How Much is Clean Air Worth?

How Much is Clean Air Worth? offers a comprehensive overview of the core methodologies and tools used to quantify the impacts and damage costs of pollution. The book begins by reviewing the tools used for environmental assessments and shows that a rational approach requires an impact pathway analysis (IPA) for each of the possible impacts of a pollutant, i.e. an analysis of the chain emission \rightarrow dispersion \rightarrow exposureresponse functions \rightarrow monetary valuation. The IPA methodology is explained in full and illustrated with worked examples, difficulties are discussed and uncertainties analyzed. In addition to detailed computer models, a very simple model (the "uniform world model") is presented, enabling readers to make estimates for cases where limited input data are available. Published results for electricity, waste treatment and transport are reviewed, with a thorough discussion of policy implications. This book will appeal to a broad mix of academics, graduate students and practitioners in government and industry working on cost-benefit analysis, environmental impact analysis and environmental policy.

Ari Rabl obtained his PhD in physics at Berkeley and worked for many years as research scientist for energy technologies at Argonne, NREL and Princeton University. He moved to the Ecole des Mines de Paris as Senior Scientist at the Centre Energétique et Procédés until his retirement in 2007, and now continues to work as a consultant. For the last 20 years, his work has focused on environmental impacts and costs of pollution. He is one of the principal participants of the ExternE Project series (External Costs of Energy) of the European Commission DG Research, for which he has co-ordinated several research projects.

Joseph V. Spadaro is Research Professor at the Basque Centre for Climate Change, Bilbao, Spain where he works on low carbon planning strategies, and climate change and health vulnerability. He is also Environmental Systems Engineer at Argonne National Labs, Decision and Information Sciences Division, USA, working on environmental impact assessment of energy technologies. He has been a member of the core team of principal investigators in the ExternE Project series (European Commission, DG Research) since the mid 1990s, and has acted as expert consultant for international organizations, national governments and private industry in projects related to impacts and costs of pollution.

> Mike Holland is a freelance consultant based in the UK, and an Honorary Research fellow at Imperial College London. He has worked on assessment of pollution effects on ecosystems and health since 1986, and, following his work on the ExternE project, has performed a large number of cost-benefit analyses for national government and the European Commission, particularly in relation to measures to improve air quality.

How Much is Clean Air Worth?

Calculating the Benefits of Pollution Control

Ari Rabl Joseph V. Spadaro Mike Holland

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107043138

© Ari Rabl, Joseph V. Spadaro and Mike Holland 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2014

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-04313-8 Hardback

Additional resources for this publication at www.cambridge.org/9781107043138

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List of figures	<i>page</i> xiii
	List of tables	xviii
	Foreword	XXV
	Preface	xxix
	Acknowledgements	xxxiii
1	Introduction	1
	1.1 Why quantify environmental benefits?	1
	1.2 Cost is not the only criterion for decisions	5
	1.3 Cost-effectiveness analysis	6
	1.4 The optimal level of pollution abatement	8
	1.5 How to quantify environmental benefits	11
	1.5.1 Impact pathway analysis	11
	1.5.2 Why not simply ask people how much they value	10
	each impact?	12
	1.6 External costs and their internalization	13
	1.6.1 Demition of external costs	13
	1.6.2 Who is represented who should be terrested)	14
	1.0.5 who is responsible, who should be targeted?	18
	References	20
		20
2	Tools for environmental impact and damage	
	assessment	21
	2.1 Overview of tools	21
	2.1.1 Starting point: the DPSIR framework	21
	2.1.2 Tools for analysis of impacts and for decision making	23
	2.2 Impact pathway analysis (IPA)	25
	2.2.1 The steps of an IPA	25
	2.2.2 Dispersion of pollutants and exposure	27
	2.2.3 Exposure-response functions	27
	2.2.4 Monetary valuation	31
	2.2.4.1 General principle	31
	2.2.4.2 Global warming	31
	2.2.4.3 Valuation based on abatement costs	32

