Cambridge University Press 978-1-107-04323-7 - Handbook of Color Psychology Edited by Andrew J. Elliot, Mark D. Fairchild, and Anna Franklin Frontmatter More information

Handbook of Color Psychology

We perceive color everywhere and on everything that we encounter in daily life. Color science has progressed to the point where a great deal is known about the mechanics, evolution, and development of color vision, but less is known about the relation between color vision and psychology. However, color psychology is now a burgeoning, exciting area and this Handbook provides comprehensive coverage of emerging theory and research. Top scholars in the field provide rigorous overviews of work on color categorization, color symbolism and association, color preference, reciprocal relations between color perception and psychological functioning, and variations and deficiencies in color perception. The *Handbook of Color Psychology* seeks to facilitate cross-fertilization among researchers, both within and across disciplines and areas of research, and is an essential resource for anyone interested in color psychology in both theoretical and applied areas of study.

ANDREW J. ELLIOT is Professor of Psychology and Director of the Approach-Avoidance Motivation research group at the University of Rochester.

MARK D. FAIRCHILD is Associate Dean of Research and Graduate Education of Rochester Institute of Technology's College of Science, and Director of the Program of Color Science and Munsell Color Science Laboratory.

ANNA FRANKLIN is a Professor in the School of Psychology at the University of Sussex and Director of the Sussex Colour Group.

Cambridge University Press 978-1-107-04323-7 - Handbook of Color Psychology Edited by Andrew J. Elliot, Mark D. Fairchild, and Anna Franklin Frontmatter More information Cambridge University Press 978-1-107-04323-7 - Handbook of Color Psychology Edited by Andrew J. Elliot, Mark D. Fairchild, and Anna Franklin Frontmatter More information

Handbook of Color Psychology

Edited by

Andrew J. Elliot, Mark D. Fairchild, and Anna Franklin

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107043237

© Cambridge University Press 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United Kingdom by Bell and Bain Ltd

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Handbook of color psychology / edited by Andrew J. Elliot, Mark D. Fairchild, and Anna Franklin. pages cm
Includes bibliographical references.
ISBN 978-1-107-04323-7
Color – Psychological aspects. I. Elliot, Andrew J. II. Fairchild, Mark D.
III. Franklin, Anna, 1979–
BF789.C7H36 2015
152.14'5–dc23

ISBN 978-1-107-04323-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

2015010755

Contents

	List of figures	<i>page</i> viii
	List of tables	xvii
	List of contributors	xviii
	Foreword by Steven K. Shevell	xxi
	Part I Introduction	
1	Introduction and overview	3
	ANDREW J. ELLIOT, MARK D. FAIRCHILD, AND ANNA FRANKLIN	
	Part II Foundations: basics of color science	
2	Color models and systems	9
	MARK D. FAIRCHILD	
3	Fundamentals of color vision I: color processing in the eye ANDREW STOCKMAN AND DAVID H. BRAINARD	27
4	Fundamentals of color vision II: higher-order color processing	70
	KARL R. GEGENFURTNER AND ROBERT ENNIS	
5	Evolution of color vision and its reflections in contemporary mamma GERALD H. JACOBS	s 110
6	Some philosophical questions about color	131
	DON DEDRICK	
	Part III Development of and differences in color vision	
7	Emergence and early development of color vision and color	
	perception	149
	MARC H. BORNSTEIN	
8	Color vision changes in normal aging	180
	JOHN L. BARBUR AND MARISA RODRIGUEZ-CARMONA	
9	Individual differences in color vision	197
	MICHAEL A. WEBSTER	
10	Color vision deficiencies	216
	NEIL R. A. PARRY	

vi	Contents	
	Part IV Color categorization	
11	Universality of color categorization	245
12	Color categorization across cultures	259
13	Development of color categorization	279
14	The meaning of color words in a cross-linguistic perspective	295
	Part V Color symbolism and association	
15	Early color symbolism IAN WATTS	319
16	Symbolic use of color in ritual, tradition, and folklore	340
17	Color in camouflage, mimicry, and warning signals Martin stevens, lina maría arenas, and alice e. lown	357
18	Use of color in warnings Michael S. Wogalter, christopher B. Mayhorn, and olga A. Zielinska	377
19	Color emotion and color harmony	401
20	Do metaphors color our perception of social life? BRIAN P. MEIER	419
	Part VI Color preferences	
21	Ecological aspects of color preference KAREN B. SCHLOSS AND STEPHEN E. PALMER	435
22	Biological, cultural, and developmental influences on color preferences ANYA HURLBERT AND ANGELA OWEN	454
	Part VII Color effects on psychological and biological functioning	
23	The role of color in the voluntary and involuntary guidance of selective attention CHARLES L. FOLK	481
24	Color and mate choice in non-human animals	502

