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Introduction

The aim of this chapter is to introduce the concept of Fourier series in an ac-
cessible way. We present the analytic setting in which Fourier series arise as
the natural generalisation of trigonometric polynomials. We also describe how
the problem of the vibrating string and the investigation of heat flow mark
the beginning of the theory of Fourier series as a useful approach for solv-
ing differential equations of physical relevance. A link between trigonometric
polynomials and number theory is also explored.

1.1 Trigonometric polynomials and series

A trigonometric polynomial of degree n is an expression of the form

p(t) =
n∑

k=−n

ck e2πikt (1.1)

where the cks are complex numbers with |c−n| + |cn| � 0. Thus pn is a con-
tinuous periodic function of the real variable t, of period 1, determined by its
values on [0, 1), or any other interval of length 1. Since∫ 1

0
e2πikt dt =

{
0 if k � 0,
1 if k = 0,

(1.2)

the constants ck in the representation (1.1) of the trigonometric polynomial p
can be computed by means of

ck =

∫ 1

0
p(t) e−2πikt dt, |k| ≤ n. (1.3)
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2 Introduction

The function ek(t) = e2πikt is sometimes referred to as the character with fre-
quency k or as the kth pure frequency.

The trigonometric polynomials (1.1) can also be looked at geometrically. Namely, we can interpret
the complex number p(t) in (1.1) as the vector sum of its components, each complex number
ck being modified by a supplementary phase 2πkt. In the case of real positive coefficients the
visual approach is particularly simple: p(t) is the extremity of a polygonal contour formed by
successive straight segments with respective lengths ck , each one making the same angle 2πt with
the preceding (and following) one. A simple example is depicted in Figure 1.1; for more elaborate
examples we refer to the discussion in Lévy-Leblond (1997).
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Figure 1.1 The geometric representation of the value at t = 1/8 of a trigonometric
polynomial p(t) of degree 1 and with positive coefficients.

A fundamental approximation result (to be proved in Chapter 4) is that for
any continuous periodic function f : R → C of period 1, given ε > 0, there is
a trigonometric polynomial p with

|p(t) − f (t)| < ε, t ∈ R. (1.4)

Due to periodicity, it suffices to verify the above inequality for t ∈ [0, 1).

The role of the multiplicative factor (2π) in the argument of the fundamental trigonometric mono-
mials e2πikt used in (1.1) is to normalise the period to 1. However, given that (1.1) can be expressed
as p(t) =

∑n
k=0 ak cos(2πkt) +

∑n
k=0 bk sin(2πkt), for some ak , bk ∈ C, it is reasonable to wonder

why we de not associate the terminology “trigonometric polynomial" with functions of the form

q(t) =
n∑

k=0

αk cosk(2πt) +
n∑

k=0

βk sink(2πt) (1.5)

for some ak , bk ∈ C. An exercise in trigonometric identities1 shows that any function of type (1.5)

1 In this context, it is comforting to know that, see Borzellino and Sherman (2012), polynomial
relations between cos(2πt) and sin(2πt) are always consequences of the Pythagorean identity
cos2(2πt) + sin2(2πt) = 1; there are no hidden tricks.
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1.1 Trigonometric polynomials and series 3

can be written in the form (1.1), with the same value of the degree. However, not all trigonometric
polynomials are expressible in the form (1.5): for example, t �→ sin(4Nπt) with N � 0 integer
are not expressible, see Borzellino and Sherman (2012). For this reason,2 expressions of the form
(1.5) are not enough to approximate well continuous periodic functions of period 1.

The approximation result expressed by means of (1.4) leads us naturally to
the concept of a trigonometric series or Fourier series, defined in analogy to
(1.1) as an expression of the form

∞∑
k=−∞

ck e2πikt , (1.6)

representing formally a function f of period 1. In light of (1.3), we expect that
the constants ck in (1.6) and the function f are connected by the formula

ck =

∫ 1

0
f (t) e−2πikt dt , k ∈ Z. (1.7)

More generally, the Fourier series associated to a function f : R→ C of period
T > 0 is

∞∑
k=−∞

ck e2πikt/T , (1.8)

where

ck =
1
T

∫ T

0
f (t) e−2πikt/T dt , k ∈ Z . (1.9)

