar field [16, 18], or gravity coupled to matter with a stiff equa-

tions of state, or pure gravity in space-time dimensions greater than or equal to

11 [63, 62]. In those cases, one can actually write down an explicit power-law

asymptotic form of the metric valid all the way to the singularity, which con-

tains as many arbitrary functions of space as the general solution must do, and

demonstrate directly that this explicit form of the metric asymptotes an exact

solution as one approaches the singularity [18, 3, 52]. This provides an indepen-

dent check of the validity of the BKL procedure for such systems, which is much

more explicit than for oscillatory models, where there is only the original BKL

argument, which is more indirect.

These developments are first given in Chapter 4 by following the BKL

approach. Perfect and viscous fluids, Yang Mills and Electromagnetic fields and

scalar fields in four space-time dimensions are treated, as well as pure gravity in

higher dimensions. [The general solution involving a classical spinor field is also

considered because it involves interesting algebra, but because of its somewhat

unphysical nature, its discussion is given in Appendix C.] We find that while

the oscillatory behavior can be suppressed for some Einstein-matter models, it

is present for some others. Which case arises depends on the matter content and

on the space-time dimension.

The second part of our book is devoted to the billiard reformulation of the

BKL behavior. Although the billiard picture originally arose in the context of

homogeneous cosmological models, it is important to realize, however – and

this turns out to be crucial for extensions to more general models – that the

billiard motion also captures the dynamical behavior in the inhomogeneous case

and is by no means tied to spatial homogeneity. While a single billiard suffices

for homogeneous models, one gets one such billiard at each spatial point in

the generic case. In other words, the billiard description is quite general. This

is explained in Chapter 5, where we construct the billiard for pure Einstein

gravity in four dimensions without any simplifying symmetry assumption. We

follow the modern billiard point of view [45, 46, 51], based on the Iwasawa

decomposition of the spatial metric and on a radial projection of the motion

of the scale factors on the relevant hyperbolic space. On the technical side, the

modern derivation streamlines the original billiard analysis by using a description

in which the potential and the reflecting walls remain stationary in the vicinity of

the singularity, which makes the analysis of their influence and their geometrical

structure much more transparent.

The billiard viewpoint also applies to gravitational theories involving other

matter fields, and in different space-time dimensions. This is explained in Chap-

ter 6. We extend there the billiard analysis to arbitrary space-time dimensions

≥ 4, and to general systems containing gravity consistently coupled to matter
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4 Introduction

(scalar and p-form) fields through second-order partial differential equations.

We also indicate how the billiard point of view enlightens some of the results

obtained in Chapter 4 through the original BKL approach.

Somewhat unexpectedly, the generalization of the billiard description gave rise

to a remarkable development: it led directly to the discovery of an intriguing con-

nection between the BKL asymptotic regime and Coxeter groups of reflections in

hyperbolic space. This connection holds for the majority of theories of interest

from a fundamental physical point of view, which includes pure gravity in D

dimensions as well as various supergravity models [47]. It emerges because the

billiard table is described in those cases by a convex polyhedron in hyperbolic

space bounded by hyperplanes that make acute angles that are integer submulti-

ples of π. This is quite remarkable in view of the fact that the angles depend on

various discrete or continuous parameters: the space-time dimension, the ranks

of the p-forms (if any), as well as the dilaton couplings (if dilatons are present).

For all theories of physical interest, the relevant billiard region is thus a Coxeter

polyhedron (i.e., a convex polyhedron with all diehedral angles equal to integer

submultiples of π). This means that it is a fundamental domain for the group of

reflections in the billiard walls. The motion is a succession of such reflections, and

thus defines elements of that group. But there is more. (1) The billiard table is a

simplex, and this is also remarkable. Indeed, the number of walls following from

the Lagrangian grows much faster than the dimension of the billiard table, but

only a small subset of these walls, yielding a simplex, are dominant and relevant

for the billiard description. The Coxeter group is thus a “simplex Coxeter group.”

(2) Furthermore, the billiard walls come with a natural normalization and define

through their normalized scalar products 2
(αi|αj)
(αi|αi)

a matrix wich turns out to be

the Cartan matrix of a Lorentzian Kac–Moody algebra. The simplex Coxeter

group is thus the Weyl group of a Lorentzian Kac–Moody algebra, and the

billiard region can be identified with its fundamental Weyl chamber.

These demonstrated properties have led to a conjecture that goes beyond

the BKL analysis and which asserts that the corresponding infinite-dimensional

Kac–Moody algebra itself might be a symmetry of an appropriate completion

of the theory, the BKL Coxeter group being the signal of this huge symmetry.

If true, this so-called Hidden Symmetry Conjecture would create promising new

perspectives for the development of gravitation theory. However, the Hidden

Symmetry Conjecture has not been proven yet, and therefore falls outside the

scope of this book, which concentrates only on well-established facts. We refer

to the review [51] for more information.

These intriguing developments on the connection with Coxeter groups are

treated in Chapter 7, with additional information of a mathematical nature given

in Appendix D.
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