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Introduction

1.1 Survival Data

This part of the book is about the statistical analysis and modelling of survival

data. The purpose we usually have in mind is the pricing or valuation of some

insurance contract whose payments are contingent on the death or survival of

an individual. So, our starting point is the question: what form does survival

data take?

1.1.1 Examples of Survival Data

Consider the following two examples:

(i) On 1 January 2014, Mr Brown took out a life insurance policy. The pre-

mium he paid took into account his age on that date (he was exactly

31 years and three months old) and the fact that he had never smoked

cigarettes. On 19 April 2017 (the date when this is being written) Mr Brown

was still alive.

(ii) On 23 September 2013, Ms Green reached her 60th birthday and retired.

She used her pensions savings on that date to purchase an annuity. Unfor-

tunately, her health was poor and the annual amount of annuity was higher

than normal for that reason. The annuity ceased when she died on 3 April

2016.

These observations, typical of what may be extracted from the files of an

insurance company or pension scheme, illustrate the raw material of survival

analysis, as actuaries practise it. We can list some features, all of which may

be relevant to the subsequent analysis:

• There are three timescales in each example, namely age, calendar time and

the duration since the life insurance policy or annuity commenced.
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• Our observations began only when the insurance policy or annuity com-

menced. Before that time we had no reason to know of Mr Brown’s or Ms

Green’s existence. All we know now is that they were alive on the relevant

commencement dates.

• Observation of Mr Brown ceased when this account was written on 19 April

2017, at which time he was still alive. We know that he will die after 19

April 2017, but we do not know when.

• Observation of Ms Green ceased because she died while under observation

(after 23 September 2013 but before 19 April 2017).

• In both cases, additional information was available that influenced the price

of the financial contract: age, gender, Mr Brown’s non-smoking status and

Ms Green’s poor health. Clearly, these data influenced the pricing because

they tell us something about a person’s chances of dying sooner rather than

later.

1.1.2 Individual Life Histories

The key features of life history data can be summarised as follows:

• The age at starting observation, the date of starting observation and the rea-

son for starting observation.

• The age at ending observation, the date of ending observation and the reason

for ending observation.

• Any additional information, such as gender, benefit amount or health status.

1.1.3 Grouped Survival Data

One main purpose of this book is to describe statistical models of mortality that

use, directly, data like the examples above. This is a destination, not a starting

point. We will soon introduce the idea of representing the future lifetime of

an indvidual as a non-negative random variable T . Ordinary statistical analysis

proceeds by observing some number n of observations t1, t2, . . . , tn drawn from

the distribution of T . A key assumption is that these are independent and iden-

tically distributed (i.i.d.). In the case of Mr Brown and Ms Green, we have no

reason to doubt independence, but they are clearly not identically distributed.

So we take a step back, and ask how we can define statistics derived from the

life histories described above that are plausibly i.i.d.. One way is to group data

according to qualities that advance homogeneity and reduce heterogeneity. For

example, we could group data by the following qualities:
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1.2 Software 5

• age

• gender

• policy size (sum assured or annuity payment)

• type of insurance policy

• calendar time

• duration since taking out insurance policy

• smoking status

• occupation

• medical history.

Another way is to propose a statistical model which incorporates directly

any important sources of heterogeneity, for example as covariates in a re-

gression model. In Chapter 7 we discuss the relative merits of these two ap-

proaches.

1.2 Software

Throughout this book we will illustrate basic model-fitting with the freely

available R software package. This is both a programming language and a

statistical analysis package, and it has become a standard for academic and

scientific work. R is free to download and use; basic instructions for down-

loading and installing R can be found in Appendix A. Partly because it is free

of charge, R comes with no warranties. However, support is available in a num-

ber of online forums.

Many actuaries in commerce use Microsoft Excel®, and they may ask why

we do not use this (or any other spreadsheet) for model-fitting. The answer is

twofold. First, R has many advantages, not least the vast libraries of scientific

functions to call upon which mean we can often fit complex models with a

few lines of code. Second, there are some important limits to Excel, especially

when it comes to fitting projection models like those in Part Two. Some of

these limits are rather subtle, so it is important that an analyst is aware of

Excel’s limitations.

The first issue is that at the time of writing Excel’s standard Solver feature

will not work with more than 200 variables (that is, parameters which have

to be optimised in order to fit the model). This is a problem for a number

of important stochastic projection models in Part Two. One option is to use

only models with fewer than 200 parameters, but this would allow software

limitations to dictate what the analyst can do.
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Another issue is that Excel’s Solver function will often claim an optimal

solution has been found when this is not the case. If the Solver is re-run sev-

eral times in succession, it often finds a better-fitting set of parameters on the

second and third attempts. It is therefore important that the analyst re-runs the

Solver a few times until no further change is found. Even then, we have come

across examples where R found a better-fitting set of parameters, which the

Solver agreed was a better fit, but which the Solver could not find on its own.

One option would be to consider one of the commercially supported alter-

native plug-ins for Excel’s Solver, although analysts would need to check that

it was indeed capable of finding the solutions that Excel cannot.