The theory of Fourier series studies the classes of periodic functions (of period
T > 0) and the notions of convergence appropriate for the correspondence
f (t) ≈ ∑∞

k=−∞ ck e2πikt/T , with the constants ck given by (1.9), expressing the
function f in terms of a superposition of oscillations with frequencies νk =
k/T that are integer multiples of the fundamental frequency ν = 1/T . As a
glimpse at the intricacy of the subject, notice that above we pointed out that
for any continuous periodic function f : R → C of period 1 we can find
trigonometric polynomials that approximate it uniformly, that is, in the sense of
(1.4). Nevertheless, the specific trigonometric polynomials obtained by means
of the symmetric partial sums

sn( f , t) =
n∑

k=−n

ck e2πikt (1.10)

with ck given by (1.9) are not necessarily good approximations: the sequence

2 The orthogonality considerations made in Chapter 3 show that if we rely only on functions of
the form (1.5), then the approximations miss out an infinite-dimensional subspace of the space
of square integrable functions.
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4 Introduction

{sn( f , t)}n≥1 might diverge for infinitely many values of t ∈ [0, 1]; see the dis-
cussion in the introduction to Chapter 4. This shows that continuity coupled
with the concept of pointwise or uniform convergence is not adequate. The
proper setting turns out to be the class of Lebesgue integrable or square inte-
grable functions, with an associated concept of convergence. The need to go
beyond the class of continuous functions and the classical theory of Riemann
integrable functions is fully justified by the mathematical power and flexibil-
ity of the theory within the new setting, and is further emphasised by its wide
range of applicability.

1.2 The dawn of the theory

Fourier analysis dates back to late eighteenth/early nineteenth century studies
of the vibrating string and of heat propagation. Two basic partial differential
equations of one-dimensional mathematical physics are the wave equation

∂2U
∂T 2 = c2 ∂

2U
∂X2 (1.11)

and the heat equation
∂U
∂T
= κ
∂2U
∂X2 , (1.12)

where c > 0 and κ > 0 are physical constants. In (1.11), U = U(X,T ) rep-
resents, at the location X and at time T , the displacement of a homogeneous
string placed in the (X,Y)-plane and stretched along the X-axis between X = 0
and X = L, where it is tied. The value of the constant c is

√
τ/ρ, where τ is the

tension coefficient of the string and ρ is its mass density. Equation (1.11) is to
be solved for T > 0 and X between 0 and L, subject to the boundary conditions

U(0,T ) = U(L,T ) = 0, T ≥ 0, (1.13)

which express the fact that the endpoints of the string are fixed. The solution
U describes the vibrations of a violin string. On the other hand, in (1.12), U =
U(X,T ) is the temperature in a homogeneous, straight wire of length L, whose
endpoints are held at constant temperature zero. The value of the constant κ
in (1.12) is specific to the conducting material. The problem is to describe
the temperature at time T from its knowledge at time T = 0. Consequently,
we seek solutions to (1.12) for T > 0 and X between 0 and L, subject to the
boundary conditions

U(0,T ) = U(L,T ) = 0, T ≥ 0, (1.14)
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1.2 The dawn of the theory 5

and with the initial temperature specified by

U(X, 0) = U0(X), 0 ≤ X ≤ L . (1.15)

For the physical derivation of (1.11) and (1.12) we refer to Dym and McKean
(1972), Krantz (1999), Stein and Shakarchi (2003) and Strauss (2008). We
now discuss some mathematical aspects of historical interest that provided the
motivation for the development of the rigorous theory of Fourier series.