vi

	Contents	
	2.2.5 Spatial and temporal boundaries of the analysis	32
	2.2.6 Software	33
	2.2.7 Environmental impact study and local impacts	34
	2.3 Life cycle assessment	34
	2.3.1 Life cycle inventory	34
	2.3.2 Life cycle impact assessment	38
	2.3.3 Relation between IPA and LCA	39
	2.4 Difficulties for the analysis	43
	2.4.1 Lack of data	43
	2.4.2 Boundaries of the analysis	44
	2.4.3 Nonlinearity of impacts	44
	2.4.4 Alternative tools for problematic impacts	48
	2.4.4.1 Problematic impacts	48
	2.4.4.2 Multicriteria analysis	49
	2.4.4.3 Risk comparisons	49
	2.4.4.4 The precautionary principle	50
	2.4.5 Estimation of abatement costs for CBA	51
	2.5 Problems with the use of these tools	52
	2.5.1 Common problems	52
	2.5.2 Checklist for avoiding problems	52
	2.6 An integrated framework for the analysis of environmental questions	56
	2.6.1. The framework	56
	2.6.2 Presenting the results	57
	2.6.2 Summarizing results	58
	2.7 Conclusions	59
	References	60
3	Exposure response functions for health impacts	63
5	2.1. Overview of health impacts of pollution	61
	3.2 Methods for measuring impacts of pollutants	66
	3.2.1 Enidemiology toyicology and experiments	66
	3.2.2. Types of epidemiological studies for sir pollution	67
	3.2.3 Difficulties with enidemiological studies	68
	3.2.4 Differences between results from different studies	60
	3.2.5 Hill's criteria for causality	72
	3.3 Exposure-response function (ERE): general remarks	72
	3.3.1 FRFs and calculation of impacts	72
	3.3.2 Form of the FRF and extrapolation to	12
	low exposures	74
	3 3 3 Linear EREs	76
	3.3.4 Accounting for a threshold in an IPA	79
	3 3 5 Relative risk and FRF	80
	3.3.6 Which pollutant causes how much health damage?	81
	3.4 ERFs for mortality	84
	3.4.1 Loss of life expectancy and number of deaths	84
	3.4.2 Studies of chronic mortality	86
	3.4.3 Loss of life expectancy for chronic mortality	00
	of adults	88
	3.4.4 Relevant exposure – cessation lag	94

	Contents	vii
	3.4.5 Results for acute mortality of adults	96
	3.4.6 Infant mortality	97
	3.4.7 Mortality impacts of O ₃	99
	3.5 ERFs for morbidity	100
	3.5.1 Morbidity due to PM	100
	3.5.2 Morbidity due to O_3	104
	3.6 ERFs for toxic metals, dioxins and other pollutants	107
	3.6.1 General remarks	107
	3.6.2 Cancers	107
	3.6.3 Arsenic	109
	3.6.4 Cadmium	110
	3.6.5 Chromium	111
	3.6.6 Lead	111
	3.6.7 Mercury	114
	3.6.8 Nickel	116
	3.6.9 Dioxins and PCBs	117
	3.6.10 Benzene, butadiene, benzo(a)pyrene and	
	formaldehyde	119
	3.6.10.1 Benzene	119
	3.6.10.2 1,3 Butadiene	119
	3.6.10.3 Polycyclic aromatic hydrocarbons	120
	3.6.10.4 Formaldehyde	121
	3.6.11 Radionuclides	121
	References	123
4	Impacts of air pollution on building materials	131
	4.1 Introduction	131
	4.2 Amenity cost	134
	4.2.1 Repair costs and amenity loss	134
	4.2.2 Discounting	136
	4.2.3 A simple rule for amenity cost	137
	4.3 The effects of air pollution on materials	138
	4.3.1 General remarks	138
	4.3.2 The stock at risk	139
	4.3.3 Specific materials	140
	4.3.3.1 Natural stone	140
	4.3.3.2 Brickwork, mortar and rendering	142
	4.3.3.3 Concrete	142
	4.3.3.4 Paint and polymeric materials	143
	4.3.3.5 Metals	143
	4.3.4 Exposure–response functions	144
	4.4 Estimation of damage costs: bottom-up	146
	4.4.1 Calculation of repair frequency	146
	4.4.2 Estimation of repair costs	146
	4.4.3 Estimation of soiling costs	147
	4.5 Estimation of damage costs: top-down	148
	4.5.1 Data from tax deductions	148
	4.5.2 Cleaning data for Paris	150
	4.5.2.1 Legislation	150
	4.5.2.2 Building renovation statistics for Paris	150

