Contents

Acknowledgments page xii

Part I Introducing the character

1 **Life and myth**

1.1 Fortunes and misfortunes of a genius
1.2 Family and university training
1.3 Lone physicist in the Fermi group
1.4 Leipzig–Rome–Naples: the later years

2 **The visible side**

2.1 Ten papers depicting the future
2.2 Introducing the Dirac equation into atomic spectroscopy
2.3 Spontaneous ionization
 2.3.1 Anomalous terms in helium
 2.3.2 Incomplete P' triplets
 2.3.3 Majorana–Fano–Feshbach resonances
2.4 Chemical bonding
 2.4.1 Helium molecular ion
 2.4.2 Majorana structures
2.5 Non-adiabatic spin-flip
 2.5.1 Majorana sphere and a general theorem
 2.5.2 Landau–Zener probability formula
 2.5.3 Majorana’s holes
 2.5.4 Majorana–Brossel effect
2.6 Nuclear forces
 2.6.1 The Heisenberg model of nuclear interactions
 2.6.2 Majorana’s exchange mechanism
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.3 Thomas–Fermi formalism and Yukawa potential</td>
<td>37</td>
</tr>
<tr>
<td>2.7 Infinite-component equation</td>
<td>38</td>
</tr>
<tr>
<td>2.7.1 A successful relativistic wave equation</td>
<td>39</td>
</tr>
<tr>
<td>2.7.2 Majorana equation</td>
<td>40</td>
</tr>
<tr>
<td>2.7.3 Infinite-dimensional representations of the Lorentz group</td>
<td>41</td>
</tr>
<tr>
<td>2.7.4 A difficult problem for Pauli and Fierz</td>
<td>42</td>
</tr>
<tr>
<td>2.7.5 Further elaborations</td>
<td>44</td>
</tr>
<tr>
<td>2.8 Majorana neutrino theory</td>
<td>47</td>
</tr>
<tr>
<td>2.8.1 “Symmetric” Dirac equation</td>
<td>47</td>
</tr>
<tr>
<td>2.8.2 Neutrino–antineutrino identity</td>
<td>49</td>
</tr>
<tr>
<td>2.8.3 Racah and the neutrinoless double β-decay</td>
<td>50</td>
</tr>
<tr>
<td>2.8.4 Pontecorvo and the neutrino oscillations</td>
<td>51</td>
</tr>
<tr>
<td>2.8.5 Majorana fermions</td>
<td>52</td>
</tr>
<tr>
<td>2.9 Complex systems in physics and economics</td>
<td>53</td>
</tr>
<tr>
<td>2.9.1 Genesis of paper N.10</td>
<td>54</td>
</tr>
<tr>
<td>2.9.2 Statistical laws in social sciences</td>
<td>55</td>
</tr>
<tr>
<td>2.9.3 A sensational success in econophysics</td>
<td>57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part II Atomic physics</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Two-electron problem</td>
<td>61</td>
</tr>
<tr>
<td>3.1 A long-lasting success for quantum mechanics</td>
<td>63</td>
</tr>
<tr>
<td>3.2 Known solutions to the helium atom problem</td>
<td>64</td>
</tr>
<tr>
<td>3.2.1 Perturbative calculations</td>
<td>64</td>
</tr>
<tr>
<td>3.2.2 Variational method I</td>
<td>66</td>
</tr>
<tr>
<td>3.2.3 Self-consistent field method</td>
<td>68</td>
</tr>
<tr>
<td>3.2.4 Slater’s refinement</td>
<td>69</td>
</tr>
<tr>
<td>3.2.5 Variational method II: Hylleraas variables</td>
<td>70</td>
</tr>
<tr>
<td>3.2.6 Helium-like ions</td>
<td>71</td>
</tr>
<tr>
<td>3.3 Majorana empirical relations</td>
<td>72</td>
</tr>
<tr>
<td>3.4 Helium wavefunctions and broad range estimates</td>
<td>76</td>
</tr>
<tr>
<td>3.5 Accurate numbers and a general theory</td>
<td>78</td>
</tr>
<tr>
<td>3.5.1 A simpler alternative to Hylleraas’s method</td>
<td>78</td>
</tr>
<tr>
<td>3.5.2 Majorana’s variant of the variational method</td>
<td>79</td>
</tr>
<tr>
<td>3.6 Conclusions</td>
<td>81</td>
</tr>
</tbody>
</table>

4 Thomas–Fermi model	83
4.1 Fermi universal potential	83
4.1.1 Thomas–Fermi equation	83
Contents

4.1.2 Numerical and approximate solutions 85
4.1.3 Mathematical properties 86

4.2 Majorana solution of the Thomas–Fermi equation 87
4.2.1 Transformation into an Abel equation 87
4.2.2 Analytic series solution 89
4.2.3 Numerical tables 92

4.3 Mathematical generalizations 93
4.3.1 Frobenius method 93
4.3.2 Scale-invariant differential equations 95

4.4 Physical applications 97
4.4.1 Modified Fermi potential for heavy atoms 98
4.4.2 Second approximation for the atomic potential 100
4.4.3 Atomic polarizability 102
4.4.4 Applications to molecules 103

4.5 Conclusions 105

Part III Nuclear and statistical physics 107

5 Quasi-stationary nuclear states 109
5.1 Probing the atomic nucleus with α particles 109
5.2 Scattering of α particles on a radioactive nucleus 111
5.2.1 Quantum-mechanical theory 111
5.2.2 Thermodynamic approach 115
5.3 Transition probabilities of quasi-stationary states 116
5.3.1 Transitions from a discrete into a continuum state 116
5.3.2 Transitions into two continuous spectra 118
5.3.3 Transitions from a continuum state 118
5.4 Nuclear disintegration by α particles 119
5.4.1 Statement of the problem 119
5.4.2 The appropriate wavefunction 121
5.4.3 Cross section 122
5.5 Conclusions 124