The first natural step in the mathematical investigation of (1.11) consists of
scaling the equation: a change of units permits us to write the equation in non-
dimensional form, thus reducing the number of physical parameters involved.
This can be accomplished by means of the change of variables

X = Lx, T =
L
c

t, U(X,T ) = c0 u(x, t), (1.16)

where c0 = 1 m is the reference length. The fact that X takes values between 0
and L translates into x ∈ [0, 1], the constant c is absorbed into (1.16), and all
variables (the independent variables x and t, as well as the dependent variable
u) are now numbers, whereas X and U were expressed initially in m (metres)
and T in s (seconds). Clearly ∂U

∂X =
c0
L
∂u
∂x , ∂U

∂T =
c0c
L
∂u
∂t , ∂

2U
∂X2 =

c2
0

L2
∂2u
∂x2 , ∂

2U
∂T 2 =

c2
0c2

L2
∂2u
∂t2 , so that (1.11) and (1.13) are transformed into⎧⎪⎪⎨⎪⎪⎩ utt = uxx, t > 0, 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, t ≥ 0 ,
(1.17)

where utt =
∂2u
∂t2 and uxx =

∂2u
∂x2 . Once we solve (1.17), we can return to the

original physical variables by making the change of variables inverse to (1.16).
Similarly, the nondimensional scaled version of (1.12) coupled with (1.14)–
(1.15) is ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut = uxx, t > 0, 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, t ≥ 0,

u(x, 0) = u0(x), 0 ≤ x ≤ 1 ,

(1.18)

with u0 : [0, 1] → R a given continuous function satisfying u0(0) = u0(1) = 0;
here ut =

∂u
∂t . The issue of finding proper initial data (at time t = 0) for (1.17),

playing the role that u0 plays for (1.18), is discussed in Section 1.2.1.

1.2.1 The vibrating string controversy

For the sake of simplicity, let us first drop the restrictions 0 ≤ x ≤ 1 and t ≥ 0,
and suppose that u is twice differentiable and solves the partial differential
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6 Introduction

equation in (1.17) for all real x and t. If we change variables ξ = x− t, η = x+ t,
and set γ(ξ, η) = u(x, t), in terms of the new variables the partial differential

equation in (1.17) becomes
∂2γ

∂ξ∂η
= 0. Integrating this relation twice gives

γ(ξ, η) = f (ξ) + g(η) for some functions f and g, so that

u(x, t) = f (x − t) + g(x + t) . (1.19)

Note that the graph of the function x �→ f (x−t) at time t = 0 is simply the graph
of the function f , while at time t it becomes the graph of f translated by t: f (x−
t) represents a travelling wave (a pattern that travels without change of form)
which propagates to the right with unit speed; see Figure 1.2. Similarly, g(x+ t)
represents a travelling wave that propagates to the left with unit speed.3 The
partial differential equation in (1.17) being linear, the superposition principle
holds: if u1(x, t) and u2(x, t) are solutions, then so is a u1(x, t) + b u2(x, t) for
any constants a and b. In particular, (1.19) shows that the general solution is a
superposition of two waves travelling in opposite directions.
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Figure 1.2 A travelling wave propagating to the right: the profile is depicted at three
successive times t = −t0, t = 0 and t = t0 with t0 > 0.

To connect the obtained result with the original problem (1.17), provided
that u(x, 0) = u0(x) for x ∈ [0, 1] specifies the initial shape of the string, extend
u0 to R as an odd function4 of period 2. Also, extend the presumed solution

3 The non-dimensional unit speed corresponds to the speed c in the original physical variables,
if we recall the scaling (1.16).

4 Meaning that u0(−x) = − u0(x) and u0(x + 2) = u0(x) for x > 0. Note that if we extend u0 to
the whole real line, relation (1.22) emerges, and this forces oddness. With regard to
periodicity, the boundary conditions in (1.17) might seem to indicate the period 1. However,
period 2 and oddness combined do not impose any constraint upon u0 : [0, 1] → R with
u0(0) = u0(1) = 0, whereas period 1 and oddness require u0(1/2) = 0, for example, due to
u0(1/2) = u0(1/2 − 1) = u0(−1/2) = −u0(1/2).
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1.2 The dawn of the theory 7

u(x, t) from [0, 1]× [0,∞) to R2 by requiring that for every fixed t ≥ 0, the map
x �→ u(x, t) is odd and periodic of period 2, while for t < 0 we simply solve
(1.17) backwards in time: we seek a twice differentiable solution u : R×R→ R
to (1.17). Consequently, the solution u must be of the form (1.19) for some
functions f and g. We get

f (x) + g(x) = u0(x), x ∈ R , (1.20)

