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Nonparametric Statistical Models

In this chapter we introduce and motivate the statistical models that will be considered
in this book. Some of the materials depend on basic facts developed in subsequent
chapters – mostly the basic Gaussian process and Hilbert space theory. This will be hinted
at when necessary.

Very generally speaking, a statistical model for a random observation Y is a family

{P f : f ∈F}
of probability distributions P f , each of which is a candidate for having generated the
observation Y. The parameter f belongs to the parameter space F . The problem of
statistical inference on f , broadly speaking, can be divided into three intimately connected
problems of using the observation Y to

(a) Estimate the parameter f by an estimator T(Y),
(b) Test hypotheses on f based on test functions �(Y) and/or
(c) Construct confidence sets C(Y) that contain f with high probability.

To interpret inferential results of these kinds, we will typically need to specify a distance, or
loss function on F , and for a given model, different loss functions may or may not lead to
very different conclusions.

The statistical models we will introduce in this chapter are, on the one hand, conceptually
closely related to each other in that the parameter space F is infinite or high dimensional
and the loss functions relevant to the analysis of the performance of statistical procedures are
similar. On the other hand, these models are naturally divided by the different probabilistic
frameworks in which they occur – which will be either a Gaussian noise model or an
independent sampling model. These frameworks are asymptotically related in a fundamental
way (see the discussion after Theorem 1.2.1). However, the most effective probabilistic
techniques available are based on a direct, nonasymptotic analysis of the Gaussian or product
probability measures that arise in the relevant sampling context and hence require a separate
treatment.

Thus, while many of the statistical intuitions are common to both the sampling and the
Gaussian noise models and in fact inform each other, the probabilistic foundations of these
models will be laid out independently.
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2 Nonparametric Statistical Models

1.1 Statistical Sampling Models

Let X be a random experiment with associated sample space X . We take the mathematical
point of view of probability theory and model X as a random variable, that is, as a measurable
mapping defined on some underlying probability space that takes values in the measurable
space (X ,A), where A is a σ -field of subsets of X . The law of X is described by the
probability measure P on A. We may typically think of X equal to Rd or a measurable
subset thereof, equipped with its Borel σ -field A.

The perhaps most basic problem of statistics is the following: consider repeated outcomes
of the experiment X, that is, a random sample of independent and identically distributed
(i.i.d.) copies X1, . . . ,Xn from X. The joint distribution of the Xi equals the product probability
measure Pn = ⊗n

i=1P on (X n,An). The goal is to recover P from the n observations.
‘Recovering P’ can mean many things. Classical statistics has been concerned mostly with
models where P is explicitly parameterised by a finite-dimensional parameter, such as the
mean and variance of the normal distribution, or the ‘parameters’ of the usual families of
statistical distributions (gamma, beta, exponential, Poisson, etc.). Recovering P then simply
means to use the observations to make inferences on the unknown parameter, and the fact
that this parameter is finite dimensional is crucial for this traditional paradigm of statistical
inference, in particular, for the famous likelihood principle of R. A. Fisher. In this book,
we will follow the often more realistic assumption that no such parametric assumptions are
made on P. For most sample spaces X of interest, this will naturally lead to models that are
infinite dimensional, and we will investigate how the theory of statistical inference needs to
be developed in this situation.

1.1.1 Nonparametric Models for Probability Measures

In its most elementary form, without imposing any parameterisations on P, we can simply
consider the problem of making inferences on the unknown probability measure P based on
the sample. Natural loss functions arise from the usual metrics on the space of probability
measures on X , such as the total variation metric

‖P−Q‖TV = sup
A∈A

|P(A)−Q(A)|

or weaker metrics that generate the topology of weak convergence of probability measures
on X . For instance, if X itself is endowed with a metric d, we could take the bounded
Lipschitz metric

β(X ,d)(P,Q)= sup
f ∈BL(1)

∣∣∣∣∫
X

f (dP− dQ)

∣∣∣∣
for weak convergence of probability measures, where

BL(M)=
{

f : X →R, sup
x∈X

| f (x)|+ sup
x 
=y

| f (x)− f (y)|
d(x,y)

≤ M

}
, 0<M<∞.