6 Theory of ferromagnetism 127
6.1 Towards a statistical theory of ferromagnetism 128
6.1.1 Molecular fields 128
6.1.2 Heisenberg theory 129
6.1.3 Later refinements 131
6.2 Majorana statistical model 131
6.2.1 Distribution function 134
Contents

6.3 Solution of the model in the continuum limit 136
 6.3.1 Partition function at finite temperature 138
 6.3.2 Mean magnetization 139
6.4 Applications and further results 141
 6.4.1 Particular ferromagnetic geometries 141
 6.4.2 Critical temperature and dimensionality 143
6.5 Conclusions 144

Part IV Relativistic fields and group theory 147
7 Groups and their applications to quantum mechanics 149
 7.1 The “Gruppenpest” in quantum mechanics 150
 7.2 Unitary transformations in two dimensions 153
 7.2.1 D_4 representation and group generators 154
 7.3 Three-dimensional rotations 156
 7.3.1 Group generators 157
 7.4 Application: the anomalous Zeeman effect 160
 7.5 Lorentz group and its representations 164
 7.5.1 n-dimensional Dirac matrices 164
 7.5.2 Special case: maximum allowed p for fixed n 167
 7.5.3 Non-Hermitian operators 169
 7.5.4 Infinite-dimensional unitary representations 170
 7.6 Conclusions 173
8 Dirac equations and some alternatives 175
 8.1 Searching for an equation 175
 8.1.1 Massive photons and the DKP algebra 178
 8.1.2 Dirac–Fierz–Pauli formalism 180
 8.1.3 General equations for arbitrary spin 182
 8.2 Majorana n-component spinor equations 184
 8.2.1 The 16-component equation for a two-particle system 185
 8.2.2 Equation for a six-component spinor 187
 8.2.3 Five-component equation 189
 8.3 Parallel lives (and findings) 189
 8.4 Conclusions 191

Part V Quantum field theory 193
9 Scalar electrodynamics 195
 9.1 Early quantum electrodynamics 196
Contents

9.1.1 Quantum field formalism 196
9.1.2 Particles and antiparticles 198
9.1.3 Pauli–Weisskopf theory 198

9.2 Majorana theory of scalar electrodynamics I 201
9.3 Majorana theory of scalar electrodynamics II 205
9.4 Application to the nuclear structure 209
9.5 Conclusions 212

10 Photons and electrons 214
10.1 Photon wave mechanics 215
10.1.1 Majorana–Oppenheimer formulation of electrodynamics 215
10.1.2 Lorentz-invariant wave theory 217
10.1.3 Two-component theory 219
10.1.4 Field quantization 220
10.2 Dynamical theory of electrons and holes 221
10.3 Conclusions 224

Part VI Fundamental theories and other topics 227

11 A “path integral” approach to quantum mechanics 229
11.1 Dirac and Feynman’s mathematical approach 230
11.2 Majorana’s physical approach 232
11.3 Conclusions 234

12 Fundamental lengths and times 236
12.1 Introducing elementary space-time lengths 236
12.2 Quasi-Coulombian scattering 239
12.3 Intrinsic time delay and retarded electromagnetic fields 242
12.4 Conclusions 244

13 Majorana’s multifaceted life 246
13.1 Majorana as a student 246
13.1.1 Melting point shift due to a magnetic field 246
13.1.2 Determination of a function from its moments 248
13.1.3 WKB method for differential equations 251
13.2 Majorana as a phenomenologist: spontaneous and induced ionization of a hydrogen atom 254
13.2.1 Hydrogen atom placed in a high potential region 255
13.2.2 Ionization of a hydrogen-like atom in an electric field 260
13.3 Majorana as a theoretician: a unifying model for the fundamental constants 263
Contents

13.4 Majorana as a mathematician
13.4.1 Improper operators
13.4.2 Cubic symmetry
13.5 Majorana as a teacher

Part VII Beyond Majorana

14 Majorana and condensed matter physics
F. Wilczek
14.1 Spin response and universal connection
14.2 Level crossing and generalized Laplace transform
14.3 Majorana fermions and Majorana mass: from neutrinos to electrons
14.3.1 Majorana’s equation
14.3.2 Analysis of Majorana neutrinos
14.3.3 Majorana mass
14.3.4 Majorana electrons
14.4 Majorinos
14.4.1 Kitaev chain
14.4.2 Junctions and the algebraic genesis of majorinos
14.4.3 Continuum majorinos

15 Majorana neutrinos and other Majorana particles: theory and experiment
E. Akhmedov
15.1 Weyl, Dirac, and Majorana fermions
15.1.1 Particle—antiparticle conjugation
15.1.2 Dirac dynamics and the Majorana condition
15.1.3 Fermion mass terms and U(1) symmetries
15.1.4 Feynman rules for Majorana particles
15.2 C, P, CP, and CPT properties of Majorana fermions
15.3 Mixing and oscillations of Majorana neutrinos
15.3.1 Neutrinos with a Majorana mass term
15.3.2 General case of Dirac + Majorana mass term
15.3.3 Dirac and pseudo-Dirac neutrino limits in the D + M case
15.4 Seesaw mechanism of neutrino mass generation
15.5 Electromagnetic properties of Majorana neutrinos
15.6 Majorana particles in SUSY theories