by evaluating (1.19) at t = 0. To accommodate the boundary conditions in
(1.17), (1.19) yields f (−t) + g(t) = 0 for all t ∈ R, so that (1.19) and (1.20)
take the form

u(x, t) = g(x + t) − g(t − x) , x, t ∈ R , (1.21)

g(x) − g(−x) = u0(x), x ∈ R , (1.22)

respectively. The formula (1.19) was first obtained in 1747 by d’Alembert,
who was concerned with finding the general solution of the partial differential
equation and ignored the physical context,5 in particular, the significance of
(1.22). A closer look at (1.22) reveals that the form of its left side encodes the
fact that the function u0 is odd, but this relation by itself does not determine
the function g. For example, if g is a solution to (1.22), so will be g + g0

for any even function6 g0 of period 1. The underlying physics indicates that
perhaps the initial velocity7 v0(x) = ∂u

∂t (x, 0) for x ∈ [0, 1], might be relevant.
Indeed, if v0 is given on [0, 1], we extend it to R by requiring it to be odd and
periodic of period 2. Differentiating (1.21) with respect to the time variable8

and evaluating the outcome at t = 0, we get

g′(x) − g′(−x) = v0(x), x ∈ R. (1.23)

Now (1.22) and (1.23) yield g(x) = 1
2
[
u0(x) +

∫ x
0 v0(s) ds

]
+ α for some

constant α. Since u0 and v0 are odd,9 using (1.21), we obtain

u(x, t) =
u0(x − t) + u0(x + t)

2
+

1
2

∫ x+t

x−t
v0(s) ds , (1.24)

5 It was not unusual for d’Alembert to sacrifice physical reality for a purely philosophical
viewpoint, see Wheeler and Crummett (1987).

6 Meaning that g0(−x) = g0(x) for all x ∈ R.
7 ut =

∂u
∂t is the rate of change of the displacement of a particular point on the string and

(generally) differs from the speed c of propagation of the wave along the string. This situation
is also encountered for waves in media other than strings.

8 Since u is twice differentiable, t �→ u(t, t) is differentiable. From (1.21) with x = t we then
infer that g is differentiable.

9 So that − u0(t − x) = u0(x − t) and
∫ 0

t−x v0(s) ds =
∫ 0

x−t v0(y) dy, the latter as a consequence of
the change of variables y = −s.
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8 Introduction

as shown in 1748 by Euler. One can check directly that for a general twice
differentiable function u0 : R → R and for a general differentiable function
v0 : R → R, (1.24) provides us with a classical solution to the wave equation
utt − uxx = 0, with u(x, 0) = u0(x) and ut(x, 0) = v0(x). In our particular set-
ting, observe that the extensions performed for u0 and v0 ensure the validity of
the boundary conditions in (1.17). The above discussion illustrates the fruitful
interplay between abstract mathematics and its relation to nature: physical in-
tuition can provide a feeling for mathematical facts and the other way around.

x x0 1

h

0

Figure 1.3 Initial position of a plucked string.

Euler’s solution (1.24) differed from d’Alembert’s (1.21) on the specifica-
tion10 of the function g. Furthermore, Euler proclaimed that the function g
does not need to be differentiable, but may be any curve drawn by hand.11 Eu-
ler had in mind the plucked string: taking as the initial position of the string
the triangular shape given, for some constants x0 ∈ (0, 1) and h > 0, by

u0(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xh
x0

for 0 ≤ x ≤ x0,

h(1−x)
1−x0

for x0 ≤ x ≤ 1,
(1.25)

(see Figure 1.3), and choosing zero initial velocity v0 ≡ 0, Euler declared that
the subsequent positions of the string are given by

u(x, t) =
u0(x − t) + u0(x + t)

2
, t ≥ 0, 0 ≤ x ≤ 1, (1.26)

obtained formally from (1.24). Euler used a physical observation (the fact that
the violin string could be released from an initial position with a corner) to im-
pose a mathematical formula. The unsatisfactory aspect of the solution (1.26)
10 Due to (1.20), the knowledge of g determines f uniquely in terms of the initial position u0.
11 The mathematical formalism which we take for granted today was not available at that time:

