FLOW MEASUREMENT HANDBOOK

Flow Measurement Handbook is a reference for engineers on flow measurement techniques and instruments. It strikes a balance between laboratory ideas and realities of field experience and provides practical advice on design, operation and performance of flowmeters.

It begins with a review of essentials: accuracy, flow, selection and calibration methods. Each chapter is then devoted to a flowmeter class and includes information on design, application, installation, calibration and operation.

Among the flowmeters discussed are differential pressure devices such as orifice and Venturi; volumetric flowmeters such as positive displacement, turbine, vortex, electromagnetic, magnetic resonance, ultrasonic and acoustic; multiphase flowmeters; and mass meters such as thermal and Coriolis. There are also chapters on probes, verification and remote data access.

Roger C. Baker has worked for many years in industrial flow measurement. He studied at Cambridge and Harvard Universities and has held posts at Cambridge University, Imperial College and Cranfield, where he set up the Department of Fluid Engineering and Instrumentation. He has held visiting professorships at Cranfield and Warwick University.
Flow Measurement Handbook

INDUSTRIAL DESIGNS, OPERATING PRINCIPLES, PERFORMANCE, AND APPLICATIONS

Second Edition
Roger C. Baker
To Liz
and all the family
Contents

Preface

Preface page xxiii

Acknowledgements

xxv

Nomenclature

xxvii

1 Introduction

1.1 Initial Considerations 1

1.2 Do We Need a Flowmeter? 2

1.3 How Accurate? 4

1.4 A Brief Review of the Evaluation of Standard Uncertainty 8

1.5 Note on Monte Carlo Methods 10

1.6 Sensitivity Coefficients 10

1.7 What Is a Flowmeter? 11

1.8 Chapter Conclusions (for those who Plan to Skip the Mathematics!) 14

1.9 Mathematical Postscript 15

1.A Statistics of Flow Measurement 17

1.A.1 Introduction 17

1.A.2 The Normal Distribution 17

1.A.3 The Student t Distribution 20

1.A.4 Practical Application of Confidence Level 21

1.A.5 Types of Error 22

1.A.6 Combination of Uncertainties 23

1.A.7 Uncertainty Range Bars, Transfer Standards and Youden Analysis 24

2 Fluid Mechanics Essentials

2.1 Introduction 27

2.2 Essential Property Values 27

2.3 Flow in a Circular Cross-Section Pipe 27

2.4 Flow Straighteners and Conditioners 31

2.5 Essential Equations 34
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>Unsteady Flow and Pulsation</td>
<td>36</td>
</tr>
<tr>
<td>2.7</td>
<td>Compressible Flow</td>
<td>38</td>
</tr>
<tr>
<td>2.8</td>
<td>Multiphase Flow</td>
<td>40</td>
</tr>
<tr>
<td>2.9</td>
<td>Cavitation, Humidity, Droplets and Particles</td>
<td>42</td>
</tr>
<tr>
<td>2.10</td>
<td>Gas Entrainment</td>
<td>43</td>
</tr>
<tr>
<td>2.11</td>
<td>Steam</td>
<td>45</td>
</tr>
<tr>
<td>2.12</td>
<td>Chapter Conclusions</td>
<td>45</td>
</tr>
<tr>
<td>2.A.1</td>
<td>Further Flow Profile Equations</td>
<td>46</td>
</tr>
<tr>
<td>2.A.2</td>
<td>Non-Newtonian Flows</td>
<td>47</td>
</tr>
<tr>
<td>2.A.3</td>
<td>Flow Conditioning</td>
<td>47</td>
</tr>
<tr>
<td>2.A.4</td>
<td>Other Installation Considerations</td>
<td>50</td>
</tr>
<tr>
<td>2.A.5</td>
<td>Computational Fluid Dynamics (CFD)</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>Specification, Selection and Audit</td>
<td>52</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>52</td>
</tr>
<tr>
<td>3.2</td>
<td>Specifying the Application</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>Notes on the Specification Form</td>
<td>53</td>
</tr>
<tr>
<td>3.4</td>
<td>Flowmeter Selection Summary Table</td>
<td>56</td>
</tr>
<tr>
<td>3.5</td>
<td>Draft Questionnaire for Flowmeter Audit</td>
<td>62</td>
</tr>
<tr>
<td>3.6</td>
<td>Final Comments</td>
<td>62</td>
</tr>
<tr>
<td>3.A</td>
<td>Specification and Audit Questionnaires</td>
<td>63</td>
</tr>
<tr>
<td>3.A.1</td>
<td>Specification Questionnaire</td>
<td>63</td>
</tr>
<tr>
<td>3.A.2</td>
<td>Supplementary Audit Questionnaire</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>Calibration</td>
<td>67</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>67</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Calibration Considerations</td>
<td>67</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Typical Calibration Laboratory Facilities</td>
<td>70</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Calibration from the Manufacturer’s Viewpoint</td>
<td>71</td>
</tr>
<tr>
<td>4.2</td>
<td>Approaches to Calibration</td>
<td>72</td>
</tr>
<tr>
<td>4.3</td>
<td>Liquid Calibration Facilities</td>
<td>75</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Flying Start and Stop</td>
<td>75</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Standing Start and Stop</td>
<td>77</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Large Pipe Provers</td>
<td>80</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Compact Provers</td>
<td>80</td>
</tr>
<tr>
<td>4.4</td>
<td>Gas Calibration Facilities</td>
<td>85</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Volumetric Measurement</td>
<td>85</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Mass Measurement</td>
<td>86</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Gas/Liquid Displacement</td>
<td>86</td>
</tr>
<tr>
<td>4.4.4</td>
<td>pvT Method</td>
<td>87</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Critical Nozzles</td>
<td>87</td>
</tr>
<tr>
<td>4.4.6</td>
<td>Soap Film Burette Method</td>
<td>88</td>
</tr>
</tbody>
</table>
Contents