If X has some geometric structure, we can consider more intuitive loss functions. For
example, if X =R, we can consider the cumulative distribution function

F(x)= P(X ≤ x), x ∈R,
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1.1 Statistical Sampling Models 3

or, if X takes values in Rd, its multivariate analogue. A natural distance function on
distribution functions is simply the supremum-norm metric (‘Kolmogorov distance’)

‖FP −FQ‖∞ = sup
x∈R

|FP(x)−FQ(x)|.

Since the indicators {1(−∞,x] : x ∈R} generate the Borel σ -field of R, we see that, on R, the
statistical parameter P is characterised entirely by the functional parameter F, and vice versa.
The parameter space is thus the infinite-dimensional space of all cumulative distribution
functions on R.

Often we will know that P has some more structure, such as that P possesses a
probability-density function f : R → [0,∞), which itself may have further properties
that will be seen to influence the complexity of the statistical problem at hand. For
probability-density functions, a natural loss function is the L1-distance

‖ fP − fQ‖1 =
∫
R

| fP(x)− fQ(x)|dx

and in some situations also other Lp-type and related loss functions. Although in some sense
a subset of the other, the class of probability densities is more complex than the class of
probability-distribution functions, as it is not described by monotonicity constraints and does
not consist of functions bounded in absolute value by 1. In a heuristic way, we can anticipate
that estimating a probability density is harder than estimating the distribution function, just
as the preceding total variation metric is stronger than any metric for weak convergence
of probability measures (on nontrivial sample spaces X ). In all these situations, we will
see that the theory of statistical inference on the parameter f significantly departs from the
usual finite-dimensional setting.

Instead of P, a particular functional�(P)may be the parameter of statistical interest, such
as the moments of P or the quantile function F−1 of the distribution function F – examples
for this situation are abundant. The nonparametric theory is naturally compatible with such
functional estimation problems because it provides the direct plug-in estimate �(T) based
on an estimator T for P. Proving closeness of T to P in some strong loss function then gives
access to ’many’ continuous functionals � for which �(T) will be close to �(P), as we
shall see later in this book.

1.1.2 Indirect Observations

A common problem in statistical sampling models is that some systematic measurement
errors are present. A classical problem of this kind is the statistical regression problem,
which will be introduced in the next section. Another problem, which is more closely related
to the sampling model from earlier, is where one considers observations in Rd of the form

Yi = Xi + εi, i = 1, . . . ,n, (1.1)

where the Xi are i.i.d. with common law PX, and the εi are random ‘error’ variables that
are independent of the Xi and have law Pε. The law Pε is assumed to be known to the
observer – the nature of this assumption is best understood by considering examples: the
attempt is to model situations in which a scientist, for reasons of cost, complexity or lack
of precision of the involved measurement device, is forced to observe Yi instead of the
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4 Nonparametric Statistical Models

realisations Xi of interest. The observer may, however, have very concrete knowledge of
the source of the error, which could, for example, consist of light emissions of the Milky
Way interfering with cosmic rays from deeper space, an erratic optical device through
which images are observed (e.g., a space telescope which cannot be repaired except at very
high cost) or transmissions of signals through a very busy communication channel. Such
situations of implicit measurements are encountered frequently in the applied sciences and
are often called inverse problems, as one wishes to ‘undo’ the errors inflicted on the signal
in which one is interested. The model (1.1) gives a simple way to model the main aspects of
such statistical inverse problems. It is also known as the deconvolution model because the
law of the Yi equals

PY = PX ∗Pε,

the convolution of the two probability measures PX,Pε, and one wishes to ‘deconvolve’ Pε.
As earlier, we will be interested in inference on the underlying distribution PX of the

signal X when the statistical model for PX is infinite dimensional. The loss functions in this
problem are thus typically the same as in the preceding subsection.

