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Introduction 1

Quantum theory is the soul of contemporary physics. It was discovered in an adventurous

way, under the urge to solve the puzzles posed by atomic spectra and blackbody radiation.

But after its invention, it immediately became clear that it was not just a theory of specific

physical systems: it was rather a new language of universal applicability. Already in

1928, the theory had received solid mathematical foundations by Hilbert, von Neumann,

and Nordheim,1 and this work was brought to completion in the monumental work of

von Neumann,2 in the form that we still study nowadays. The theory is extraordinarily

successful, and its predictions have been confirmed to an astonishing level of precision in

a large spectrum of experiments.

However, almost 90 years after von Neumann’s book, quantum theory remains

mysterious. Its mathematical formulation – based on Hilbert spaces and self-adjoint

operators – is far from having an intuitive interpretation. The association of physical

systems to Hilbert spaces whose unit vectors represent pure states, the representation

of transformations by unitary operators and of observables by self-adjoint operators –

all such postulates look artificial and ad hoc. A slightly more operational approach is

provided by the C
∗-algebraic formulation of quantum theory3 – still, this formulation

relies on the assumption that observables form an algebra, where the physical meanings

of the multiplication and the sum are far from clear.

In short, the postulates of quantum theory impose mathematical structures without

providing any simple reason for this choice: the mathematics of Hilbert spaces is adopted

as a magic blackbox that “works well” at producing experimental predictions. However,

in a satisfactory axiomatization of a physical theory the mathematical structures should

emerge as a consequence of postulates that have a direct physical interpretation. By this

we mean postulates referring, e.g., to primitive notions like physical system, measurement,

or process, rather than notions like, e.g., Hilbert space, C
∗-algebra, unit vector, or self-

adjoint operator.

The crucial question thus remains unanswered: why quantum theory? Which are the

principles at the basis of the theory? A case that is often invoked in contrast is that of

Special Relativity theory, which directly follows from the simple understandable principle

of relativity.

1 Hilbert et al. (1928).
2 The book (von Neumann, 1932) has been recently reprinted (von Neumann, 1996).
3 Haag (1993).
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2 Introduction

1.1 The Quest for Principles: von Neumann

The need for a deeper understanding of quantum theory in terms of fundamental principles

was clear since the very beginning. Von Neumann himself expressed his dissatisfaction

with his own mathematical formulation of quantum theory with the surprising words,

“I don’t believe in Hilbert space anymore.”4 Realizing the physical relevance of the

axiomatization problem, Birkhoff and von Neumann made an attempt at understanding

quantum theory as a new kind of propositional calculus,5 motivated by the opinion that

the main difficulties in accepting the “quantumness” of elementary physical systems stem

from the inadequacy of classical logic to encompass the unpredictable nature of quantum

measurement outcomes. In their attempt, von Neumann and Birkhoff proposed to treat

the propositions about the physical world in a suitable logical framework, different from

classical logic, where the operations AND and OR are no longer distributive. The lack of

interpretation of the observables algebra led Jordan, von Neumann, and Wigner to consider

the possibility of a commutative algebra of observables, with a product that only requires

the definition of squares and sums of observables – the so-called Jordan product.6 These

works inaugurated the tradition of quantum logics, which led to several attempts at an

axiomatization of quantum theory, most notably by Mackey,7 Varadarajan,8 and Jauch and

Piron,9, 10 with ramifications still the object of active research.11

Researchers in quantum logic managed to derive a significant part of the quantum

framework from logical axioms. In general, a certain degree of technicality (mainly related

to the emphasis on infinite-dimensional systems) makes these results far from providing a

clear-cut description of quantum theory in terms of fundamental principles. Even among

the experts there is a general consensus that the axioms are not as insightful as one would

have hoped. For both experts and non-experts, it is hard to figure out what is the moral of

the quantum logic axiomatizations: what is special about quantum theory after all? Why

should quantum theory be preferred to alternative theories?

A notable alternative axiomatization program was that of Ludwig,12 who adopted an

operational approach, where the basic notions are those of preparation and measuring

devices, and the postulates specify how preparations and measurements combine to give

the probabilities of experimental outcomes. However, even Ludwig’s program never

succeed in deriving Hilbert spaces from operational principles, as some of the postulates

still contained mathematical notions with no operational interpretation.