4.5 Transfer Standards and Master Meters
4.6 In Situ Calibration
 4.6.1 Provers
4.7 Calibration Uncertainty
4.8 Traceability and Accuracy of Calibration Facilities
4.9 Chapter Conclusions
4.9.1 Calibration and Flow Measurement Facilities
 4.9.1.1 Introduction
 4.9.1.2 Flow Metrology Developments
 4.9.1.3 Multiphase Calibration Facilities
 4.9.1.4 Gas Calibration Facilities
 4.9.1.5 Gas Properties
 4.9.1.6 Case Study of a Water Flow Calibration Facility Which
 Might Be Used in a Manufacturing Plant or a Research
 Laboratory from the Author’s Experience
 4.9.1.7 Example of a Recent Large Water
 Calibration Facility
5 Orifice Plate Meters
 5.1 Introduction
 5.2 Essential Background Equations
 5.3 Design Details
 5.4 Installation Constraints
 5.5 Other Orifice Plates
 5.6 Deflection of Orifice Plate at High Pressure
 5.7 Effect of Pulsation
 5.8 Effects of More than One Flow Component
 5.9 Accuracy Under Normal Operation
 5.10 Industrially Constructed Designs
 5.11 Pressure Connections
 5.12 Pressure Measurement
 5.13 Temperature and Density Measurement
 5.14 Flow Computers
 5.15 Detailed Studies of Flow through the Orifice Plate, Both
 Experimental and Computational
 5.16 Application, Advantages and Disadvantages
 5.17 Chapter Conclusions
 5.18 Orifice Discharge Coefficient Equation
 5.18.1 Stolz Orifice Discharge Coefficient Equation as Given
 in ISO 5167: 1981
 5.18.2 Orifice Discharge Coefficient Equation as set out
 by Gallagher (1990)
 5.18.3 Orifice Discharge Coefficient Equation as Given
 in ISO 5167–2: 2003
Contents

5.B Review of Recent Published Research on Orifice Plates 156
5.B.1 Installation Effects on Orifice Plates 156
5.B.2 Pulsation 157
5.B.3 Contamination 157
5.B.4 Drain Holes 158
5.B.5 Flow Conditioning for Orifice Meters 158
5.B.6 Plate Thickness for Small-Diameter Orifice Plates 160
5.B.7 Variants on the Orifice Plate 160
5.B.8 Impulse Lines 160
5.B.9 Lagging Pipes 160
5.B.10 Gas Conditions 160
5.B.11 Emissions Testing Uncertainty 161
5.B.12 CFD Related to Orifice Plates 161

6 Venturi Meter and Standard Nozzles 163
6.1 Introduction 163
6.2 Essential Background Equations 165
6.3 Design Details 167
6.4 Commercially Available Devices 168
6.5 Installation Effects 168
6.6 Applications, Advantages and Disadvantages 170
6.7 Chapter Conclusions 171
6.A Research Update 172
6.A.1 Design and Installation 172
6.A.2 Meters in Nuclear Core Flows 173
6.A.3 Special Conditions 173

7 Critical Flow Venturi Nozzle 177
7.1 Introduction 177
7.2 Design Details of a Practical Flowmeter Installation 178
7.3 Practical Equations 181
7.4 Discharge Coefficient \(C \) 183
7.5 Critical Flow Function \(C^* \) 185
7.6 Design Considerations 185
7.7 Measurement Uncertainty 187
7.8 Notes on the Calculation Procedure 188
7.9 Industrial and Other Experience 189
7.10 Advantages, Disadvantages and Applications 190
7.11 Chapter Conclusions 190
7.A Critical Flow Venturi Nozzle – Recent Published Work 190

8 Other Momentum-Sensing Meters 195
8.1 Introduction 195
8.2 Variable Area Meter 196
8.2.1 Operating Principle and Background 196
8.2.2 Design Variations 196
8.2.3 Remote Readout Methods 198
8.2.4 Design Features 199
8.2.5 Calibration and Sources of Error 200
8.2.6 Installation 201
8.2.7 Unsteady and Pulsating Flows 201
8.2.8 Industrial Types, Ranges and Performance 201
8.2.9 Manufacturing Variation 202
8.2.10 Computational Analysis of the Variable Area Flowmeter 203
8.2.11 Applications 203
8.3 Spring-Loaded Diaphragm (Variable Area) Meters 204
8.4 Target (Drag Plate) Meter 208
8.5 Integral Orifice Meters 209
8.6 Dall Tubes and Devices that Approximate to Venturis and Nozzles 209
8.7 Wedge Meter 212
8.8 V-Cone Meter (Cone Meter) 213
8.9 Differential Devices with a Flow Measurement Mechanism in the Bypass 216
8.10 Slotted Orifice Plate 216
8.11 Pipework Features – Inlets and Pipe Lengths 217
8.12 Pipework Features – Bend or Elbow used as a Meter 218
8.13 Averaging Pitot 220
8.14 Laminar or Viscous Flowmeters 223
8.15 Chapter Conclusions 227
8.A History, Equations and Maximum Permissible Error Limits for the VA Meter 228
8.A.1 Some History 228
8.A.2 Equations 229
8.A.3 Maximum Permissible Error Limits 232