		Contents	vii
25	Color in romantic contexts in humans ADAM D. PAZDA AND TOBIAS GREITEMEYER		531
26	Color in competition contexts in non-human animals JOANNA M. SETCHELL		546
27	Color in achievement contexts in humans MARKUS A. MAIER, RUSSELL A. HILL, ANDREW J. ELLIOT, AND ROBERT A. BARTON		568
28	Color and face perception IAN D. STEPHEN AND DAVID I. PERRETT		585
29	Eating with our eyes: on the color of flavor CHARLES SPENCE		603
30	Non-visual effects of colored light MARK S. REA AND MARIANA G. FIGUEIRO		619
	Part VIII Psychological effects on color perception		
31	Memory effects on color perception CHRISTOPH WITZEL AND THORSTEN HANSEN		641
32	Affect-related influences on color perception MICHAEL D. ROBINSON, TIANWEI LIU, AND JESSICA L. BAIR		660
	Part IX Color phenomena		
33	Color appearance phenomena and visual illusions		679
34	Synesthetic experiences of color JAMIE WARD		703
	Index		715

Figures

2.1	The same physical stimulus can appear orange or brown depending on its	
	viewing environment and luminance relative to the background.	page 10
2.2	Visualization of the six attributes of color appearance.	11
2.3	General structure of the Munsell Book of Color.	13
2.4	Photograph of various examples of the Munsell Book of Color illustrating its	
	organization.	14
2.5	General structure of the Swedish Natural Color System.	15
2.6	Photograph of an example of the Swedish Natural Color System illustrating its	
	organization.	16
2.7	The tristimulus values of equal-energy spectral stimuli plotted in the	
	three-dimensional CIE XYZ tristimulus space.	19
2.8	The spectrum locus as plotted originally by Maxwell (upper-right inset) and in	
	the CIE xy (solid line) and u'v' (dashed line) chromaticity diagrams.	20
2.9	Munsell Value (perceived lightness) as a function of CIE L^* (predicted lightness	
	based on physical measurements).	21
2.10	A three-dimensional sketch of the CIELAB color space in terms of the	
	lightness (L^*) , reddish-greenish (a^*) , and yellowish-bluish (b^*) dimensions as	
	rectangular coordinates.	21
3.1	Spectral information for color.	29
3.2	Human cone mosaics. Reprinted from Figure 4 of H. Hofer, J. Carroll, J. Neitz,	
	M. Neitz, and D. R. Williams, 2005, "Organization of the human trichromatic	
	cone mosaic," Journal of Neuroscience, 25, 9669–9, with permission.	32
3.3	Cone spectral sensitivities and prereceptoral filtering (based on Figure 5 of	
	Stockman, 2004).	34
3.4	Color matching and core fundamentals.	36
3.5	The principal cone pathways in the human retina (from Brainard and Stockman,	
	n.d.; used with permission from Sinauer Associates).	42
3.6	Diagrammatic network model of the early visual pathways (from Brainard	
	and Stockman, n.d.; used with permission from Sinauer Associates).	46
3.7	Detection thresholds (from Brainard and Stockman, n.d.; used with	
	permission from Sinauer Associates).	49
3.8	Second-site desensitization of L-M by steady fields (based on part of Figure 28	
	from Stockman and Brainard, 2010).	52
3.9	Temporal and spatial contrast sensitivity functions.	55
3.10	Differences between fovea and periphery.	58
4.1	Example of an MBDKL isoluminant plane. Image adapted from Gegenfurtner	
	and Kiper (2003).	72

Cambridge University Press 978-1-107-04323-7 - Handbook of Color Psychology Edited by Andrew J. Elliot, Mark D. Fairchild, and Anna Franklin Frontmatter <u>More information</u>