4 This was reported by Birkhoff (1984).
5 Birkhoff and von Neumann (1936).
6 Jordan et al. (1934). See the recent encyclopedic books of Alfsen and Shultz (2001, 2003).
7 Mackey (1963).
8 Varadarajan (1962).
9 Jauch and Piron (1963); Piron (1964, 1976). Foulis and Randall developed an empirical counterpart of Piron’s

approach (Foulis et al., 1983; Foulis and Randall, 1984).
10 For a thorough textbook see Beltrametti et al. (2010).
11 For a review on the more recent progresses of quantum logics see Coecke et al. (2000).
12 Ludwig (1983).
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Quantum Information Resurrects the Quest 3

1.2 Quantum Information Resurrects the Quest

The ambition to find a more insightful axiomatization re-emerged with the rise of

quantum information. The new field showed that the mathematical axioms of quantum

theory imply striking operational consequences, such as quantum key distribution,13

quantum algorithms,14 no cloning,15 quantum teleportation,16 and dense coding.17 A

natural question is then: can we reverse the implication and derive the mathematics of

quantum theory from some of its operational features? This question lies at the core of a

research program launched by Fuchs18 and Brassard,19 which can be synthesized by the

motto “quantum foundations in the light of quantum information.”20 The ultimate goal of

the program is to reconstruct the whole structure of quantum theory from a few simple

principles of information-theoretic nature.

One may wonder why quantum information theorists should be more successful than

their predecessors in the axiomatic endeavor. A good reason is the following. In the pre-

quantum information era, quantum theory was viewed like an impoverished version of

classical theory, lacking the ability to make deterministic predictions about the outcomes

of experiments. Clearly, this perspective offered no vantage point for explaining why the

world should be quantum. Contrarily, quantum information provided plenty of positive

reasons for preferring quantum theory to its classical counterpart – as many good reasons

as the number of useful quantum information and computation protocols. Turning some

of these reasons into axioms then appeared as a promising route towards a compelling

axiomatization.21

The quantum information approach can also be regarded as an evolution of the quantum

logic program, where quantum theory – rather than being considered as an alternate logical

system – is regarded as an alternate theory of information processing, namely describing

information sources and information-processing channels. Indeed, in classical probability

theory, logic can be regarded as the special case of information-processing theory where

the probabilities of events are bound to the truth values {0, 1}. In non-deterministic theories

like quantum theory, however, there are events whose truth value cannot be assessed, and

one must concede that all we know about them is their occurrence probability.

Another new feature of the quantum information approach has been to shift the emphasis

to finite-dimensional systems, which allow for a simpler treatment but still possess all the

13 Wiesner (1983); Bennett et al. (1984); Ekert (1991).
14 Grover (1996); Shor (1997).
15 Dieks (1982); Wootters and Zurek (1982).
16 Bennett et al. (1993).
17 Bennett and Wiesner (1992).
18 Fuchs (2002, 2003).
19 Brassard (2005).
20 Fuchs et al. (2001). This was also the title of one influential conference, held in May 2000 at the Université de

Montréal, which kickstarted the new wave of quantum axiomatizations.
21 See Clifton et al. (2003). This work, however, assumed a C

∗-algebra framework, and used informational-

theoretical constraints for selecting the algebra, in particular for adopting the quantum versus the classical

algebra.
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4 Introduction

relevant quantum features. In a sense, the study of finite-dimensional systems allows one

to decouple the conceptual difficulties in our understanding of quantum theory from the

technical difficulties of infinite-dimensional systems.