9 Positive Displacement Flowmeters 234
9.1 Introduction 234
9.1.1 Background 234
9.1.2 Qualitative Description of Operation 235
9.2 Principal Designs of Liquid Meters 236
9.2.1 Nutating Disc Meter 236
9.2.2 Oscillating Circular Piston (Also Known as Rotary Piston) Meter 237
9.2.3 Multirotor Meters 237
9.2.4 Oval Gear Meter 238
9.2.5 Sliding Vane Meters 240
9.2.6 Helical Rotor Meter 242
9.2.7 Reciprocating Piston Meters 243
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.8</td>
<td>Precision Gear (Spur Gear) Flowmeters</td>
<td>244</td>
</tr>
<tr>
<td>9.3</td>
<td>Calibration, Environmental Compensation and Other Factors Relating to the Accuracy of Liquid Flowmeters</td>
<td>245</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Calibration Systems</td>
<td>246</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Clearances</td>
<td>249</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Leakage Through the Clearance Gap Between Vane and Wall</td>
<td>249</td>
</tr>
<tr>
<td>9.3.4</td>
<td>Slippage Tests</td>
<td>251</td>
</tr>
<tr>
<td>9.3.5</td>
<td>The Effects of Temperature and Pressure Changes</td>
<td>252</td>
</tr>
<tr>
<td>9.3.6</td>
<td>The Effects of Gas in Solution</td>
<td>252</td>
</tr>
<tr>
<td>9.4</td>
<td>Accuracy and Calibration</td>
<td>253</td>
</tr>
<tr>
<td>9.5</td>
<td>Principal Designs of Gas Meters</td>
<td>254</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Wet Gas Meter</td>
<td>255</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Diaphragm Meter</td>
<td>256</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Rotary Positive Displacement Gas Meter</td>
<td>257</td>
</tr>
<tr>
<td>9.6</td>
<td>Positive Displacement Meters for Multiphase Flows</td>
<td>258</td>
</tr>
<tr>
<td>9.7</td>
<td>Meter Using Liquid Plugs to Measure Low Flows</td>
<td>261</td>
</tr>
<tr>
<td>9.8</td>
<td>Applications, Advantages and Disadvantages</td>
<td>261</td>
</tr>
<tr>
<td>9.9</td>
<td>Chapter Conclusions</td>
<td>262</td>
</tr>
<tr>
<td>9.A</td>
<td>Basic Analysis and Recent Research</td>
<td>263</td>
</tr>
<tr>
<td>9.A.1</td>
<td>Theory for a Sliding Vane Meter</td>
<td>263</td>
</tr>
<tr>
<td>9.A.1.1</td>
<td>Flowmeter Equation</td>
<td>264</td>
</tr>
<tr>
<td>9.A.1.2</td>
<td>Expansion of the Flowmeter Due to Temperature</td>
<td>265</td>
</tr>
<tr>
<td>9.A.1.3</td>
<td>Pressure Effects</td>
<td>266</td>
</tr>
<tr>
<td>9.A.1.4</td>
<td>Meter Orientation</td>
<td>267</td>
</tr>
<tr>
<td>9.A.1.5</td>
<td>Analysis of Calibrators</td>
<td>268</td>
</tr>
<tr>
<td>9.A.1.6</td>
<td>Application of Equations to a Typical Meter</td>
<td>270</td>
</tr>
<tr>
<td>9.A.2</td>
<td>Recent Theoretical and Experimental Research</td>
<td>271</td>
</tr>
<tr>
<td>10</td>
<td>Turbine and Related Flowmeters</td>
<td>279</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>279</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Background</td>
<td>279</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Qualitative Description of Operation</td>
<td>279</td>
</tr>
<tr>
<td>10.1.3</td>
<td>Basic Theory</td>
<td>280</td>
</tr>
<tr>
<td>10.2</td>
<td>Precision Liquid Meters</td>
<td>287</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Principal Design Components</td>
<td>287</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Dual Rotor Meters</td>
<td>288</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Bearing Design Materials</td>
<td>288</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Strainers</td>
<td>290</td>
</tr>
<tr>
<td>10.2.5</td>
<td>Materials</td>
<td>290</td>
</tr>
<tr>
<td>10.2.6</td>
<td>Size Ranges</td>
<td>290</td>
</tr>
<tr>
<td>10.2.7</td>
<td>Other Mechanical Design Features</td>
<td>291</td>
</tr>
<tr>
<td>10.2.8</td>
<td>Cavitation</td>
<td>291</td>
</tr>
<tr>
<td>10.2.9</td>
<td>Sensor Design and Performance</td>
<td>292</td>
</tr>
</tbody>
</table>
Contents

10.2.10 Characteristics 293
10.2.11 Accuracy 294
10.2.12 Installation 295
10.2.13 Maintenance 297
10.2.14 Viscosity, Temperature and Pressure 298
10.2.15 Unsteady Flow 299
10.2.16 Multiphase Flow 300
10.2.17 Signal Processing 301
10.2.18 Applications 301
10.2.19 Advantages and Disadvantages 302

10.3 Precision Gas Meters 303
10.3.1 Principal Design Components 303
10.3.2 Bearing Design 303
10.3.3 Materials 303
10.3.4 Size Range 303
10.3.5 Accuracy 304
10.3.6 Installation 306
10.3.7 Sensing and Monitoring 308
10.3.8 Unsteady Flow 308
10.3.9 Applications 310
10.3.10 Advantages and Disadvantages 311

10.4 Water Meters 311
10.4.1 Principal Design Components 311
10.4.2 Bearing Design 312
10.4.3 Materials 312
10.4.4 Size Range 313
10.4.5 Sensing 313
10.4.6 Characteristics and Accuracy 313
10.4.7 Installation 313
10.4.8 Special Designs 314

10.5 Other Propeller and Turbine Meters 314
10.5.1 Quantum Dynamics Flowmeter 314
10.5.2 Pelton Wheel Flowmeters 314
10.5.3 Bearingless Flowmeter 314
10.5.4 Vane Type Flowmeters 315

10.6 Chapter Conclusions 316
10.A Turbine Flowmeter Theoretical and Experimental Research 317
10.A.1 Derivation of Turbine Flowmeter Torque Equations 317
10.A.2 Transient Analysis of Gas Turbine Flowmeter 322
10.A.3 Recent Developments 324

11 Vortex Shedding, Swirl and Fluidic Flowmeters 327
11.1 Introduction 327
11.2 Vortex Shedding 327
11.3 Industrial Developments of Vortex-Shedding Flowmeters 329
 11.3.1 Experimental Evidence of Performance 329
 11.3.2 Bluff Body Shape 331
 11.3.3 Standardisation of Bluff Body Shape 334
 11.3.4 Sensing Options 334
 11.3.5 Cross-Correlation and Signal Interrogation Methods 339
 11.3.6 Other Aspects Relating to Design and Manufacture 339
 11.3.7 Accuracy 340
 11.3.8 Installation Effects 341
 11.3.9 Effect of Pulsation and Pipeline Vibration 344
 11.3.10 Two-Phase Flows 345
 11.3.11 Size and Performance Ranges and Materials in Industrial Designs 347
 11.3.12 Computation of Flow Around Bluff Bodies 348
 11.3.13 Applications, Advantages, and Disadvantages 349
 11.3.14 Future Developments 350
11.4 Swirl Meter – Industrial Design 351
 11.4.1 Design and Operation 351
 11.4.2 Accuracy and Ranges 351
 11.4.3 Installation Effects 352
 11.4.4 Applications, Advantages and Disadvantages 352
11.5 Fluidic Flowmeter 352
 11.5.1 Design 353
 11.5.2 Accuracy 355
 11.5.3 Installation Effects 355
 11.5.4 Applications, Advantages and Disadvantages 355
11.6 Other Proposed Designs 355
11.7 Chapter Conclusions 356
11.A Vortex Shedding Frequency 358
 11.A.1 Vortex Shedding from Cylinders 358
 11.A.2 Order of Magnitude Calculation of Shedding Frequency 358
12 Electromagnetic Flowmeters 362
 12.1 Introduction 362
 12.2 Operating Principle 362
 12.3 Limitations of the Theory 364
 12.4 Design Details 366
 12.4.1 Sensor or Primary Element 366
 12.4.2 Transmitter or Secondary Element 370
 12.5 Calibration and Operation 373
 12.6 Industrial and Other Designs 374
 12.7 Installation Constraints – Environmental 377
 12.7.1 Surrounding Pipe 377
 12.7.2 Temperature and Pressure 378
Contents