	List of figures	ix
4.0		
4.2	(A) Using color information, we can quickly identify the fruit in the bush.	
	(B) The image in panel A was rendered in a manner that roughly simulates	
	colorbindness. (C) Faller A was rendered to foughly simulate dediction optic	
	of visual information the task remains just as challenging	74
1 2	Noise marking data providing avidence for the aparetion of higher order	/4
4.5	machanisms. Image adapted with normission from T. Honson and V. D.	
	Geographyther 2006	70
4.4	Responses of two V2 cells to different colors along the isoluminant hue circle	70
7.7	Image adapted from Gegenfurther and Kiper (2003)	84
15	ROL D response to color and luminonee stimuli for different brain regions	04
4.5	Image adapted from B. P. Conway and D. V. Tsao (2005). Used by permission of	
	Oxford University Press	85
4.6	Responses from neurons in V1 V2 and MT to moving gratings of different	85
4.0	luminance contracts. Image adapted from Gegenfurther and Kiner (2003)	06
5 1	$C_{\rm M}$ Cutline of a schema proposed by L amb (2013) to account for the early evolution	90
5.1	of onsing from an ancient G protein coupled recentor (GPCP)	112
52	Eamily tree for vertebrate onein genes. Tree construction is derived from	112
5.2	Hisatomi and Tokunaga (2002)	114
53	Spectral absorption curves for the five types of photonigments of the Southern	114
5.5	Hemisphere lamprey (<i>Geotria australis</i>) Reproduced with permission from	
	Collin (2010)	115
54	Cladogram illustrating the evolutionary nathways of the vertebrate	110
5.1	cone-onsin-gene families. Reproduced with permission from Jacobs (2013)	117
55	Spectral sensitivities for the two types of cone nigment believed to have been	117
0.0	present in ancestral mammals derived from the SWS1 and LWS opsin-gene	
	families. Image adapted from Conway and Tsao (2006).	118
5.6	Cone-photonigment complements characteristically found in various	
010	primate species.	120
8.1	The statistical limits for the standard normal (SN) CAD observer are plotted in	
	the CIE (x,y) 1931 chromaticity chart (<i>panel A</i>). The corresponding cone	
	contrasts for chromatic displacement (CD) along the YB (67°) and RG (334°)	
	directions are shown in panels B and C, respectively. The screen dumps in panel	
	D show the RG and YB stimuli employed in the CAD test.	183
8.2	The age distribution of the Standard Normal (SN) CAD observer (<i>panel A</i>) based	
	on measurements in 333 normal trichromats. Panels B and C show the	
	corresponding variability in RG and YB thresholds, respectively.	184
8.3	Effect of background luminance (<i>panels A and B</i>) and stimulus size (<i>panels</i>)	
	<i>C</i> and <i>D</i>) on RG and YB color thresholds.	185
8.4	Comparison of thresholds before (panels A and B) and after filtering (panels	
	<i>C</i> and <i>D</i>) the original monocular data measured at City University London and	
	the Damme Optometrie Practice in the Netherlands.	187

8.5	Frequency histograms showing the distribution of RG (<i>panel A</i>) and YB (<i>panel B</i>) threshold differences between the two eyes (which formed the basis for	
	the "asymmetry" test).	187
8.6	The dotted lines in each section represent the statistical limits of normal varia-	
	bility as a function of age for the sample of normal subjects after applying each	100
07	of the inters described above. P(a = a + b) and $V(a = a + b)$ binarylar thresholds as a	188
0.7	RO (<i>punets A and B</i>) and TB (<i>punets C and D</i>) binocular intestions as a function of any for all the subjects examined in the study and deemed to have	
	normal color vision.	189
8.8	Color-detection thresholds measured by Knoblauch et al. (2001) and Paramei	
	and Oakley (2014) converted to CAD units for comparison with the mean CAD	
	thresholds and the corresponding $\pm 2.5\sigma$ limits.	190
9.1	Top: simulations of normal variations in lens pigment density. Bottom:	
	simulations of normal variations in macular pigment density. Adapted from	
	M. A. Webster, I. Juricevic, and K. C. McDermott (2010), "Simulations of	
	adaptation and color appearance in observers with varying spectral sensitivity,"	
	Ophthalmic and Physiological Optics, 30(5), 602–10.	199
9.2	Calibrating color space for the individual spectral sensitivity of the observer.	
	Adapted from M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker (2000),	
	"Variations in normal color vision. I. Cone-opponent axes," Journal of the	
	Optical Society of America. A, Optics, Image Science, and Vision, 17(9), 1535–44.	202
9.3	Unique hues and binary hues selected by a group of color-normal observers,	
	plotted as angles in the cardinal axis space. From G. Malkoc, P. Kay, and M. A.	
	Webster (2005), "Variations in normal color vision. IV. Binary hues and hue	
	scaling," Journal of the Optical Society of America. A, Optics, Image Science,	
	and Vision, 22(10), 2154–68.	202
9.4	Simulations of the color appearance of a lush or an arid environment to observers	
	adapted to each environment. Top: original images. Bottom: the same images	
	after modeling adaptation to the distribution of colors characteristic of each	
	environment. From M. A. Webster (2011), "Adaptation and visual coding,"	
	Journal of Vision, 11(5): 1–23.	205
10.1	(A) Spectral response of human cone photoreceptors. (B) Illustration of the	
	principle of univariance.	217
10.2	Stages of color processing, from cone sensitivities to perception.	218
10.3	An extract from Dalton's paper, "Extraordinary facts relating to the vision of	
	colours with observations." Copyright University of Manchester.	219
10.4	Dichromatic confusion lines.	224
10.5	Desaturated color wheel depicting colors taken from the ellipse in the CIE 1931	
	chromaticity diagram.	225
10.6	Approximation of normal and dichromatic perception of the same scene, created	
	with the Web version of the Chromatic Vision Simulator.	225
10.7	Section of the London tube (subway) map processed with the Chromatic Vision	
	Simulator. Reproduced and modified with permission from Transport for	
	London (14/E/2763/P).	226