Whatever the analyst does, it is important not to rely uncritically on a single

software implementation without some form of checking.

1.3 Grouped Counts

Consider Table 1.1, which shows the mortality-experience data for the UK

pension scheme in the Case Study (see Section 1.10 for a fuller description).

It shows the number of deaths and time lived in ten-year age bands for males

and females combined. The main advantage of the data format in Table 1.1 is

its simplicity. The entire human age span is represented by just 11 data points

(age bands), and a reasonably well-specified statistical model can be fitted in

just four R statements (more on this in Section 1.5). We call the data in Ta-

ble 1.1 grouped data, because there is no information on individuals. (It is

likely that information on individuals was collected, but then aggregated. The

analyst might not have access to the data originally collected, only to some

summarised form.) A natural and intuitive measure of mortality in each age

band is the ratio of the number of deaths to the total time lived, which is shown

in the last column of Table 1.1. We call quantities of this form mortality ratios.

1.4 What Mortality Ratio Should We Analyse?

Suppose in a mortality analysis we want to calculate mortality ratios, as in

the rightmost column of Table 1.1. The numerator for the mortality ratio is

obvious: it is the number of deaths which have occurred. However, we have

two fundamental choices for the denominator:

• the number of lives (which is not shown in Table 1.1), or

• the time lived by those lives.
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1.4 What Mortality Ratio Should We Analyse? 7

Table 1.1 High-level mortality data for Case Study (see Section 1.10); time

lived and deaths in 2007–2012.

Age Time Deaths, Mortality
interval lived, t d ratio

(years) (d/t × 1000)

[0, 10) 71.9 0 0
[10, 20) 449.0 2 4.5
[20, 30) 163.9 0 0
[30, 40) 121.7 3 24.6
[40, 50) 893.1 6 6.7
[50, 60) 5,079.3 48 9.5
[60, 70) 32,546.7 278 8.5
[70, 80) 21,155.9 510 24.1
[80, 90) 10,606.7 866 81.6
[90, 100) 1,751.5 363 207.3
[100,∞) 23.1 11 475.7

All ages 72,862.7 2,087 28.6

The distinction arises because some of the individuals in the study may not

have been present for the whole period 2007–2012. For example, consider

someone who retired on 1 January 2009. Such a person would contribute one

to the total number of lives, but a maximum of four out of a possible six years

of time lived while a member of the scheme. The methods needed to analyse

these alternative formulations will clearly be different.

If we use the number of lives as the denominator, we are calculating the

proportion dying. For example, suppose a total of 3,500 individuals were pen-

sioners aged between ages 70 and 80. Then the mortality ratio, which is 510 ÷

3500 = 0.1457, is the proportion of members between ages 70 and 80 who

died during the six calendar years 2007–2012. The proportion dying during a

single calendar year might then be estimated by 0.1457 ÷ 6 = 0.0243. It is

natural to suppose that this estimates the probability of dying during a single

year. Such probabilities are denoted by q (0 ≤ q ≤ 1).

As it stands, this may not be a very good or reliable estimate. It takes

no account of persons who, as mentioned above, were not under observation

throughout all of 2007–2012, or who passed from one age band to the next

during 2007–2012. Adjustments would have to be made to allow for these,

and other, anomalies. Nevertheless, this analysis of mortality ratios based on

“number of lives” has been very common in actuarial work, perhaps motivated

by the fact that the probabilities being estimated are precisely the probabilities

of the life table.
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The alternative, which we will advocate in this book, is to use the time lived

as the denominator. In detail, for each individual we record the time at which

they entered an age group and the time when they left it, and the difference

is the survival time during which they were alive and in that age group. Then

the sum of all survival times in an age group is the total lime lived, shown in

the second column of Table 1.1. Analysis based on time lived has certain ad-

vantages. Potentially important from a statistical point of view is that it avoids

losing information on who died and when. We will illustrate this in the follow-

ing example adapted from Richards (2008).

Consider two small groups of pension scheme members, A and B, each with

four lives. Over the course of a full calendar year one life dies in each group.

The proportion dying is the same in each group: q̂A = q̂B = 1/4 (we use

the circumflex to denote an estimate of some true-but-unknown quantity; thus,

q̂ is an estimate of q). Analysis of the proportion dying does not distinguish

between the mortality experience of groups A and B.

Let us denote mortality ratios based on time lived by m. Suppose that the

death in group A occurred at the end of January. The total time lived in group A

was therefore 3 1
12

years (= 1+1+1+ 1
12

), and the ratio of deaths to time lived is

thus m̂A = 1÷3 1
12
=

12
37

. In contrast, suppose that the death in group B occurred

at the end of November. Then the total time lived in group B was 3 11
12

years

(= 1+1+1+ 11
12

), and the mortality ratio for group B is m̂B = 1÷3 11
12
=

12
47

. Thus,

using the time lived as the denominator enables us to distinguish a genuine

difference between the two mortality experiences. Using the number of lives

leads us to overlook this difference; the information on the time actually lived

is discarded.