12.8 Installation Constraints – Flow Profile Caused by Upstream Pipework
12.8.1 Introduction 379
12.8.2 Theoretical Comparison of Meter Performance Due to Upstream Flow Distortion 379
12.8.3 Experimental Comparison of Meter Performance Due to Upstream Flow Distortion 380
12.8.4 Conclusions on Installation Requirements 381
12.9 Installation Constraints – Fluid Effects 382
12.9.1 Slurries 382
12.9.2 Change of Fluid 383
12.9.3 Non-Uniform Conductivity 383
12.10 Multiphase Flow 383
12.11 Accuracy Under Normal Operation 384
12.12 New Industrial Developments 385
12.13 Applications, Advantages and Disadvantages 387
12.13.1 Applications 387
12.13.2 Advantages 388
12.13.3 Disadvantages 389
12.14 Chapter Conclusions 389
12.A Brief Review of Theory, Other Applications and Recent Research 390
12.A.1 Introduction 390
12.A.2 Electric Potential Theory 392
12.A.3 Development of the Weight Vector Theory 392
12.A.4 Rectilinear Weight Function 393
12.A.5 Axisymmetric Weight Function 394
12.A.6 Performance Prediction 395
12.A.7 Further Research 396
12.A.8 Verification 398
12.A.9 Application to Non-Conducting Dielectric Fluids 400
12.A.10 Electromagnetic Flowmeters Applied to Liquid Metals 403

13 Magnetic Resonance Flowmeters 408
13.1 Introduction and Some Early References 408
13.2 Developments in the Oil and Gas Industry 409
13.3 A Brief Introduction to the Physics 409
13.4 Outline of a Flowmeter Design 414
13.5 Chapter Conclusions 417

14 Ultrasonic Flowmeters 419
14.1 Introduction 419
14.2 Essential Background to Ultrasound 420
14.3 Transit-Time Flowmeters 423
14.3.1 Transit-Time Flowmeters – Flowmeter Equation and the Measurement of Sound Speed 423
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.3.2 Effect of Flow Profile and Use of Multiple Paths</td>
<td>427</td>
</tr>
<tr>
<td>14.3.3 Transducers</td>
<td>432</td>
</tr>
<tr>
<td>14.3.4 Size Ranges and Limitations</td>
<td>437</td>
</tr>
<tr>
<td>14.3.5 Clamp-on Meters</td>
<td>437</td>
</tr>
<tr>
<td>14.3.6 Signal Processing and Transmission Timing</td>
<td>439</td>
</tr>
<tr>
<td>14.3.7 Reported Accuracy</td>
<td>442</td>
</tr>
<tr>
<td>14.3.7.1 Reported Accuracy – Spool Piece Meters</td>
<td>442</td>
</tr>
<tr>
<td>14.3.7.2 A Manufacturer’s Accuracy Claims</td>
<td>443</td>
</tr>
<tr>
<td>14.3.7.3 Clamp-on Accuracy</td>
<td>444</td>
</tr>
<tr>
<td>14.3.8 Installation Effects</td>
<td>447</td>
</tr>
<tr>
<td>14.3.8.1 Effects of Distorted Profile by Upstream Fittings</td>
<td>447</td>
</tr>
<tr>
<td>14.3.8.2 Pipe Roughness and Deposits</td>
<td>453</td>
</tr>
<tr>
<td>14.3.8.3 Unsteady and Pulsating Flows</td>
<td>454</td>
</tr>
<tr>
<td>14.3.8.4 Multiphase Flows</td>
<td>454</td>
</tr>
<tr>
<td>14.3.8.5 Flow Straighteners and Conditioners</td>
<td>455</td>
</tr>
<tr>
<td>14.3.9 Other Experience of Transit-Time Meters</td>
<td>456</td>
</tr>
<tr>
<td>14.3.10 Experience with Liquid Meters</td>
<td>456</td>
</tr>
<tr>
<td>14.3.11 Gas Meter Developments</td>
<td>457</td>
</tr>
<tr>
<td>14.3.12 Applications, Advantages and Disadvantages of the Transit-Time and Related Designs</td>
<td>463</td>
</tr>
<tr>
<td>14.4 Doppler Flowmeter</td>
<td>466</td>
</tr>
<tr>
<td>14.4.1 Simple Explanation of Operation</td>
<td>466</td>
</tr>
<tr>
<td>14.4.2 Operational Information for the Doppler Flowmeter</td>
<td>468</td>
</tr>
<tr>
<td>14.4.3 Applications, Advantages and Disadvantages for the Doppler Flowmeter</td>
<td>468</td>
</tr>
<tr>
<td>14.5 Correlation Flowmeter</td>
<td>469</td>
</tr>
<tr>
<td>14.5.1 Operation of the Correlation Flowmeter</td>
<td>469</td>
</tr>
<tr>
<td>14.5.2 Installation Effects for the Correlation Flowmeter</td>
<td>470</td>
</tr>
<tr>
<td>14.5.3 Other Published Work on the Correlation Flowmeter</td>
<td>471</td>
</tr>
<tr>
<td>14.5.4 Applications, Advantages and Disadvantages for the Correlation Flowmeter</td>
<td>472</td>
</tr>
<tr>
<td>14.6 Other Ultrasonic Applications</td>
<td>472</td>
</tr>
<tr>
<td>14.7 Conclusions on Ultrasonic Flowmeters</td>
<td>473</td>
</tr>
<tr>
<td>14.A.1 Simple Path Theory</td>
<td>474</td>
</tr>
<tr>
<td>14.A.2 Use of Multiple Paths to Integrate Flow Profile</td>
<td>477</td>
</tr>
<tr>
<td>14.A.3 Weight Vector Analysis</td>
<td>478</td>
</tr>
<tr>
<td>14.A.4 Development of Modelling of the Flowmeter</td>
<td>479</td>
</tr>
<tr>
<td>14.A.5 Doppler Theory and Developments</td>
<td>482</td>
</tr>
<tr>
<td>15 Acoustic and Sonar Flowmeters</td>
<td>484</td>
</tr>
<tr>
<td>15.1 Introduction</td>
<td>484</td>
</tr>
<tr>
<td>15.2 SONARtrac® Flowmeter</td>
<td>484</td>
</tr>
</tbody>
</table>
Contents