viii	Contents			
	4.5.2.3 Cleaning cost	151		
	4.5.2.4 Annual cost of façade renovation in Paris	151		
	4.5.3 Comparison with other studies	152		
	4.5.4 Costs of renovation of historical monuments	154		
	4.5.5 Damage per kg of particulate emission	155		
	4.6 Conclusions	156		
	References	157		
4	5 Agriculture, forests and ecosystems	160		
	5.1 Introduction	160		
	5.2 Impacts on agriculture	162		
	5.2.1 Exposure–response functions (ERFs) for crop losses	162		
	5.2.2 Valuation of crop losses	168		
	5.2.3 Impacts on forest growth	168		
	5.3 Damage costs due to nitrogen fertilizer	170		
	5.3.1 Impact categories	170		
	5.3.2 Impacts due to fertilizer production	171		
	5.3.3 Global warming due to N fertilizer use	172		
	5.3.4 Health impacts	173		
	5.5.5 Europhication	175		
	5.4. Domage costs of pesticides	175		
	5.5 Ecosystems	175		
	5.5.1 Difficulties with the valuation	177		
	5.5.2 Ecosystem impacts of pollution	180		
	5.5.3 Eutrophication in the Baltic Sea	181		
	5.5.4 An attempt at valuing loss of species	185		
	5.5.5 The ecosystem services approach	188		
	References	194		
	6 Other impacts	198		
	6.1 Visibility	198		
	6.2 Noise	201		
	6.3 Traffic congestion	202		
	6.4 Depletion of non-renewable resources	204		
	6.5 Accidents	207		
	References	210		
,	7 Atmospheric dispersion of pollutants	212		
	7.1 Introduction – damage function	213		
	7.2 The Gaussian plume model	215		
	7.2.1 Pasquill stability categories	226		
	7.2.2 Solar altitude angle, a_{SOL}	227		
	7.2.3 Surface roughness length, z_0	229		
	7.2.4 Dispersion parameters, σ_v and σ_z	229		
	7.2.5 Effective stack height (plume centerline), he	233		
	7.2.6 The mixed layer height, h _{mix}	237		
	7.2.7 Calculation of concentration profiles and local			
	population exposure	238		

	Co	ntents	ix
	7.3	Atmospheric dispersion far from the source	253
		7.3.1 Pollutant removal	253
		7.3.2 A simple model for regional dispersion	258
	7.4	The Uniform World Model (UWM)	265
		7.4.1 Methodology	265
		7.4.2 Validation of the UWM methodology	291
		7.4.3 Final remarks	312
	F	References	313
8	Мı	ultimedia pathways	318
	8.1	General considerations	318
	8.2	Simplified approach for dioxins	322
	8.3	Global health impacts and costs due to mercury emissions	324
		8.3.1 Why a simplified approach is necessary and appropriate	324
		8.3.2 The comprehensive transfer factor	326
		8.3.3 Calculation of lifetime impact due to current emissions	327
		8.3.4 Marginal impacts and costs per kg of emitted Hg	330
		8.3.5 Discussion	334
	8.4	The uniform world model for ingestion doses	337
		8.4.1 Assumptions	337
		8.4.2 Justification for steady state models	338
		8.4.3 Dose and impacts from ingestion	340
		8.4.4 Concentration in food	342
		8.4.5 Direct emissions to soil or water	346
		8.4.6 Results for doses	346
	8.5	Results for impacts and damage costs	350
	R	leferences	352
9	Mo	onetary valuation	356
	9.1	Comparing present and future costs	356
		9.1.1 The effect of time on the value of money	356
		9.1.2 The discount rate	358
		9.1.3 The intergenerational discount rate	359
		9.1.4 Evolution of costs with time	364
		9.1.5 Net present value and equivalent annual values	365
		9.1.6 The rule of 70 for doubling times	367
		9.1.7 Comments on cost–benefit analysis (CBA)	368
	9.2	Valuation methods	369
		9.2.1 Market and non-market costs	369
		9.2.2 Revealed preference methods	369
		9.2.3 Stated preference methods	373
	9.3	Valuation of mortality	377
		9.3.1 Accidents	378
		9.3.2 VOLY for small changes in life expectancy	379
		9.3.3 Infant mortality	383
	9.4	Valuation of morbidity	384
		9.4.1 Cost components	384
		9.4.2 Costs of work loss days	384
		9.4.2 nospitalization	285
		7.4.4 CHIOHICOTOHIHS	280