Euler did not perceive a function to be an arbitrary rule that assigns to every point of the
domain of definition a single point of the range, see Krantz (1999). This explains the vague
formulation.
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1.2 The dawn of the theory 9

is that it does not satisfy the partial differential equation we set out to solve:
since u0 is not differentiable at x = x0 ∈ (0, 1), the function u(x, t) defined by
(1.26) is not differentiable. In light of this, d’Alembert objected to physical ar-
guments for solutions to a partial differential equation and called for the other
researchers to engage in mathematics, see Wheeler and Crummett (1987). Eu-
ler defended his solutions with corners with mathematically unconvincing ar-
guments. His position was later on vindicated: it turns out that u does solve
the equation in an appropriate generalised sense, the understanding of which
requires the theory of distributions.
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Figure 1.4 Fundamental tone (i) and the first overtone (ii) at two instants in time.

Daniel Bernoulli enters the debate in 1753 in the midst of the d’Alembert–
Euler disagreement. His starting point, see Benedetto (1997), is Brook Taylor’s
observation from 1715 that for any integer m ≥ 1 the tone12

um(x, t) = sin(πmx) cos(πmt) (1.27)

represents a solution to (1.17) with zero initial velocity. In contrast to the trav-
elling waves discussed before, (1.27) represents a standing wave. The termi-
nology comes from looking at the graph of x �→ um(x, t) as t varies (see Fig-
ure 1.4): the endpoints x = 0 and x = 1, as well as all points x = k

m with

12 The case m = 1 is called the fundamental tone or first harmonic of the vibrating string, and
m ≥ 2 are the overtones or higher harmonics, m = 2 being the first overtone or second
harmonic, see Stein and Shakarchi (2003).
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10 Introduction

k ∈ {1, · · · ,m − 1}, remain motionless in time and are called nodes. The points
x = 2k−1

2m with k ∈ {1, · · · ,m}, where the amplitude is maximal, are named
anti-nodes. Bernoulli argued formally in terms of the physics of sound and
provided no mathematical support for his arguments, see Wheeler and Crum-
mett (1987), claiming that the solution to (1.17) with initial velocity v0 ≡ 0
must be an infinite sum of the tones:

u(x, t) =
∞∑

m=1

am sin(πmx) cos(πmt) . (1.28)

Using the trigonometric identity sin(α) cos(β) = sin(α+β)+ sin(α−β)
2 , we can ex-

press (1.28) equivalently in the form

u(x, t) =
∞∑

m=1

am
sin(πm[x − t]) + sin(πm[x + t])

2
. (1.29)

Setting v0 ≡ 0 in (1.24), we see that the problem of reconciling Bernoulli’s
formal solution to d’Alembert’s rigorous solution reduces to the question of
whether a twice differentiable odd periodic function u0 of period 2 may be writ-
ten in the form u0(x) =

∑∞
m=1 am sin(πmx). d’Alembert objected to Bernoulli’s

solution on physical grounds, believing (erroneously) that there was only one
possible frequency associated with a vibration, while Euler felt that Bernoulli’s
solution was too special.

Lagrange entered the debate in 1759, supporting Euler’s admission of func-
tions with corners and dismissing Bernoulli’s solution, see Wheeler and Crum-
mett (1987). He proposed a completely new approach that avoided the wave
equation by viewing the string as a collection of n equally spaced point masses,
connected by a light cord. This model leads to a set of n equations of the form
d2yk
dt2 = yk−1−2yk+yk+1. After solving the system for a finite number of masses,

Lagrange generated, for the initial position u0 and the initial velocity v0 of the
string (both odd and of period 2), the solution

u(x, t) = 2
∞∑

m=1

( ∫ 1

0
sin(πms) u0(s) ds

)
cos(πmt) sin(πmx) (1.30)

+
2
π

∞∑
m=1

( ∫ 1

0

sin(πms)
m

v0(s) ds
)

sin(πmt) sin(πmx) .

Note that if we set t = 0 in (1.30) and if we interchange summation and inte-
gration, then (1.30) gives rise to the Fourier series expansion of the function
u0, while differentiating (1.30) with respect to t and subsequently setting t = 0
yields the Fourier series expansion of the function v0.
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