1.2 Gaussian Models

The randomness in the preceding sampling model was encoded in a general product measure
Pn describing the joint law of the observations. Another paradigm of statistical modelling
deals with situations in which the randomness in the model is described by a Gaussian
(normal) distribution. This paradigm naturally encompasses a variety of nonparametric
models, where the infinite-dimensional character of the problem does not necessarily derive
from the probabilistic angle but from a functional relationship that one wishes to model.

1.2.1 Basic Ideas of Regression

Perhaps the most natural occurrence of a statistical model in the sciences is the one in which
observations, modelled here as numerical values or vectors, say, (Yi,xi), arise according to a
functional relationship

Yi = f (xi)+ εi, i = 1, . . . ,n, (1.2)

where n is the number of observations (sample size), f is some function of the xi and the
εi are random noise. By ‘random noise’, we may mean here either a probabilistic model
for certain measurement errors that we believe to be intrinsic to our method of making
observations, or some innate stochastic nature of the way the Yi are generated from the
f (xi). In either case, we will model the εi as random variables in the sense of axiomatic
probability theory – the question of the genuine physical origin of this random noise will
not concern us here. It is sometimes natural to assume also that the xi are realisations of
random variables Xi – we can either take this into account explicitly in our analysis or make
statements conditional on the observed values Xi = xi.

The function f often will be unknown to the observer of observations (Yi,xi), and the
goal is to recover f from the (Yi,xi). This may be of interest for various reasons, for
instance, for predicting new values Yn+1 from f (xn+1) or to gain quantitative and qualitative
understanding of the functional relationship Yi = f (xi) under consideration.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-04316-9 - Mathematical Foundations of Infinite-Dimensional Statistical Models
Evarist Giné and Richard Nickl
Excerpt
More information

http://www.cambridge.org9781107043169
http://www.cambridge.org
http://www.cambridge.org


1.2 Gaussian Models 5

In the preceding context, a statistical model in the broad sense is an a priori specification
of both a parameter space for the functions f that possibly could have generated (1.2) and
a family of probability measures that describes the possible distributions of the random
variables εi. By ‘a priori’, we mean here that this is done independently of (e.g., before) the
observational process, reflecting the situation of an experimentalist.

A systematic use and study of such models was undertaken in the early nineteenth century
by Carl Friedrich Gauss, who was mostly interested in predicting astronomical observations.
When the model is translated into the preceding formalisation, Gauss effectively assumed
that the xi are vectors (xi1, . . . ,xip)

T and thought of f as a linear function in that vector, more
precisely,

f (xi)= xi1θi + . . .xipθp, i = 1, . . . ,n,

for some real-valued parameters θj, j = 1, . . . , p. The parameter space for f is thus the
Euclidean space Rp expressed through all such linear mappings. In Gauss’s time, the
assumption of linearity was almost a computational necessity.

Moreover, Gauss modelled the random noise εi as independent and identically distributed
samples from a normal distribution N(0,σ 2) with some variance σ 2. His motivation behind
this assumption was twofold. First, it is reasonable to assume that E(εi) = 0 for every i. If
this expectation were nonzero, then there would be some deterministic, or ‘systematic’,
measurement error ei = E(εi) of the measurement device, and this could always be
accommodated in the functional model by adding a constant x10 = ·· · = xn0 = 1 to the
preceding linear relationship. The second assumption that εi has a normal distribution is
deeper. If we think of each measurement error εi as the sum of many ‘very small’, or
infinitesimal, independent measurement errors εik,k = 1,2, . . . , then, by the central limit
theorem, εi =∑

k εik should be approximately normally distributed, regardless of the actual
distribution of the εik. By the same reasoning, it is typically natural to assume that the εi are
also independent among themselves. This leads to what is now called the standard Gaussian
linear model