x

	Contents	
	 9.4.5 Other end points 9.4.6 Cancers 9.4.7 End points without monetary valuation 9.5 Neurotoxic impacts 9.6 Transfer of values 9.6.1 Methods for transfer of values 9.6.2 Conversion of currencies References 	388 389 391 392 396 396 400 402
10	The costs of climate change 10.1 Greenhouse gases (GHG) and their effects: some data 10.2 Scenarios 10.3 The challenge of estimating the damage costs of climate change 10.3.1 Predicting the impacts 10.3.2 Problems in monetary valuation 10.3.3 Equity weighting 10.3.4 A simple alternative that is useless	407 407 414 418 418 421 422 425
	 10.4 Damage cost estimates 10.4.1 Review of the literature 10.4.2 Damage cost as a function of temperature change 10.4.3 Damage cost by impact category 10.5 Abatement costs 10.6 Emission reductions and implications of a CO₂ tax References 	425 425 428 430 432 434 437
11	Uncertainty of damage costs 11.1 Introduction 11.1.1 General remarks 11.1.2 Validation of models 11.2 Methodologies for estimation of uncertainty 11.2.1 General formulation and Monte Carlo calculation 11.2.2 The calculation of damage costs 11.2.3 Uncertainty of sums and products 11.2.4 The lognormal distribution 11.2.5 The triangular distribution 11.2.6 Application to CBA	440 441 442 443 443 443 447 449 453 455 457
	 11.3 Component uncertainties and results for air pollution 11.3.1 Models 11.3.2 Exposure-response functions 11.3.3 Monetary valuation 11.3.4 Total σ_g for the classical air pollutants 11.3.5 Total σ_g for dioxins and toxic metals 11.4 Sum of lognormal variables 11.4.1 Combination of classical air pollutants and greenhouse gases 	459 459 463 465 468 469 476 476
	11.4.2 The general case11.5 Problematic uncertainties11.5.1 Examples: CO₂, NH₃, and nitrates in drinking water	477 481 482

	Contents	xi
	11.5.2 Graphical presentation of impacts with very different	
	uncertainties	485
	11.5.3 Sensitivity studies	485
	11.5.4 The precautionary principle and external costs	488
	11.5.5 Integrating the uncertainty into the decision process	488
	11.6 Presentation of uncertainty	489
	11.7 Consequences of the uncertainties for decisions	490
	References	493
12	Key assumptions and results for cost per kg of	
	pollutant	497
	12.1 Assumptions and models of ExternE	497
	12.1.1 Overview	497
	12.1.2 Atmospheric modeling	499
	12.1.3 ERFs and monetary values	501
	12.1.4 Variation with site and stack height	504
	12.2 Cost per kg of pollutant	504
	12.2.1 Results of ExternE (2008)	504
	12.2.2 Comparison with previous phases of ExternE	506
	12.2.3 Adjustment for higher mortality and GHG costs	506
	12.3 Assessments in the USA	509
	12.4 Comments on the use of the results	513
	12.4.1 Assessment of process chains	515
	References	514
13	Results for power plants	519
15	13.1. Scope of the analysis	519
	13.1.1 Boundaries of the analysis	519
	13.1.2 Priority impacts	520
	13.1.3 Time and space distribution of impacts	523
	13.2 General issues	524
	13.2.1 Upstream and downstream impacts	524
	13.2.2 Accidents	527
	13.3 Fuel chain assessments during the 1990s	533
	13.4 Current assessment of fuel chains	536
	13.4.1 General remarks	536
	13.4.2 Damage costs of power in the EU27	536
	13.4.3 Damage costs of power in the USA	539
	13.5 The nuclear fuel chain	542
	13.5.1 Normal operation	542
	13.5.2 Nuclear accidents	547
	13.6 Fossil fuel chains	550
	13.7 Renewable energy technologies	553
	References	555
14	Results for waste treatment	560
	14.1 Introduction	561
	14.2 Assumptions	562
	14.3 Damage cost of leachates	566