15.2.1 Basic Explanation of How the Passive Sonar Flowmeter Works 484
15.2.2 A Note on Turbulent Eddies and Transition to Laminar Flow in the Pipe 485
15.2.3 Flow Velocity Measurement 485
15.2.4 Speed of Sound and Gas Void Fraction (Entrained Air Bubbles) Measurement 486
15.2.5 Localised Velocity Measurements 487
15.2.6 The Convective Ridge 487
15.2.7 Calibration 489
15.2.8 Sound Speed Used to Obtain Fluid Parameters 490
15.2.9 Additional Sensors 491
15.2.10 Clamp-on System 491
15.2.11 Liquid, Gas and Multicomponent Operation 492
15.2.12 Size Range and Flow Range 493
15.2.13 Signal Handling 493
15.2.14 Accuracy Claims 494
15.2.15 Installation Effects 494
15.2.16 Published Information 496
15.2.17 Applications 496
15.3 ActiveSONAR™ Flowmeter 496
15.3.1 Single and Multiphase Flows 497
15.3.2 Brief Summary of Meter Range, Size etc. 497
15.4 Other Related Methods Using Noise Emissions 498
15.5 Chapter Conclusions 500

16.1 Introduction 501
16.2 Multiple Differential Pressure Meters 502
16.2.1 Hydraulic Wheatstone Bridge Method 504
16.2.2 Theory of Operation 504
16.2.3 Industrial Experience 505
16.2.4 Applications 505
16.3 Multiple Sensor Methods 506
16.4 Chapter Conclusions 507

17 Multiphase Flowmeters
17.1 Introduction 508
17.2 Multiphase and Multi-Component Flows 509
17.3 Two-Phase/Component Flow Measurements 509
17.3.1 Liquid/Liquid Flows and Water-Cut Measurement 510
17.3.2 Entrained Solid in Fluid Flows 510
17.3.3 Metering Wet-Gas 511
17.4 Multiphase Flowmeters
17.4.1 Categorisation of Multiphase Flowmeters 514
17.4.2 Multiphase Flowmeters (MPFMs) for Oil Production 515
17.4.3 Developments and References Since the Late 1990s 519
17.5 Accuracy 527
17.6 Chapter Conclusions 528

18 Thermal Flowmeters
18.1 Introduction 530
18.2 Capillary Thermal Mass Flowmeter – Gases 530
18.2.1 Description of Operation 531
18.2.2 Operating Ranges and Materials for Industrial Designs 534
18.2.3 Accuracy 535
18.2.4 Response Time 535
18.2.5 Installation 535
18.2.6 Applications 536
18.3 Calibration of Very Low Flow Rates 536
18.4 Thermal Mass Flowmeter – Liquids 537
18.4.1 Operation 537
18.4.2 Typical Operating Ranges and Materials for Industrial Designs 538
18.4.3 Installation 538
18.4.4 Applications 538
18.5 Insertion and In-Line Thermal Mass Flowmeters 538
18.5.1 Insertion Thermal Mass Flowmeter 540
18.5.2 In-Line Thermal Mass Flowmeter 541
18.5.3 Range and Accuracy 542
18.5.4 Materials 542
18.5.5 Installation 542
18.5.6 Applications 543
18.6 Chapter Conclusions 544
18.A Mathematical Background to the Thermal Mass Flowmeters 545
18.A.1 Dimensional Analysis Applied to Heat Transfer 545
18.A.2 Basic Theory of ITMFs 546
18.A.3 General Vector Equation 548
18.A.4 Hastings Flowmeter Theory 549
18.A.5 Weight Vector Theory for Thermal Flowmeters 551
18.A.6 Other Recently Published Work 552

19 Angular Momentum Devices
19.1 Introduction 553
19.2 The Fuel Flow Transmitter 554
19.2.1 Qualitative Description of Operation 554
19.2.2 Simple Theory 557
20 Coriolis Flowmeters

20.1 Introduction

20.1.1 Background

20.1.2 Qualitative Description of Operation

20.1.3 Experimental and Theoretical Investigations

20.1.4 Shell-Type Coriolis Flowmeter

20.2 Industrial Designs

20.2.1 Principal Design Components

20.2.2 Materials

20.2.3 Installation Constraints

20.2.4 Vibration Sensitivity

20.2.5 Size and Flow Ranges

20.2.6 Density Range and Accuracy

20.2.7 Pressure Loss

20.2.8 Response Time

20.2.9 Zero Drift

20.3 Accuracy Under Normal Operation

20.4 Published Information on Performance

20.4.1 Early Industrial Experience

20.4.2 Gas-Liquid

20.4.3 Sand in Water (Dominick et al. 1987)

20.4.4 Pulverised Coal in Nitrogen (Baucom 1979)

20.4.5 Water-in-Oil Measurement

20.4.6 Two- and Three-Component Flows

20.5 Calibration

20.6 Applications, Advantages, Disadvantages, Cost Considerations

20.6.1 Applications

20.6.2 Advantages

20.6.3 Disadvantages

20.6.4 Cost Considerations

20.7 Chapter Conclusions

20.A Notes on the Theory of Coriolis Meters

20.A.1 Simple Theory

20.A.2 Note on Hemp’s Weight Vector Theory

20.A.3 Theoretical Developments

20.A.4 Coriolis Flowmeter Reviews

21 Probes for Local Velocity Measurement in Liquids and Gases

21.1 Introduction

21.2 Differential Pressure Probes – Pitot Probes
Contents

21.3 Differential Pressure Probes – Pitot-Venturi Probes 607
21.4 Insertion Target Meter 608
21.5 Insertion Turbine Meter 609
 21.5.1 General Description of Industrial Design 609
 21.5.2 Flow-Induced Oscillation and Pulsating Flow 611
 21.5.3 Applications 612
21.6 Insertion Vortex Probes 612
21.7 Insertion Electromagnetic Probes 614
21.8 Insertion Ultrasonic Probes 615
21.9 Thermal Probes 616
21.10 Chapter Conclusions 616

22 Verification and In Situ Methods for Checking Calibration 617
 22.1 Introduction 617
 22.2 Verification 617
 22.3 Non-Invasive, Non-Intrusive and Clamp-On Flowmeter Alternatives 620
 22.3.1 Use of Existing Pipe Work 620
 22.3.2 Other Effects: Neural Networks, Tracers, Cross-Correlation 622
 22.3.3 Other Flowmeter Types in Current Use 622
22.4 Probes and Tracers 623
22.5 Microwaves 624
22.6 Chapter Conclusions 624