Yi = f (xi)+ εi ≡
p∑

j=1

xijθj + εi, εi ∼i.i.d. N(0,σ 2), i = 1, . . . ,n, (1.3)

which bears this name both because Gauss studied it and, since the N(0,σ 2) distribution is
often called the Gaussian distribution, because Gauss first made systematic use of it. The
unknown parameter (θ ,σ 2) varies in the (p+ 1)-dimensional parameter space

	×
 =Rp × (0,∞).
This model constitutes perhaps the classical example of a finite-dimensional model, which
has been studied extensively and for which a fairly complete theory is available. For
instance, when p is smaller than n, the least-squares estimator of Gauss finds the value
θ̂ ∈Rp which solves the optimisation problem

min
θ∈Rp

n∑
i=1

⎛⎝Yi −
p∑

j=1

xijθj

⎞⎠2

and hence minimises the Euclidean distance of the vector Y = (Y1, . . . ,Yn)
T to the

p-dimensional subspace spanned by the p vectors (x1j, . . . ,xnj)
T, j = 1, . . . ,p.
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6 Nonparametric Statistical Models

1.2.2 Some Nonparametric Gaussian Models

We now give a variety of models that generalise Gauss’s ideas to infinite-dimensional
situations. In particular, we will introduce the Gaussian white noise model, which serves as
a generic surrogate for a large class of nonparametric models, including even non-Gaussian
ones, through the theory of equivalence of experiments (discussed in the next section).

Nonparametric Gaussian Regression

Gauss’s model and its theory basically consist of two crucial assumptions: one is that the εi

are normally distributed, and the other is that the function f is linear. The former assumption
was argued to be in some sense natural, at least in a measurement-error model (see also the
remarks after Theorem 1.2.1 for further justification). The latter assumption is in principle
quite arbitrary, particularly in times when computational power does not constrain us as
much any longer as it did in Gauss’s time. A nonparametric approach therefore attempts to
assume as little structure of f as possible. For instance, by the nonparametric regression
model with fixed, equally spaced design on [0,1], we shall understand here the model

Yi = f (xi)+ εi, xi = i

n
, εi ∼i.i.d. N(0,σ 2), i = 1, . . . ,n. (1.4)

where f is any function defined on [0,1]. We are thus sampling the unknown function f at
an equally spaced grid of [0,1] that, as n→∞, grows dense in the interval [0,1] as n→∞.

The model immediately generalises to bounded intervals [a,b], to ‘approximately’
equally spaced designs {xi : i = 1, . . . ,n} ⊂ [a,b] and to multivariate situations, where the
xi are equally spaced points in some hypercube. We note that the assumption that the xi are
equally spaced is important for the theory that will follow – this is natural as we cannot hope
to make inference on f in regions that contain no or too few observations xi.

Other generalisations include the random design regression model, in which the xi are
viewed as i.i.d. copies of a random variable X. One can then either proceed to argue
conditionally on the realisations Xi = xi, or one takes this randomness explicitly into account
by making probability statements under the law of X and ε simultaneously. For reasonable
design distributions, this will lead to results that are comparable to the fixed-design
model – one way of seeing this is through the equivalence theory for statistical experiments
(see after Theorem 1.2.1).

A priori it may not be reasonable to assume that f has any specific properties other than
that it is a continuous or perhaps a differentiable function of its argument. Even if we would
assume that f has infinitely many continuous derivatives the set of all such f would be
infinite dimensional and could never be fully captured by a p-dimensional parameter space.
We thus have to expect that the theory of statistical inference in this nonparametric model
will be different from the one in Gauss’s classical linear model.

The Gaussian White Noise Model

For the mathematical development in this book we shall work with a mathematical
idealisation of the regression model (1.4) in continuous time, known as the Gaussian
white noise model, and with its infinite sequence space analogue. While perhaps at first
appearing more complicated than the discrete model, once constructed, it allows for a clean
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1.2 Gaussian Models 7

and intuitive mathematical exposition that mirrors all the main ideas and challenges of the
discrete case with no severe loss of generality.