	List of figures	xi
10.0		222
10.8	Red-green anomaloscopy.	232
10.9	<i>Top</i> : Box 1 of the 100-nue test in correct order. <i>Bottom</i> : the same chips sorted by	226
10.10	a dedictatope. Example of a high-contrast image from the Cambridge Colour Test. Images	230
10.10	courtesy of Cambridge Research Systems Ltd and LD Mollon	237
10.11	The CAD test. <i>Left</i> : typical stimuli in green, yellow, blue, and red directions of	237
10111	color space. <i>Right</i> : section of CIE 1931 x.v chromaticity diagram showing	
	typical normal thresholds for these four stimuli (<i>large symbols</i>). Adapted from	
	Barbur and Connolly (2011).	238
11.1	The B&K stimulus palette (approximation).	246
11.2	The B&K hypothesis regarding possible color-naming systems. From B. Berlin	
	and P. Kay (1969), Basic Color Terms: Their Universality and Evolution, p. 4,	
	University of California Press. Reproduced with permission of the authors.	246
11.3	Revision of the encoding sequence in Kay (1975). From P. Kay (1975),	
	"Synchronic variability and diachronic change in basic color terms," Language	
	in Society, 4(3), 260. Reproduced with permission of Cambridge	
	University Press.	247
11.4	The encoding sequence as portrayed in Kay and McDaniel (1978). From P. Kay	
	and C. K. McDaniel (1978), "The linguistic significance of the meanings of basic	
	color terms," <i>Language</i> , 54(3), 639. Reproduced with permission of Linguistic	
11.5	Society of America and the Copyright Clearance Center.	247
11.5	Current wCS typology and encoding sequence. From P. Kay, B. Berlin, L. Marn,	
	W. R. Merrineid, and R. S. Cook (2009), <i>The World Color Survey</i> , p. 50.	240
11.6	The main line of basic color term evolution with number of languages of each	249
11.0	type From P Kay B Berlin I Maffi W R Merrifield and R S Cook (2009)	
	The World Color Survey n 31 Reproduced with permission of CSLI	
	Publications	249
11.7	Total of 15.186 WCS best example choices. From R. E. MacLaury (1997).	,
	"Ethnographic evidence of unique hues and elemental colors," <i>Behavioral and</i>	
	Brain Sciences, 20(2), 202. Reproduced with permission of Cambridge	
	University Press.	250
11.8	(a) Dispersion of real (arrow) and hypothetical (histogram) WCS naming	
	centroids; (b) separation of actual (arrow) and hypothetical (histogram) WCS	
	and B&K naming centroids. From P. Kay and T. Regier (2003), "Resolving the	
	question of color naming universals," Proceedings of the National Academy of	
	Sciences of the United States of America, 100(15), 9088. © 2003 National	
	Academy of Sciences of the United States of America. Reproduced with	
	permission.	252
11.9	Contour plots of WCS best example choices showing English data from B&K.	
	From T. Regier, P. Kay, and R. S. Cook (2005), "Focal colors are universal after	
	all," Proceedings of the National Academy of Sciences of the United States of	
	America, 102, 8387. © 2005 National Academy of Sciences of the United States	252
	of America. Reproduced with permission.	253

xii	List of figures
-----	-----------------

11.10	Boundary matches of real and hypothetical Berinmo to the WCS as a whole.	
	From P. Kayand T. Reiger (2007), "Color naming universals: the case of	
	Berinmo," Cognition, 102(2), 294. Reproduced with permission of Elsevier BV	
	and the Copyright Clearance Center.	255
12.1	A chart of Munsell colors as used in color-naming studies.	261
12.2	The number of groups formed in a free sorting of 65 colors. From D. Roberson,	
	I. R. L. Davies, G. G. Corbett, and M. Vandervyver (2005), "Free-sorting of	
	colors across cultures: are there universal grounds for grouping?." <i>Journal of</i>	
	<i>Cognition and Culture</i> , 3(5). Reproduced with permission from Koninklijke	
	Brill NV	263
13.1	Infant data from Bornstein <i>et al.</i> (1976) summarized alongside adult	
1011	color-naming data. Figure from Bornstein <i>et al.</i> (1976) with permission.	281
13.2	Analysis of color terms from WCS non-industrialized languages indicates	201
10.2	clustering around particular points in color space. From P Kay and T Regier	
	(2003) "Resolving the question of color naming universals" <i>Proceedings of the</i>	
	National Academy of Sciences of the United States of America 100(15) © 2003	
	National Academy of Sciences Reproduced with permission	286
133	Modal grouping plots for four groups of participants. From V Bonnardel and	200
15.5	N L Pitchford (2006) "Colour categorization in preschoolers" in N Pitchford	
	and C. P. Biggam (eds.). Progress in Colour Studies, with permission from John	
	Bonioming Publishing Co.	200
1/1	Munsell chart showing the location of the two Burerre visual descriptors	200
14.1	Convision that showing the location of the two Bulana visual descriptors.	200
171	A Mozembique nightier (Canvinulous fossii) from Zambia from ofer and alose	300
1/.1	A Mozamorque nightjar (<i>Caprimulgus Jossu</i>) nom Zamora nom ana and close	250
17.2	up, showing background-inatching cambunage. Fhotographs by M. Stevens.	339
17.2	A suck insect from Zambia (unknown species) demonstrating masquerade by	262
172	A rahm (<i>F</i> must a surger and subject to the foregraph leads and subject strings	303
17.5	A zeora (<i>Lquus quagga crawsnayi</i>) with its ramous black-and-withe stripes.	261
174	Colore and actions in an example and in the second se	304
17.4	Colors and patterns in aposematic species can vary from simple spots (A,	
	<i>Contaga pumilo</i>) of fines (B, <i>Rantomeya Julgurila</i>), to infricate patients	
	(C, Opphaga histrionica). Images reproduced with permission of vicky Flechas	265
175	(A, C) and Fernando Vargas (B).	303
17.5	Poison-dart frogs from the Peruvian Amazon basin are an example of Mullerian	267
17 (co-minics. All images reproduced with permission from Adam Stuckert.	367
17.6	A hoverfly (<i>Episyrphus balteatus</i>) with yellow and black markings, commonly	
	thought to mimic wasps, despite being harmless (Batesian mimicry). Photograph	2.00
10.1	M. Stevens.	368
18.1	US UPSU-mandated power lawnmower warning.	578
18.2	ANSI-style "hot surface" warning: (a) without and (b)	
10.2	with color.	379
18.3	Three ANSI color-signal word panels (red, orange, yellow).	380