In this scenario, Hardy in 200122 reopened the debate about axiomatization with fresh

ideas resting on the quantum information experience. Some of his axioms, however,

contained mathematical notions with no interpretation, e.g. statements about the dimen-

sionality of the state space, or the continuity of the set of pure states. Stimulated by

Hardy’s and Fuchs’s works one of the authors of this book addressed a new axiomatization

approach23 based on operational principles about tomography, calibration and composition

of transformations, and generally on the reduction of experimental complexity, such as the

existence of a pure faithful state, a property that allows for tomography of transformations

preparing a single input pure state. However, a thorough derivation of the theory was

still missing, and also in this case there remained mathematical postulates with no

interpretation. Later, building on Hardy’s work the program flourished, leading to an

explosion of new axiomatizations based on a variety of conceptual and mathematical

frameworks,24,25 including the framework and axiomatization contained in the present

book.26 These works realized the old dream of Wheeler’s program “it from bit,” for which

he argued that “all things physical are information-theoretic in origin.”27

1.3 Quantum Theory as an OPT

A lesson that we learned from the experience of quantum information is to regard quantum

theory as a theory of information processing in the first place. We thus realized the crucial

role played by the description of processes in the form of quantum circuits. This has led

us to consider quantum theory as an extension of probability theory, to which we add the

crucial ingredient of connectivity among events. This means that to the joint events we

associate not only their joint probability, but also a circuit that connects them. When the

events in the circuit have a well-defined order, the circuit is mathematically described by

a directed acyclic graph (a graph with directed edges and without loops). Therefore, if we

want to predict a joint probability, the varibles to be specified are not only the events but

also the circuit connecting them.

A theory for making predictions about joint events depending on their reciprocal

connections is what we call an operational probabilistic theory (OPT). We see that OPT is

a non-trivial extension of probability theory, which, according to Jaynes and Cox,28 in turn

22 Hardy (2001).
23 D’Ariano (2006a,b, 2007a,b, 2010); D’Ariano and Tosini (2010).
24 Goyal et al. (2010); Dakic and Brukner (2011); Hardy (2011); Masanes and Müller (2011); Masanes et al.

(2013); Wilce (2012); Barnum et al. (2014).
25 For a comprehensive collection of papers see the book by Chiribella and Spekkens (2015).
26 Chiribella et al. (2010a, 2011).
27 Wheeler (1990).
28 Jaynes (2003); Cox (1961).
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The Principles 5

is an extension of logic.29 We now realize how, in the previous axiomatization attempts,

only one facet of quantum theory was considered, consisting of propositional calculus and

probability, whereas the connectivity facet was missing.

From what we have said, we now understand how the basic element of an OPT – the

notion of event – gets dressed with wires that allow us to connect it with other events.

Such wires are the systems of the theory. In agreement with the directed nature of the

graph, there are input and output systems. The events are the transformations, whereas

the transformations with no input system are the states (corresponding to preparations of

systems), and those with no output system are the effects (corresponding to observations of

systems). Since the purpose of a single event is to describe a process connecting an input

with an output, the full circuit associated to a probability is a closed one, namely a circuit

with no input and no output.

The circuit framework is mathematically formalized in the language of category

theory.30 In this language, an OPT is a category, whose systems and events are objects

and arrows, respectively. Every arrow has an input and an output object, and arrows can be

sequentially composed. The associativity, existence of a trivial system, and commutativity

of the parallel composition of systems of quantum theory technically correspond to having

a strict symmetric monoidal category.31 Although the OPT language can be rephrased in

purely category theoretical terms, its original version32 is more physicist-friendly, and it

will be adopted in the present book. Expressions in such a language have an immediate

meaning as the description of elementary physical processes and their relations within

an experimental setting – for example, specifying whether two events occur in sequence

or in parallel. However, we note the indispensable role of the probabilistic structure in

promoting the OPT language from a merely descriptive tool to a framework for prediction,

which is the crucial feature of a scientific theory. Two OPTs will then be different if they

have different rules for assigning probabilities to the circuits.

1.4 The Principles

OPTs provide a general unified framework to formalize theories of information, including

classical information theory and quantum information theory. In this framework, we

characterize quantum theory as a theory of information. In short, quantum theory is the

theory which allows for the optimal validation of randomness: all the six principles of

the theory come together in such respect from complementary standpoints. Five of the six

principles – causality, local discriminability, perfect discriminability, ideal compression,

and atomicity of composition – express ordinary properties that are shared by quantum and

29 We would like to mention the famous quote of J. C. Maxwell: “the true logic for this world is the calculus of

probabilities.” See also Keynes (2004).
30 Mac Lane (1978).
31 For an introduction to the graphical language of monoidal catagories we recommend the beautiful surveys by

Selinger (n.d.) and Coecke (2008).
32 The language of OPTs was introduced in Chiribella et al. (2010a).
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6 Introduction

classical information theory. The sixth principle – purification – identifies quantum theory

uniquely.