23 Remote Data Access Systems 625
 23.1 Introduction 625
 23.2 Types of Device – Simple and Intelligent 626
 23.3 Simple Signal Types 627
 23.4 Intelligent Signals 629
 23.5 Selection of Signal Type 630
 23.6 Communication Systems 630
 23.7 Remote Access 630
 23.8 Future Implications 631

24 Final Considerations 633
 24.1 Is there an Opportunity to Develop New Designs in Collaboration with the Science Base? 633
 24.2 Is Manufacture of High Enough Quality? 633
 24.3 Does the Company’s Business Fall within ISO 9000 and/or ISO 17025? 636
 24.4 What are the New Flow Measurement Challenges? 637
 24.5 What Developments Should We Expect in Micro-Engineering Devices? 638
Contents

24.6 Which Techniques for Existing and New Flow Metering Concepts Should Aid Developments? 639
24.7 Closing Remarks 641

References 643
Main Index 735
Flowmeter Index 739
Flowmeter Application Index 743
Preface

This is a book about flow measurement and flowmeters written for all in the industry who specify and apply, design and manufacture, research and develop, maintain and calibrate flowmeters. It provides a source of information both on the published research, design and performance of flowmeters, and also on the claims of flowmeter manufacturers. It will be of use to engineers, particularly mechanical and process engineers, and also to instrument companies’ marketing, manufacturing and management personnel as they seek to identify future products.

I have concentrated on the mechanical and fluid engineering aspects and have given only as much of the electrical engineering details as is necessary for a proper understanding of how and why the meters work. I am not an electrical engineer and so have not attempted detailed explanations of modern electrical signal processing. I am also aware of the speed with which developments in signal processing would render out of date any descriptions that I might give.

I make the assumption that the flowmeter engineer will automatically turn to the appropriate standard and I have, therefore, tried to minimise reproducing information which should be obtained from those excellent documents. I recommend that those involved in new developments should keep a watching brief on the regular conferences which carry much of the latest developments in the business, and are illustrated by the papers in the reference list.

I hope, therefore, that this book will provide a signpost to the essential information required by all involved in the development and use of flowmeters, from the field engineer to the chief executive of the entrepreneurial company which is developing its product range in this technology.

In this book, following introductory chapters on accuracy, flow, selection and calibration, I have attempted a clear explanation of each type of flowmeter so that the reader can easily understand the workings of the various meters. I have, then, attempted to bring together a significant amount of the published information which enlightens us on the performance and applications of flowmeters. The two sources for this are the open literature and the manufacturers’ brochures. I have also introduced, to a varying extent, the mathematics behind the meter operations, but to avoid disrupting the text, I have consigned some of this to the appendices at the end of the chapters.
However, by interrogating the appropriate databases for flowmeter papers it rapidly becomes apparent that inclusion of references to all published material is unrealistic. I have attempted a selection of those which appeared to be more relevant and available to the typical reader of this book. However, it is likely that, owing to the very large number of relevant papers, I have omitted some which should have been included.

Topics not covered in this book, but which might be seen as within the general field of flow measurement, are: metering pumps, flow switches, flow controllers, flow measurement of solids and granular materials, open channel flow measurement, hot wire local velocity probes or laser Doppler anemometers and subsidiary instrumentation.

In this second edition, I have left in much of the original material, as I am aware of the danger of losing sight of past developments and unnecessary reinvention. I have attempted to bring up to date items which are out of date, but am conscious that I may have missed some, and I have attempted to introduce the new areas and new developments of which I have become aware. In two areas where I know myself to be lacking in first-hand knowledge, I have changed the focus of the chapters and greatly reduced their length. Modern Control Methods has gone and been replaced by Remote Data Access Systems, and the chapter on manufacturing by a brief chapter entitled Final Considerations which touches on manufacturing variation and ISO quality standards and also takes in final comments.

I have included three new chapters covering magnetic resonance flowmeters, sonar and acoustic flowmeters and verification. They are brief chapters, but represent new developments since the first edition. I have also separated multiphase flowmeters into another new chapter, but have done so recognising that my knowledge of the subject is minimal and the coverage in the chapter is very superficial.

The techniques for precise measurement of flow are increasingly important today when the fluids being measured, and the energy involved in their movement, may have a very high monetary value. If we are to avoid being prodigal in the use of our natural resources, then the fluids among them should be carefully monitored. Where there might be pressure to cut corners with respect to standards and integrity, we need to ensure that in flow measurement these features are given their proper treatment and respect.
Acknowledgements

My knowledge of this subject has benefitted from many others with whom I have worked and talked over the years. These include colleagues from industry, national laboratories and academia, visitors and students, whether on short courses or longer-term degree courses and research. I hope that this book does justice to all that they have taught me.

In writing this book, I have drawn on information from many manufacturers, and some have been particularly helpful in agreeing to the use of information and diagrams. I have acknowledged these in the captions to the figures. Some went out of their way to provide artwork, and I am particularly grateful to Katrin Faber and Ruth O’Connell.

In preparing this second edition, I have been conscious of the many changes and advances in the subject, and so I have depended on many friends and colleagues, near and far, to read sections for me and to comment, criticise and correct them. In the middle of already busy lives they kindly made time to do this for me. In particular I would like to thank:

I am extremely grateful to them for taking time to do this, and for the constructive comments which they gave. Of course, I bear full responsibility for the final script, although their help and encouragement is greatly valued.

I have had the privilege of being based back at my alma mater for the past 15 years, and they have been some of the most enjoyable of my working life. I am very grateful to Mike Gregory, who was key in making this possible; to Ian Hutchings, with whom I have collaborated; and to others of the Department of Engineering, particularly librarians and technical support staff, who have facilitated my experimental
Acknowledgements

and theoretical research. I have also appreciated the friendship of the late Yousif Hussain, who provided a strong industrial link over this period.

I acknowledge with thanks the following organisations which have given permission to use their material:

American Society of Mechanical Engineers
Elsevier based on the STM agreement for the use of figures from their publications and for agreement to honour my right to use material from papers of my own for Chapters 10 and 20.

National Engineering Laboratory (NEL)

Permission to reproduce extracts from British Standards is granted by BSI Standards Limited (BSI). No other use of this material is permitted. British Standards can be obtained in pdf or hard copy formats from the BSI online shop: www.bsigroup.com/shop.

I have also been grateful for the help and encouragement given to me by many in the preparation of this book. It would be difficult to name them, but I am grateful for each contribution.