	List of figures	xiii
18.4	Communication-human information processing (C-HIP) model. From M. S. Wogaltar (2006) Handbook of Warnings, with parmission from Lawrence	
	Fribaum Associates	381
18 5	Alternative sign configuration similar to one evaluated in Wogalter <i>et al.</i> (1998)	395
10.5	Component plots of color emotion for (a) British and (b) Chinese observers	404
19.1	Predictive performance of the additivity theory of color emotion	406
19.2	Component plats for observer responses	407
19.3	Difference in the like/dislike responses between male and female observers	107
17.1	plotted against (a) mean chroma and (b) mean lightness.	408
19.5	Difference in the like/dislike responses between observers with and without a	
	design background ("design" minus "non-design") plotted against (a) mean	
	chroma and (b) hue difference.	409
19.6	An example of the screen layout of a color-harmony experiment.	412
19.7	A graphical representation of Eq. (14) in CIELAB color space.	413
21.1	The BCP-32 colors as defined by eight hues at four saturation-lightness levels.	437
21.2	Predictions for within-subject correlations between color preferences and	
	WAVEs relative to between-subject correlations for hypothetical participants <i>j</i>	
	and k.	442
21.3	(A) Mean preference for Berkeley colors minus Stanford colors for Berkeley and	
	Stanford students. (B) The correlations between individuals' composite	
	preference scores (from A) and their self-reported level of school spirit.	446
21.4	Republicans' (gray bars) versus Democrats' (white bars) preferences for	
	Republican-red (A) and Democratic-blue (B) on non-election days versus	
	Election Day. The difference in preference for Democratic-blue and	
	Republican-red on Election Day minus the non-election day baseline (C). From	
	K. B. Schloss (2014), "The politics of color: preferences for Republican red	
	versus Democratic blue," Psychonomic Bulletin & Review, with permission	
	from Springer.	447
21.5	Relative probability of looking at each color compared with every other color for	
	adults (A) and infants (B).	448
21.6	Changes in preferences for reds (red circles) and greens (green squares), along	
	with the average of the other colors (white triangles), as a function of object-	
	exposure group in Experiment 1A, after rating object preferences (a), and	
	Experiment 1B, where object preferences were not rated (b). Adapted from E. D.	
	Strauss (2013), "Color preferences change after experience with liked/disliked	
	colored objects," Psychonomic Bulletin & Review, 20, 935-43, with permission	
	from Springer.	449
22.1	Comparison of results from color-preference studies, across sex, age, and cultures.	467
23.1	Displays supporting space-based (top) and feature-based (bottom) selection	
	by color.	483
23.2	Behavioral paradigms for studying selective attention include the spatial cuing	
	(top) and visual search (bottom).	485
23.3	Attentional blink paradigm for studying voluntary attentional selection in time.	489