xii	Contents			
	14.4 Hg		570	
	14.5 Recovery	of energy and materials	571	
	14.6 Results fo	r damage cost per tonne of waste	572	
	14.7 Conclusio	ons for waste treatment	576	
	References		578	
15	Results for the	ransport	581	
	15.1 External c	cost estimates for transport	581	
	15.1.1 Ve	chicle emissions	581	
	15.1.2 He	ow harmful are NO _x emissions?	585	
	15.1.3 Da	amage costs of tail pipe emissions in the EU	587	
	15.1.4 Da	amage costs of transport in the EU	588	
	15.1.5 Da	amage costs of transport in the USA	590	
	15.1.0 D	o cars kill more by their front or their back?	592	
	15.1.7 Da	amage costs of underground trains	505	
	15.2 Hybrid ele	ectric versus conventional venicles	505	
	15.2.1 CC	sumptions and data	506	
	15.2.2 Rs		600	
	15.3 Costs and	benefits of active transport	605	
	15.3.1 Co	ontext and objectives	605	
	15.3.2 Or	utline of the methodology	605	
	15.3.3 Be	enefits of physical activity	607	
	15.3.4 Ca	ar emissions	609	
	15.3.5 Cł	hange in exposure for individuals who switch from		
	ca	r to bicycle or to walking	610	
	15.3.6 Im	pact of car emissions on the general public	612	
	15.3.7 Ac	ccidents	613	
	15.3.8 Re	esults	614	
	15.3.9 Di	iscussion	614	
	15.4 Greenhou	use gas emissions by car, plane and train	618	
	15.5 Internaliza	ation of damage costs of transport	620	
	References		622	
16	Lessons for j	policy makers	626	
	16.1 Choice of	method	626	
	16.2 Trends in	the use of valuation over time	629	
	16.3 Examples	of application	639	
	16.4 Final thou	aghts	641	
	References		643	
	Appendix A	Nomenclature, symbols, units and conversion		
		factors	647	
	Appendix B	Description of the RiskPoll software	655	
	Appendix C	Equations for multimedia model of Chapter 8	657	
	Index		665	

Figures

Fig. 1.1	Example of cost-effectiveness analysis.	page 7
Fig. 1.2	Example of optimizing the emission level E.	9
Fig. 1.3	Marginal cost of SO ₂ abatement as a function of the	
	total emissions.	10
Fig. 2.1	The DPSIR framework.	22
Fig. 2.2	DPSIR for the problem of pollution by nitrogen	
	compounds.	23
Fig. 2.3	The principal steps of an impact pathway analysis.	25
Fig. 2.4	Pathways taken into account for the health impacts	
	of air pollutants.	28
Fig. 2.5	Possible behavior of exposure-response functions at	
	low doses.	29
Fig. 2.6	Relation between impact pathway analysis and	
	current practice of most LCAs.	40
Fig. 2.7	Comparison of health impacts between LCA and	
	ExternE.	42
Fig. 2.8	Marginal cost for pollutant whose impact is a	
	nonlinear function of emission.	45
Fig. 2.9	Marginal cost for nonlinearities in ecosystems with	
	hysteresis.	47
Fig. 2.10	Risk comparisons: loss of life expectancy due to	
	various causes.	50
Fig. 3.1	Possible behavior of ERFs at low exposure or dose.	75
Fig. 3.2	Example of data for age-specific mortality $\mu(x)$.	89
Fig. 3.3	Survival function $S(x = 0, x')$ for France.	90
Fig. 4.1	Amenity loss rate for soiling or corrosion due to	
	pollution.	134
Fig. 5.1	The ERF for change of crop yield as a function of	
	ambient SO_2 concentration.	163
Fig. 5.2	Secchi depths and cyanobacterial concentrations	
	due to phosphor pollution.	182
Fig. 5.3	Model results for Secchi depths of the Baltic Sea.	184
		xiii