I have found the support of my family invaluable and particularly that of Liz, my wife, whose patience with my long hours at the computer, her willingness to assist with her proofreading skills, her encouragement and help at every stage, have made the task possible and I cannot thank her enough.

Finally, I am grateful to Cambridge University Press for the opportunity of preparing this second edition.
Nomenclature

Chapter 1

c_i \quad \text{sensitivity coefficient}
f(x) \quad \text{function for normal distribution}
K \quad \text{K factor in pulses per unit flow quantity}
 k \quad \text{coverage factor}
M \quad \text{mean of a sample of n readings}
m \quad \text{index}
N(\mu, \sigma^2) \quad \text{normal curve}
n \quad \text{number of measurements, index}
p \quad \text{probability, index}
q \quad \text{mean of n measurements, index}
q_i \quad \text{test measurement}
q_v \quad \text{volumetric low rate}
r \quad \text{index}
s \quad \text{index}
s(q_j) \quad \text{experimental standard deviation of mean of group } q_i
s(q_j) \quad \text{experimental standard deviation of } q_i
\text{t} \quad \text{Student’s } t
U \quad \text{expanded uncertainty}
u(x_i) \quad \text{standard uncertainty for the } i\text{th quantity}
u_c(y) \quad \text{combined standard uncertainty}
x \quad \text{coordinate}
x_i \quad \text{result of a meter measurement, input quantities}
\bar{x} \quad \text{mean of n meter measurements}
y \quad \text{output quantity}
z \quad \text{normalised coordinate } (x - \mu)/\sigma
\mu \quad \text{mean value of data for normal curve}
\nu \quad \text{degrees of freedom}
\sigma \quad \text{standard deviation (} \sigma^2 \text{ variance)
Nomenclature

Φ(z) area under normal curve e.g. Φ(0.5) is the area from z = −∞ to z = 0.5
φ(z) function for normalised normal distribution

Chapter 2

A cross-section of pipe
c local speed of sound
c_p specific heat at constant pressure
c_v specific heat at constant volume
D diameter of pipe
d diameter of flow conditioner plate holes
f_D Darcy friction factor: \(f_D = 4 f_F \)
f_F Fanning friction factor
g acceleration due to gravity
H Hodgson number Equation (2.13)
K pressure loss coefficient
L length of pipe (sometimes given as a multiple of D e.g. 5D)
M Mach number
n index as in Equation (2.4)
p pressure
p_0 stagnation pressure
\(\Delta p_{\text{loss}} \) pressure loss across a pipe fitting
q_v volumetric flow rate
q_m mass flow rate
R radius of pipe
Re Reynolds number
r radial coordinate (distance from pipe axis)
T temperature
T_0 stagnation temperature
V velocity in pipe, total volume of pipework used in Hodgson number
V_0 velocity on pipe axis, maximum axial velocity at a cross-section
V_{rms} fluctuating component of velocity
\(\bar{V} \) mean velocity in pipe
v local fluid velocity
v_f friction velocity \(v_f = \sqrt{\frac{T_w}{\rho}} \)
x distance from pipe axis in horizontal plane
y distance from the pipe wall = \((R - r) \)
y_1 viscous sublayer thickness
y_2 extent of buffer layer
z elevation above datum
Nomenclature

\(\gamma \) ratio of specific heats

\(\mu \) dynamic viscosity

\(\nu \) kinematic viscosity

\(\rho \) density

\(\tau \) shear stress

\(\tau_w \) wall shear stress: \(\tau_w = f_r \rho \frac{V^2}{2} \)

Subscripts

1,2 pipe sections

Chapter 4

\(C_d \) concentration of tracer in the main stream at the downstream sampling point

\(C_{\text{mean}} \) mean concentration of tracer measured downstream

\(C_i \) concentration of tracer in the injected stream

\(C_u \) concentration of tracer in the main stream upstream of injection point (if the tracer material happens to be present)

\(c_s \) sensitivity coefficient

\(K_{\text{fm}} \) mass flowmeter factor

\(k_s \) factor for the weigh scale

\(M_n \) net mass of liquid collected in calibration

\(M_D \) weight of deadweight

\(M_s \) conventional mass of material of density 8,000 kg/m³

\(M_L \) mass of water in weigh tank

\(M_G \) mass of air displaced

\(\Delta M_{\text{LDV}} \) change in mass within the connection pipe between the flowmeter and the weir

\(m_{\text{CAL}} \) reading of the weigh scale when loaded with deadweights

\(m_L \) weigh scale reading

\(P \) pulse count

\(p \) pressure

\(q_v \) volumetric flow rate in the line

\(q_{vi} \) volumetric flow rate of injected tracer

\(R \) gas constant for a particular gas

\(T \) temperature

\(t \) collection time during calibration

\(V \) amount injected in the sudden injection (integration) method

\(\nu \) specific volume

\(\rho \) liquid density

\(\rho_D \) actual density of deadweight
<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_G)</td>
<td>air density</td>
</tr>
<tr>
<td>(\rho_{LW})</td>
<td>liquid density</td>
</tr>
</tbody>
</table>

Chapter 5

- \(A \): function of \(\text{Re}_D \)
- \(a_1 \): expression in orifice plate-bending formula
- \(a_e \): constant
- \(b_e \): constant
- \(C \): discharge coefficient
- \(C_{\text{Re}} \): part of discharge coefficient affected by \(\text{Re} \)
- \(C_{\text{Taps}} \): part of discharge coefficient which allows for position of taps
- \(C_c \): discharge coefficient for infinite Reynolds number
- \(C_{\text{Small orifice}} \): correction for small orifice sizes
- \(c_1 \): expression in orifice plate-bending formula
- \(c_e \): constant
- \(D \): pipe diameter (ID)
- \(D' \): orifice plate support diameter
- \(d \): orifice diameter
- \(E \): thickness of the plate, velocity of approach factor \((1 - \beta^4)^{-\frac{1}{2}} \)
- \(E_{\text{R}} \): total error in the indicated flow rate of a flowmeter in pulsating flow
- \(E^* \): elastic modulus of plate material
- \(e \): thickness of the orifice (Figure 5.3), Napierian constant
- \(F \): correction factor used to obtain the mass flow of a (nearly) dry steam flow
- \(f \): frequency of the pulsation
- \(H \): Hodgson number
- \(h \): thickness of orifice plate
- \(K \): loss coefficient, related to the criterion for Hodgson number
- \(L_1 = \frac{l_1}{D} \)
- \(L'_2 = \frac{l'_2 D'}{D} \): signifies that the measurement is from the downstream face of the plate.
- \(l_1 \): distance of the upstream tapping from the upstream face of the plate
- \(l'_2 \): distance of the downstream tapping from the downstream face of the plate. \(' \) signifies that the measurement is from the downstream face of the plate.
- \(M'_2 = 2L'_2(1 - \beta) \)
- \(M_1 \): numerical value defined in text
- \(n \): index
- \(p \): static pressure
- \(p_u \): upstream static pressure
Nomenclature