xiv

List of figures

23.4	Behavioral paradigms for studying spatial attentional capture include the	
	additional singleton (<i>top</i>), irrelevant singleton (<i>middle</i>), and modified spatial	
	cuing (<i>bottom</i>) paradigms.	492
26.1	Coloration in mandrills.	547
26.2	<i>Top (left to right)</i> : male geladas have a bare patch of pink/red skin on their chest;	
	Japanese macaques have pink/red faces, golden snub-nosed monkeys have a	
	bright-blue face. <i>Bottom</i> : vervets have a blue scrotum and a red penis.	548
28.1	Face, non-face object, or color patch images differing in color along either the	
	(CIELAB) L^* , a^* , or b^* color axis were presented sequentially, and separated by	
	a fixation point. Reproduced with permission from Pion Ltd, London. From Tan	
	<i>et al.</i> (2013).	586
28.2	Stimuli to examine the role of color in face processing.	587
28.3	<i>Left:</i> endpoints of face images manipulated to simulate increased and decreased	
	skin carotenoid and melanin coloration. <i>Right</i> : pigment color change chosen by	
	participants to enhance healthy appearance. From I. D. Stephen <i>et al.</i> (2011),	
	"Carotenoid and melanin pigment coloration affect perceived human health,"	
	Evolution and Human Behaviour, with permission from Elsevier.	591
28.4	Composite images made up of the five black African faces rated as (A) least and	
	(B) most attractive by black African raters and (C) least and (D) most attractive	
	by Caucasian raters. From I. D. Stephen et al. (2012), "Cross-cultural effects of	
	color, but not morphological masculinity, on perceived attractiveness of men's	
	faces," Evolution and Human Behaviour, 33, 260-7, with permission	
	from Elsevier.	594
28.5	Original face (<i>left</i>) and faces with lips manipulated to show increased (<i>top</i>) and	
	decreased (bottom) CIELAB L*, a*, and b* (from left to right). Reproduced with	
	permission from Stephen and McKeegan (2010).	596
29.1	Two of the colored drinks used in Shankar et al.'s (2010a) study of cross-modal	
	flavor expectations. From M. U. Shankar, A. Levitan and C. Spence (2010),	
	"Grape expectations: the role of cognitive influences in color-flavor interac-	
	tions," Consciousness and Cognition, 19(1), with permission from Elsevier.	609
29.2	The influence of product-extrinsic color on multisensory flavor perception. From	
	B. Piqueras-Fiszman, J. A. Alcaide, E. Roura, and C. Spence (2012), "Is it the	
	plate or is it the food? Assessing the influence of the color (black or white) and	
	shape of the plate on the perception of food placed on it," Food Quality and	
	<i>Preference, 24</i> (1), with permission from Elsevier.	610
30.1	The spectral sensitivities of the known photopigments in the human retina.	620
30.2	The estimated spectral sensitivities of several known human visual and non-	
	visual neural channels. Adapted from Rea (2013).	621
30.3	The spectral sensitivity of the human circadian system to narrowband spectra	
• • •	based upon nocturnal melatonin suppression.	622
30.4	Rea <i>et al.</i> 's (2005, 2012) phototransduction model of the human circadian	(2)
ac -	system and the computation method for determining circadian light, CL_A .	624
30.5	Predicted percentage changes in nocturnal melatonin following 45-min	
	continuous exposure to three experimental conditions together with the	

	List of figures	XV
30.6	corresponding observed median (<i>square</i>) and mean (<i>triangle</i>) values, including the standard errors of the mean. Adapted from Figueiro, Bierman, and Rea (2008). The 24-h rhythms of melatonin, cortisol, and alpha amylase based upon 4-h sampling intervals while subjects were continuously awake and remained	625
	in darkness.	627
30.7	Lighting conditions consisted of a control/dark condition, 40 lx of red (625-nm)	
20.0	light, and 40 lx of blue (470-nm) light.	627
30.8	Regulation of sleep by the circadian timing system and the sleep homeostatic process. Adapted from Hauri (2014)	629
30.9	EEG power spectrum for one scalp electrode position together with different	029
0019	frequency bands. Adapted from Cahn, Delorme, and Polich (2010).	629
31.1	Memory color of a German mailbox. The left side shows a German mailbox in	
	its typical color. The right side separates the object from its color.	642
31.2	Illustration of the memory color effect.	645
31.3	Achromatic adjustments of color-neutral objects.	646
32.1	Neuroticism as a function of whether "light" or "dark" is preferred.	667
32.2 32.3	Depression level as a function of whether fight of dark is preferred.	00/ 660
32.5	Personality hostility level as a function of a preference for the color red	670
33.1	An iconic example of the Hunt effect	680
33.2	An iconic example of the Stevens effect.	681
33.3	CIECAM02-predicted appearance for different luminance levels.	682
33.4	Iconic representation of the impact of surround on tone reproduction.	683
33.5	CIECAM02-predicted appearance for different surround luminance.	683
33.6	Illustration of the Helmholtz-Kohlrausch effect.	684
33.7	Iconic representation of lines of constant hue plotted in a chromaticity diagram,	
	as suggested by the Abney effect.	685
33.8	An example of discounting the illuminant.	685
33.9	Spatially localized afterimages.	687
33.10	Example of simultaneous contrast.	688
33.11	Example of simultaneous contrast.	688
33.12	Example of Mach bands.	689
33.13	Mach bands	680
33 14	Mach bands generated by convolution with a center-surround kernel	690
33.15	Mach bands induced by linear gradient	690
33.16	Hermann's grid phenomenon.	690
33.17	Curved lines remove the Hermann's grid phenomenon.	691
33.18	The scintillating grid.	691
33.19	Curved lines also remove the scintillating grid phenomenon.	691
33.20	Grating-induced changes in lightness perception.	692
33.21	The Munker–White effect.	692
33.22	Replacing solid patches or square waves with grids mitigates the impact of	
	simultaneous contrast.	692