We do not need to worry if we need q-type probabilities (that is, a life table)

for specific kinds of work. As we will see later, we can derive any actuarial

quantity we need having estimated m-type mortality ratios.

Let us develop the example further. Suppose that in group A one of the three

surviving individuals leaves the scheme at the end of August. The reason might

be resigning from employment (if an active member accruing benefits), or a

trivial commutation (if a pensioner member). Using the number of lives, we

now have a major problem in calculating q̂A, because we will not know if the

departed individual dies or not in the last third of the year. If they did, then we

should have q̂A = 2/4; if they did not, then we should have q̂A = 1/4, but we do

not know. We will be forced to complicate our analysis on a number-of-lives

basis by making some additional assumptions. Unfortunately, the assumptions

which are easiest to implement are seldom justified in practice. In contrast, us-

ing time lived, the adjustment is trivial and no further assumptions are required.

www.cambridge.org/9781107045415
www.cambridge.org


Cambridge University Press
978-1-107-04541-5 — Modelling Mortality with Actuarial Applications
Angus S. Macdonald , Stephen J. Richards , Iain D. Currie 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.5 Fitting a Model to Grouped Counts 9

The total time lived is now simply 2 3
4

years (= 1+1+ 8
12
+

1
12

), and the mortality

ratio is m̂A = 1 ÷ 2 3
4
=

4
11

.

This example exhibits the other advantage of using time lived instead of the

number of lives – it is better able to handle real-world data where individuals

enter and leave observation for various reasons, at times that are not under the

control of the analyst.

The mortality ratio q is referred to as the initial rate of mortality, while m

is referred to as the central rate of mortality (see Section 3.6). When used

in the denominator, the number of lives is called the initial exposed-to-risk

(sometimes denoted by E), while the time lived is called the central exposed-

to-risk (sometimes denoted by Ec). Having set out some reasons for preferring

mortality ratios based on time lived, the next section demonstrates how to fit a

model to grouped counts.

1.5 Fitting a Model to Grouped Counts

One recurring feature in this book is that quantities closely related to Poisson

random variables and, later on, Poisson processes arise naturally in survival

models. Why this is so will ultimately be explained in Chapter 17, but for

now we shall just accept that the data in Table 1.1 appear to be suitable for

modelling as a Poisson random variable from age band (30, 40] upwards. For

reasons we explain in Section 1.6, we exclude data below age 30 as having too

few observed deaths.

We can build a statistical model for the data in Table 1.1 in just four R

commands:

vExposures = c(121.7, 893.1, 5079.3, 32546.7, 21155.9,

10606.7, 1751.5, 23.1)

vDeaths = c(3, 6, 48, 278, 510, 866, 363, 11)

oModelOne = glm(vDeaths ∼ 1, offset=log(vExposures),

family=poisson)

summary(oModelOne)

We shall explain what each of these four commands does.

• We first put the times lived and deaths into two separate vectors of equal

length. The R function c() concatenates objects (here scalar values) into a

vector. It can be handy to begin the variable names with a v as a reminder

that they are vectors, not scalars.
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• We next fit the Poisson model as a generalised linear model (GLM; see Sec-

tion 10.7) using R’s glm() function. We specify the deaths as the response

variable, and we have to provide the exposures as an offset. We also spec-

ify a distribution for the response variable with the family argument. The

results of the model are placed in the new model object, oModelOne. It can

be handy to begin such variable names with an o as a reminder that it is a

complex object, rather than a simple scalar or vector.

• Last, we inspect the model object using R’s summary() function.

Part of what we will see in the output is the following:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.5444 0.0219 -161.8 <2e-16 ***

The above model has fitted a single constant parameter applying across all

ages, which R calls the “intercept”. The default behaviour in R is to operate on

a logarithmic scale, so the parameter labelled (Intercept) is log m̂. Thus, the

fitted model is m̂ = exp(−3.5444) = 0.02889. This is simply the mortality ra-

tio: the total number of deaths (2,085) divided by the total time lived (72,178.0

years). What this tells us is that the mortality ratio is not just an intuitive mea-

sure of mortality, but emerges as the estimate in a probabilistic model. In this

context it has sampling properties, such as the standard error and the p-value,

and these are provided automatically in the R output.

We can do better. Table 1.1 suggests that mortality ratios increase sharply

with increasing age. A better model would therefore allow the Poisson param-

eter to vary by each age group. We can do this by running the following R

commands:

vExposures = c(121.7, 893.1, 5079.3, 32546.7, 21155.9,

10606.7, 1751.5, 23.1)

vDeaths = c(3, 6, 48, 278, 510, 866, 363, 11)

vAgeBand = factor(c(35, 45, 55, 65, 75, 85, 95, 105))

oModelTwo = glm(vDeaths ∼ -1 + vAgeBand,

offset=log(vExposures), family=poisson)

summary(oModelTwo)

We shall explain the two new features:

• The age bands are labelled with the age at the mid-point of each band. The

factor() command ensures that the age bands are to be treated as factor

levels, rather than values for regression. In other words, a mortality rate will

be fitted to each age band separately.
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