In non-technical words, the six principles are the following:

• Causality. Measurement results cannot depend on what is done on the system at the

output of the measurement. Equivalently: no signal can be sent from the future to the

past.

• Local discriminability. We can reconstruct the joint state of multiple systems by

performing only local measurements on each system.

• Perfect discriminability. Every state that is not completely mixed can be perfectly

distinguished from some other state.

• Ideal compression. Every source of information33 can be encoded in a lossless and

maximally efficient fashion (lossless means perfectly decodable, maximally efficient

means that every state of the encoding system represents a state of the source).

• Atomicity of composition. No side information can hide in the composition of two

atomic transformations. Equivalently: the sequential composition of two precisely

known transformations is precisely known.

• Purification. Every random preparation of a system can be achieved by a pure

preparation of the system with an environment, in a way that is essentially unique.

The first five principles of the list are satisfied by classical information theory. Hence,

in our axiomatization, the purification principle is highlighted as the distinctive axiom

of quantum theory. All the six principles have an epistemological nature. Causality is

necessary for control of observations, shielding them from the influence of external

agents acting in the future or from far apart. Local discriminability allows for the local

accessibility of information. Perfect discriminability allows for falsifiability of propositions

of the theory. Atomicity of composition allows for control in composing transformations

and observations. Purification allows for validation of randomness, by leaving to an agent

access to both system and environment.

It is important to remark here the value of the six principles for philosophy of science.

For example the local discriminability principle reconciles the holism of a theory with

the reductionistic approach, as explained in Chapter 6. Paradigmatic is the principle of

causality, which would be matter for a treatise, in consideration of the wealth of literature

on the subject in philosophy and physics. To realize the subtlety of the notion one can

just consider the simple fact that causality has never been formally stated as a principle

in physics.34 Mostly the causality notion has been misunderstood due to a spurious

connection with the independent notion of determinism.35 The causality principle for

quantum theory is the logical quintessence of the meaningful notions debated within the

33 An information source technically is a set of states of a fixed system.
34 Only very recently it has been explicitly remarked by some authors that causality is built in quantum theory

(Ellis, 2008).
35 The logical independence between the notion of causality and that of determinism is proved by the existence

of causal OPTs that are not deterministic, e.g. quantum theory, and vice versa of deterministic theories that are

not causal, as those constructed in D’Ariano et al. (2014a).
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The Principles 7

specialized literature since Hume, and ranging to modern and contemporary authors.36

The language of OPT provides the right framework for formalizing the notion of causality

in a theory-independent manner, offering a rigorous notion for philosophical analysis.

Such notion also corresponds to the standard use of causality in inference and scientific

modeling,37 and coincides with the Einstenian causality, as explained in Chapter 5.

The purification principle is also of great relevance for philosophy of science. It is the

axiom that selects quantum theory, thus containing its essence. Its conceptual content is

the expression of a law of conservation of information, stating that irreversibility is in

principle reducible to a lack of control over an environment. More precisely, the principle

is equivalent to stating that every irreversible process can be simulated in an essentially

unique way by a reversible interaction of the system with an environment, initially prepared

in a pure state.38 This statement includes the case of measurement processes, and in that

case it implies the possibility of arbitrarily shifting the cut between the observer and

the observed system. The arbitrariness of such a shift was considered by von Neumann

as a “fundamental requirement of the scientific viewpoint,”39 and his discussion of the

measurement process was exactly aimed at showing that quantum theory fulfills it. Finally,

the principle of purification is of great relevance for philosophy of probability,40 since

it provides the existence of random sources that can be validated by a measurement

performed jointly on the source and on the purifying system.

36 Salmon (1967); Dowe (2007).
37 Pearl (2012).
38 Chiribella et al. (2010a).
39 See p. 418 of von Neumann (1996).
40 Gillies (2000).
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