Consider the following stochastic differential equation:

dY(t)≡ dY(n)f (t)= f (t)dt+ σ√
n

dW(t), t ∈ [0,1], n ∈N, (1.5)

where f ∈ L2 ≡ L2([0,1]) is a square integrable function on [0,1], σ > 0 is a dispersion
parameter and dW is a standard Gaussian white noise process. When we observe a
realisation of (1.5), we shall say that we observe the function or signal f in Gaussian white
noise, at the noise level, or a signal-to-noise ratio σ/

√
n. We typically think of n large,

serving as a proxy for sample size, and of σ > 0 a fixed known value. If σ is unknown, one
can usually replace it by a consistent estimate in the models we shall encounter in this book.

The exact meaning of dW needs further explanation. Heuristically, we may think
of dW as a weak derivative of a standard Brownian motion {W(t) : t ∈ [0,1]}, whose
existence requires a suitable notion of stochastic derivative that we do not want to develop
here explicitly. Instead, we take a ‘stochastic process’ approach to define this stochastic
differential equation, which for statistical purposes is perfectly satisfactory. Let us thus
agree that ‘observing the trajectory (1.5)’ will simply mean that we observe a realisation
of the Gaussian process defined by the application

g �→
∫ 1

0
g(t)dY(n)(t)≡Y(n)f (g)∼ N

(
〈 f ,g〉, ‖g‖2

2

n

)
, (1.6)

where g is any element of the Hilbert space L2([0,1]) with inner product 〈·, ·〉 and norm
‖ ·‖2. Even more explicitly, we observe all the N(〈 f ,g〉,‖g‖2

2/n) variables, as g runs through
L2([0,1]). The randomness in the equation (1.5) comes entirely from the additive term dW,
so after translating by 〈 f ,g〉 and scaling by 1/

√
n, this means that dW is defined through the

Gaussian process obtained from the action

g �→
∫ 1

0
g(t)dW(t)≡W(g)∼ N(0,‖g‖2

2), g ∈ L2([0,1]). (1.7)

Note that this process has a diagonal covariance in the sense that for any finite set
of orthonormal vectors {ek} ⊂ L2 we have that the family {W(ek)} is a multivariate
standard normal variable, and as a consequence of the Kolmogorov consistency theorem
(Proposition 2.1.10), W and Y(n) indeed define Gaussian processes on L2.

The fact that the model (1.5) can be interpreted as a Gaussian process indexed by L2

means that the natural sample space Y in which dY from (1.5) takes values is the ‘path’ space
RL2([0,1]). This space may be awkward to work with in practice. In Section 6.1.1 we shall
show that we can find more tractable choices forY where dY concentrates with probability 1.

Gaussian Sequence Space Model

Again, to observe the stochastic process {Y(n)f (g) : g∈ L2} just means that we observe Y(n)f (g)
for all g ∈ L2 simultaneously. In particular, we may pick any orthonormal basis {ek : k ∈ Z}
of L2, giving rise to an observation in the Gaussian sequence space model

Yk ≡ Y(n)f ,k = 〈 f ,ek〉+ σ√
n

gk, k ∈ Z, n ∈N, (1.8)
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8 Nonparametric Statistical Models

where the gk are i.i.d. of law W(ek) ∼ N(0,‖ek‖2
2) = N(0,1). Here we observe all the basis

coefficients of the unknown function f with additive Gaussian noise of variance σ 2/n. Note
that since the {ek : k ∈ Z} realise a sequence space isometry between L2 and the sequence
space �2 of all square-summable infinite sequences through the mapping f �→ 〈 f ,ek〉, the
law of {Y(n)f ,k : k ∈ Z} completely characterises the finite-dimensional distributions, and thus

the law, of the process Y(n)f . Hence, models (1.5) and (1.8) are observationally equivalent to
each other, and we can prefer to work in either one of them (see also Theorem 1.2.1).

We note that the random sequence Y= (Yk : k∈Z) itself does not take values in �2, but we
can view it as a random variable in the ‘path’ space R�2 . A more tractable, separable sample
space on which (Yk : k ∈ Z) can be realised is discussed in Section 6.1.1.