xvi	List of figures	
33.23	Cornsweet edges.	693
33.24	Cornsweet edges in a rendered world.	694
33.25	Cornsweet edges in a rendered world.	695
33.26	Adelson's checker-shadow illusion. Used with permission (http://web.mit.edu/	
	persci/people/adelson/checkershadow_illusion.html).	695
33.27	Simultaneous color contrast.	696
33.28	The Munker–White effect on colored objects.	697
33.29	Simultaneous color contrast. The gray patches take on the complement of the	
	background colors.	697
33.30	Simultaneous color contrast. The leopard'seyes are actually monochrome (bot-	
	tom), but appear similar to the original (top).	698
33.31	Zoomed and cropped view of leopard's eyes.	699
33.32	At a higher spatial frequency, color contrast is replaced with assimilation.	699
33.33	Neon color spreading.	699
33.34	The watercolor illusion.	700
33.35	Chroma crispening.	700
34.1	Stills of dynamic synesthetic experiences with a drum beat (top) and harp strum	
	(bottom). © Samantha Moore 2012.	706
34.2	A colorful synesthetic "number form." MIT Press (permission is granted to copy,	
	distribute, and/or modify this document under the terms of the GNU Free	
	Documentation License).	708

Tables

11.1	Berinmo and Yélî Dnye naming centroids and MacLaury's elemental hues, in	
	Munsell notation	page 254
14.1	Semantic primes (English exponents), grouped into 12 related categories	298
16.1	Frequency of color words and colored materials used in the folklore of Great	
	Britain and Ireland from the 1880s to the 1990s	341
18.1	Mean hazard-perception ratings for three groups of participants	382
18.2	Mean (M) hazard ratings and standard deviations (SD) for colors by English and	1
	Spanish language users	383
18.3	Mean hazard ratings for multicolor bars	386
18.4	Mean ratings of attention attraction, likelihood of reading warning, and hazard	
	perception for colors	387
18.5	Mean hazard ratings for signal word and color combinations	387
18.6	Mean hazard and importance ratings according to color and color systems	390
19.1	Underlying factors of color-emotion scales identified by factor analysis	403
19.2	Diverse findings regarding the effect of culture on color emotion	407
19.3	Summary of conventional theories of color harmony	411
24.1	A sample of studies assessing intraspecific mate choice based on color in	
	non-primate species	506
24.2	Studies assessing mate choice based on color in primate species	516
29.1	Partial summary of the results from DuBose et al.'s (1980; Experiment 2) stud	y 605

Contributors

LINA MARÍA ARENAS Department of Zoology, University of Cambridge and Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter

JESSICA L. BAIR Department of Psychology, North Dakota State University

JOHN L. BARBUR Department of Optometry and Visual Sciences, City University London

ROBERT A. BARTON Department of Anthropology, Durham University

MARC H. BORNSTEIN Child and Family Research, National Institute of Child Health and Human Development, USA

DAVID H. BRAINARD Department of Psychology, University of Pennsylvania

JULES DAVIDOFF Department of Psychology, Goldsmiths, University of London

DON DEDRICK Department of Philosophy and Department of Psychology, University of Guelph

ANDREW J. ELLIOT Department of Clinical and Social Sciences in Psychology, University of Rochester

ROBERT ENNIS Department of Psychology, University of Giessen

MARK D. FAIRCHILD Program of Color Science, Rochester Institute of Technology

MARIANA G. FIGUEIRO Lighting Research Center, Rensselaer Polytechnic Institute

CHARLES L. FOLK Department of Psychology, Villanova University

ANNA FRANKLIN School of Psychology, University of Sussex

KARL R. GEGENFURTNER Department of Psychology, University of Giessen

TOBIAS GREITEMEYER Department of Psychology, University of Innsbruck

THORSTEN HANSEN Department of Psychology, University of Giessen

JAMES P. HIGHAM Department of Anthropology, New York University

RUSSELL A. HILL Evolutionary Anthropology Research Group, Department of Anthropology, Durham University

ANYA HURLBERT Institute of Neuroscience, Newcastle University

JOHN B. HUTCHINGS School of Design, University of Leeds

GERALD H. JACOBS Department of Psychological and Brain Sciences, University of California, Santa Barbara

GARRETT M. JOHNSON Apple Inc. and Program of Color Science, Rochester Institute of Technology (USA)