p_d downstream static pressure
p_1 static pressure at upstream tapping
p_2 static pressure at downstream tapping
Δp differential pressure, pressure drop between pulsation source and meter
q_m mass flow rate
q_v volumetric flow rate
Re Reynolds number
Re_d Reynolds number based on the pipe ID
r radius of upstream edge of orifice plate
T_f temperature of the fluid at flowing conditions
t time
V volume of pipework and other vessels between the source of the pulsation and the flowmeter position
\bar{V} mean velocity in pipe with pulsating flow
V_{cl} centre line velocity
V_{max} maximum velocity
V_{rms} rms value of unsteady velocity fluctuation in pipe with pulsating flow
x dryness fraction, displacement of the centre of the orifice hole from the pipe axis (m)
$\alpha = CE$ the flow coefficient
β diameter ratio d/D
γ ratio of specific heats
δq_m small changes or errors in q_m etc.
ϵ expansibility (or expansion) factor
ϵ_1 expansibility (or expansion) factor at upstream tapping
κ isentropic exponent
ρ density
ρ_1 density at the upstream pressure tapping
ρ_g density of gas
ρ_l density of liquid
σ_y yield stress for plate material
θ angle defined in Figure 5.B.1 caused by deposition on the leading face of the orifice plate
Φ_{2L} ratio of two-phase pressure drop to liquid flow pressure drop
ϕ maximum allowable percentage error in pulsating flow

Chapter 6

C coefficient of discharge
C_{tp} coefficient for wet-gas flow equation
C_{dry} discharge coefficient for fully dry gas
Nomenclature

\(C_{\text{fullywet}} \) discharge coefficient for fully wet gas \(X \geq X_{\text{lim}} \)
where \(X_{\text{lim}} = 0.016 \)

\(D \) pipe ID
\(d \) throat diameter
\(E \) velocity of approach factor \(= \sqrt{1 - \beta^2} \)
\(Fr_g \) superficial gas Froude number
\(Fr_{g,\text{th}} \) Froude number at the throat
\(g \) gravitational acceleration
\(n \) index
\(p_1 \) upstream pressure tapping
\(p_2 \) downstream pressure tapping
\(\Delta p \) differential pressure
\(q_{m,g} \) mass flow rate of gas
\(q_{m,l} \) mass flow rate of liquid
\(q_m \) mass flow rate
\(q_{\text{tp}} \) apparent flow rate when liquid is present in the gas stream
\(q_v \) volume flow rate
\(Ra \) roughness criterion
\(Re \) Reynolds number
\(V_{sg} \) superficial gas velocity
\(\beta \) diameter ratio \(d/D \)
\(\varepsilon \) expansibility (or expansion) factor
\(\kappa \) isentropic exponent
\(\rho_i \) density at upstream pressure tapping
\(\rho_l \) liquid density
\(\rho_{l,g} \) gas density at upstream tapping point
\(\tau \) pressure ratio \(\frac{p_2}{p_1} \)
\(\phi \) defined in Equation (6.1)

Chapter 7

\(A_2 \) outlet cross-sectional area
\(A_* \) throat cross-sectional area
\(a \) constant
\(b \) constant
\(C \) discharge coefficient
\(C_R \) critical flow function
\(C_{r,i} \) critical flow function for a perfect gas
\(c \) speed of sound
\(c_p \) specific heat at constant pressure
\(c_v \) specific heat at constant volume
\(c_* \) speed of sound in the throat
Nomenclature

\(d \) \hspace{1cm} throat diameter
\(d_2 \) \hspace{1cm} outlet diameter
\(l \) \hspace{1cm} dimension given in Figure 7.5
\(M \) \hspace{1cm} Mach number
\(M_1 \) \hspace{1cm} Mach number at inlet when stagnation conditions cannot be assumed
\(M \) \hspace{1cm} molecular weight
\(n \) \hspace{1cm} exponent in Equation (7.10)
\(p_o \) \hspace{1cm} stagnation pressure
\(p_i \) \hspace{1cm} pressure at inlet when stagnation conditions cannot be assumed
\(p_{2i} \) \hspace{1cm} ideal outlet pressure
\(p_{2\text{max}} \) \hspace{1cm} actual maximum outlet pressure
\(p^* \) \hspace{1cm} throat pressure in choked conditions
\(q_m \) \hspace{1cm} mass flow
\(R \) \hspace{1cm} universal gas constant
\(R_e_d \) \hspace{1cm} Reynolds number based on the throat diameter
\(r \) \hspace{1cm} toroid radius
\(T_o \) \hspace{1cm} stagnation temperature
\(T^* \) \hspace{1cm} throat temperature in choked conditions
\(Z \) \hspace{1cm} compressibility factor
\(Z_o \) \hspace{1cm} compressibility factor at stagnation conditions
\(\beta = d/D \) \hspace{1cm} error
\(\gamma \) \hspace{1cm} ratio of specific heats
\(\epsilon \) \hspace{1cm} isentropic exponent
\(\nu \) \hspace{1cm} kinematic viscosity
\(\theta \) \hspace{1cm} angle given in Figure 7.5
\(\mu_0 \) \hspace{1cm} dynamic viscosity of gas at stagnation conditions
\(\rho \) \hspace{1cm} density of gas in the throat
\(\rho_o \) \hspace{1cm} density at stagnation conditions

Chapter 8

\(A \) \hspace{1cm} cross-sectional area of the pipe, constant
\(A' \) \hspace{1cm} constant
\(A_f \) \hspace{1cm} cross-sectional area of float
\(A_x \) \hspace{1cm} cross-sectional area of tapering tube at height \(x \)
\(A_2 \) \hspace{1cm} annular area around float, annular area around target
\(a \) \hspace{1cm} area of target
\(B \) \hspace{1cm} constant
\(C \) \hspace{1cm} coefficient
\(C_0 \) to \(C_4 \) \hspace{1cm} constants in curve fit for target meter discharge coefficient
\(C_c \) \hspace{1cm} contraction coefficient
\(C_d \) \hspace{1cm} coefficient of discharge