A special case of the Gaussian sequence model is obtained when the space is restricted to
n coefficients

Yk = θk + σ√
n

gk, k = 1, . . . ,n, (1.9)

where the θk are equal to the 〈 f ,ek〉. This is known as the normal means model. While itself
a finite-dimensional model, it cannot be compared to the standard Gaussian linear model
from the preceding section as its dimension increases as fast as n. In fact, for most parameter
spaces that we will encounter in this book, the difference between model (1.9) and model
(1.8) is negligible, as follows, for instance, from inspection of the proof of Theorem 1.2.1.

Multivariate Gaussian Models

To define a Gaussian white noise model for functions of several variables on [0,1]d through
the preceding construction is straightforward. We simply take, for f ∈ L2([0,1]d),

dY(t)= f (t)dt+ σ√
n

dW(t), t ∈ [0,1]d, n ∈N, σ > 0, (1.10)

where dW is defined through the action

g �→
∫
[0,1]d

g(t)dW(t)≡W(g)∼ N(0,‖g‖2
2) (1.11)

on elements g of L2([0,1]d), which corresponds to multivariate stochastic integrals with
respect to independent Brownian motions W1(t1), . . . ,Wd(td). Likewise, we can reduce to a
sequence space model by taking an orthonormal basis {ek : k ∈ Zd} of L2([0,1]d).

1.2.3 Equivalence of Statistical Experiments

It is time to build a bridge between the preceding abstract models and the statistically
more intuitive nonparametric fixed-design regression model (1.4). Some experience with
the preceding models reveals that a statistical inference procedure in any of these models
constructively suggests a procedure in the others with comparable statistical properties.
Using a suitable notion of distance between statistical experiments, this intuition can be
turned into a theorem, as we show in this subsection. We present results for Gaussian
regression models; the general approach, however, can be developed much further to show
that even highly non-Gaussian models can be, in a certain sense, asymptotically equivalent
to the standard Gaussian white noise model (1.5). This gives a general justification for a
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1.2 Gaussian Models 9

rigorous study of the Gaussian white noise model in itself. Some of the proofs in this
subsection require material from subsequent chapters, but the main ideas can be grasped
without difficulty.

The Le Cam Distance of Statistical Experiments

We employ a general notion of distance between statistical experiments E (i), i = 1,2, due
to Le Cam. Each experiment E (i) consists of a sample space Yi and a probability measure
P(i)f defined on it, indexed by a common parameter f ∈F . Let T be a measurable space of
‘decision rules’, and let

L : F ×T →[0,∞)
be a ‘loss function’ measuring the performance of a decision procedure T(i)(Y(i)) ∈ T based
on observations Y(i) in experiment i. For instance, T(i)(Y(i)) could be an estimator for f so
that T = F and L( f ,T) = d( f ,T), where d is some metric on F , but other scenarios are
possible. The risk under P(i)f for this loss is the P(i)f -expectation of L( f ,T(i)(Y(i))), denoted
by R(i)( f ,T(i),L). Define also

|L| = sup{L( f ,T) : f ∈F ,T ∈ T ).
The Le Cam distance between two experiments is defined as

�F (E (1),E (2))≡ max

[
sup
T(2)

inf
T(1)

sup
f ,L:|L|=1

∣∣R(1)( f ,T(1),L)−R(2)( f ,T(2),L)
∣∣ , (1.12)

sup
T(1)

inf
T(2)

sup
f ,L:|L|=1

∣∣R(1)( f ,T(1),L)−R(2)( f ,T(2),L)
∣∣].

If this quantity equals zero, this means that any decision procedure T(1) in experiment E (1)
can be translated into a decision procedure T(2) in experiment E (2), and vice versa, and that
the statistical performance of these procedures in terms of the associated risk R(i) will be the
same for any bounded loss function L. If the distance is not zero but small, then, likewise,
the performance of the corresponding procedures in both experiments will differ by at most
their Le Cam distance.