PAUL KAY Department of Linguistics, University of California, Berkeley, and Department of Linguistics, Stanford University

TIANWEI LIU Department of Psychology, North Dakota State University

ALICE E. LOWN Department of Zoology, University of Cambridge

MARKUS A. MAIER Department Psychologie, Ludwig-Maximilians-Universität München

CHRISTOPHER B. MAYHORN Department of Psychology, North Carolina State University

BRIAN P. MEIER Department of Psychology, Gettysburg College

LI-CHEN OU Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology

ANGELA OWEN Institute of Neuroscience, Newcastle University

STEPHEN E. PALMER Department of Psychology, University of California, Berkeley

NEIL R. A. PARRY Centre for Hearing and Vision Research, Institute of Human Development, University of Manchester and Vision Science Centre, Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester

ADAM D. PAZDA Department of Clinical and Social Sciences in Psychology, University of Rochester (USA)

DAVID I. PERRETT School of Psychology and Neuroscience, University of St Andrews

MARK S. REA Lighting Research Center, Rensselaer Polytechnic Institute

MICHAEL D. ROBINSON Department of Psychology, North Dakota State University

MARISA RODRIGUEZ-CARMONA Department of Optometry and Visual Sciences, City University London

KAREN B. SCHLOSS Department of Cognitive, Linguistic, and Psychological Sciences, Brown University

JOANNA M. SETCHELL Department of Anthropology, Durham University

CHARLES SPENCE Department of Experimental Psychology, University of Oxford

xx List of contributors

IAN D. STEPHEN Department of Psychology, Macquarie University

MARTIN STEVENS Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter

ANDREW STOCKMAN Institute of Ophthamology, University College London

JAMIE WARD School of Psychology, University of Sussex

IAN WATTS Independent Researcher, Athens

MICHAEL A. WEBSTER Department of Psychology, University of Nevada, Reno

ANNA WIERZBICKA School of Literature, Languages, and Linguistics, Australian National University

SANDRA WINTERS Department of Anthropology, New York University

CHRISTOPH WITZEL Laboratoire Psychologie de la Perception, Université Paris Descartes

MICHAEL S. WOGALTER Department of Psychology, North Carolina State University

OLGA A. ZIELINSKA Department of Psychology, North Carolina State University

Foreword

For generations, the school child's mnemonic Roy G. Biv (red, orange, yellow, green, blue, indigo, violet) has undermined the scientific foundation for understanding color. What appears to be an innocent aid for recalling the sequence of spectral colors is instead a misleading assignment of colors to physical wavelengths of light. When the hues from red through violet are attached to wavelengths from 700 through 400 nanometers, it suggests that the colors we see are properties of the wavelengths themselves, but that is not so. The critical word in the last sentence is *we*. Physical wavelengths have no color; instead, *we* have both detectors in the eye that respond to these wavelengths and, moreover, subsequent neural circuitry that causes our experience of seeing color.

You cannot tell a book by its cover, and often not by its title either. Here, however, the *Handbook of Color Psychology* is aptly named to highlight this most important underpinning for understanding color. Color is in the mind of the viewer (thus psychological), not in light (the physical) or even in the eye's photoreceptors, which create from light the essential biological signals for seeing. This principle of color vision recurs frequently in this volume.

The fact that color is a product of the mind might seem to limit the precision or depth of scientific inquiry, but actually the opposite is true. There are several reasons for this. First, centuries of inventive behavioral techniques together with decades of physiological recordings have advanced our understanding of nearly every aspect of color. Second, experimentally testable theories and computational models, often developed in parallel with experimental work, have revealed comprehensive explanatory frameworks and, of equal significance, exposed shortcomings of intuitively attractive yet flawed conceptualizations. Importantly, theoretical frameworks can comfortably mingle physical and physiological properties with psychological concepts such as attention, memory, thought, inference, and prior knowledge. Third, knowing that color perception is in the mind broadens the areas of inquiry. Psychological perspectives naturally incorporate changes over the life span as well as individual differences in color perception (and not just for the 8% of men with a genetically determined difference in comparison to the other 92%, but also more subtle differences within the 92% of men and among women). Studies of the influence of language and culture on color benefit from well-grounded psychological principles, as do investigations of color categories, color preferences, and even color percepts aroused by listening to music. All of these topics are included here.

Fourth, color psychology goes beyond processes having influence *on* color to embrace the many facets of behavior influenced *by* color. Emotional responses to hues are a classic example, but colors influence also the perception of faces and flavors, human competitiveness, and even romance. Color is used routinely in symbols and signals (and to avoid

xxii Foreword

signaling, via camouflage). The reviews of how color is used in and affects our lives extend the remarkable scope here.

The authoritative coverage of such breadth draws on the expertise of over 50 contributors who were brought together by three broad-minded editors. Anyone with an interest in the colors *we* experience will find much to appreciate and applaud here.

> Steven K. Shevell University of Chicago