Some useful observations on the Le Cam distance are the following: if both experiments
have a common sample space Y (1) = Y (2) = Y equal to a complete separable metric space,
and if the probability measures P(1)f ,P(2)f have a common dominating measure μ on Y , then

�F (E (1),E (2))≤ sup
f ∈F

∫
Y

∣∣∣∣∣dP(1)f

dμ
− dP(2)f

dμ

∣∣∣∣∣dμ≡ ‖P(1)−P(2)‖1,μ,F . (1.13)

This follows from the fact that in this case we can always use the decision rule T(2)(Y) in
experiment E (1) and vice versa and from

|R(1)( f ,T,L)−R(2)( f ,T,L)| ≤
∫
Y
|L( f ,T(Y))||dP(1)f (Y)− dP(2)f (Y)| ≤ |L|‖P(1)−P(2)‖1,μ,F .

The situation in which the two experiments are not defined on the sample space needs
some more thought. Suppose, in the simplest case, that we can find a bi-measurable
isomorphism B of Y (1) with Y (2), independent of f , such that

P(2)f = P(1)f ◦B−1, P(1)f = P(2)f ◦B ∀ f ∈F .
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10 Nonparametric Statistical Models

Then, given observations Y(2) in Y (2), we can use the decision rule T(2)(Y(2)) ≡
T(1)(B−1(Y(2))) in E (2), and vice versa, and the risks R(i) in both experiments coincide by
the image measure theorem. We can conclude in this case that

�F (E (1),E (2))=�F (E (1),B−1(E (2)))= 0. (1.14)

In the absence of such a bijection, the theory of sufficient statistics can come to our aid to
bound the Le Cam distance. Let again Y (i), i= 1,2, be two sample spaces that we assume to
be complete separable metric spaces. Let E (1) be the experiment giving rise to observations
Y(1) of law P(1)f on Y (1), and suppose that there exists a mapping S :Y (1)→Y (2) independent
of f such that

Y(2) = S(Y(1)), Y(2) ∼ P(2)f on Y (2).
Assume, moreover, that S(Y(1)) is a sufficient statistic for Y(1); that is, the conditional
distribution of Y(1) given that we have observed S(Y(1)) is independent of f ∈F . Then

�F (E (1),E (2))= 0. (1.15)

The proof of this result, which is an application of the sufficiency principle from statistics,
is left as Exercise 1.1.

Asymptotic Equivalence for Nonparametric Gaussian Regression Models

We can now give the main result of this subsection. We shall show that the experiments

Yi = f (xi)+ εi, xi = i

n
, εi ∼i.i.d. N(0,σ 2), i = 1, . . . ,n, (1.16)

and

dY(t)= f (t)dt+ σ√
n

dW(t), t ∈ [0,1], n ∈N, (1.17)

are asymptotically (n →∞) equivalent in the sense of Le Cam distance. In the course of
the proofs, we shall show that any of these models is also asymptotically equivalent to the
sequence space model (1.8). Further models that can be shown to be equivalent to (1.17) are
discussed after the proof of the following theorem.

We define classes

F(α,M)=
{

f : [0,1]→R, sup
x∈[0,1]

| f (x)|+ sup
x 
=y

| f (x)− f (y)|
|x− y|α ≤ M

}
,

0< α ≤ 1, 0<M<∞,

of α-Hölderian functions. Moreover, for (xi)
n
i=1 the design points of the fixed-design

regression model (1.16) and for f any bounded function defined on [0,1], let πn( f ) be the
unique function that interpolates f at the xi and that is piecewise constant on each interval
(xi1 ,xi] ⊂ [0,1].
Theorem 1.2.1 Let (E (i)n : n ∈ N), i = 1,2,3, equal the sequence of statistical experiments
given by i = 1 the fixed-design nonparametric regression model (1.16); i = 2, the standard
Gaussian white noise model (1.17); and i = 3, the Gaussian sequence space model (1.8),
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