xiv	List of figures	
Fig. 7.1	Plume behavior and ambient vertical temperature	
	gradient.	216
Fig. 7.2	Pollution dispersion along the horizontal plane.	218
Fig. 7.3	Representation of Gaussian plume model.	220
Fig. 7.4	Local and regional annual incremental	
U U	concentrations.	222
Fig. 7.5	Solar altitude annual variation for Paris.	229
Fig. 7.6	Surface roughness coefficient z _o (m) for different	
	surfaces.	230
Fig. 7.7	Vertical stratification of the planetary boundary	
	layer (BPL).	237
Fig. 7.8	Example of surface heat flux and daytime	
	atmospheric mixing height for a rural site.	239
Fig. 7.9	Examples of Gaussian plume model calculations.	241
Fig. 7.10	Formation of secondary pollutants.	255
Fig. 7.1	Control volume for mass balance calculations of	
	primary and secondary pollutants.	259
Fig. 7.12	Dispersion of emissions from a continuous vertical	
	line source.	261
Fig. 7.13	6 Cumulative impact distribution for primary and	
	secondary pollutants with uniform population	
	distribution.	272
Fig. 7.14	Cumulative impact distribution for primary and	
	secondary pollutants with actual population	
	distributions.	273
Fig. 7.15	Variability of impact of nitrates from NO _x	
	emissions.	275
Fig. 7.16	Variability of damage cost with stack height and	
	population density.	275
Fig. 7.17	Comparison of UWM results for PM ₁₀ with	
	detailed site-specific results.	276
Fig. 7.18	8 Cumulative exposure, effect of local/regional	
	population distribution.	278
Fig. 7.19	Influence of dilution rate q_R and depletion	
	velocity k _p .	281
Fig. 7.20	UWM damage cost distribution and cumulative	
	damage distribution.	283
Fig. 7.2	Plot of Eq. (7.73a) for various local-to-regional	
	density ratios.	284
Fig. 7.22	2 Concentration comparisons of Gaussian model	
	with Eqs. (7.65) and (7.74) (a) Elevated source (b)	
	Ground-level source	288

List of figures		XV
Fig. 7.23	Comparison of urban intake fractions.	292
Fig. 7.24	Comparison UWM versus ExternE (2008).	294
Fig. 7.25	Comparison UWM versus EC4MACS.	295
Fig. 7.26	Locations of fossil fuel power plants in Beijing,	
	China.	299
Fig. 7.27	Comparison of concentration UWM versus EMEP.	310
Fig. 7.28	Graphical representation of Table 7.19.	312
Fig. 8.1	The principal pathways for the dispersion of air	
	pollutants in the environment.	319
Fig. 8.2	Relation between threshold dose d _{th} and dose	
	$\Delta d_{av}(d_{th})$ above d_{th} for Hg.	330
Fig. 8.3	Collective doses for central European conditions,	
	by exposure pathway as a percentage of the total.	347
Fig. 9.1	Variation of individual WTP values as a function of	
	number of lives saved.	376
Fig. 9.2	Gain of life expectancy (LE) when air pollution is	
	reduced.	381
Fig. 10.1	Global average radiative forcing in 2005.	409
Fig. 10.2	Global anthropogenic GHG emissions.	410
Fig. 10.3	Atmospheric CO ₂ concentration.	411
Fig. 10.4	Observed changes in global average surface	
	temperature and global average sea level data.	412
Fig. 10.5	Comparison of observed and calculated changes in	
	surface temperature.	413
Fig. 10.6	The evolution of several interesting indicators	
	between 1970 and 2008.	414
Fig. 10.7	Scenarios for greenhouse emissions in the absence	
	of new climate policies.	415
Fig. 10.8	Global temperature rise above the average level of	
	1980–1999 for several scenarios.	416
Fig. 10.9	Emission scenarios for a range of stabilization levels.	417
Fig. 10.10	Equilibrium temperature increases for the emission	
	scenarios of Fig. 9.9.	418
Fig. 10.11	Examples of impacts associated with global average	
	temperature change.	420
Fig. 10.12	The marginal damage cost of CO_2 , in \notin/t_{CO2} , versus	
	year of emission.	426
Fig. 10.13	A breakdown of damage costs, in ℓ/t_{CO2} , by impact	
D	category, estimated by FUND.	430
Fig. 10.14	Uncertainties of climate change damage costs.	431
Fig. 10.15	Estimates of global abatement potential in 2030, in	
	Gt _{CO2eq} /yr.	433

xvi L	ist of figures	
Fig. 10.16	The GHG emissions per capita in major countries/	
	regions of the world in 2004.	435
Fig. 11.1	Probability distributions of B, C, B – C and B/C for	
	a simple CBA.	446
Fig. 11.2	Lognormal probability density function.	454
Fig. 11.3	Triangular distribution.	456
Fig. 11.4	Distribution and lognormal fit of values for dry	
	deposition velocity of SO_2 .	461
Fig. 11.5	Example of lognormal distribution: value of a	
	prevented fatality.	466
Fig. 11.6	Median and confidence intervals for a lognormal	
	distribution as function of the geometric standard	
	deviation σ_{g} .	475
Fig. 11.7	Probability distribution of the sum of two lognormal	
	variables.	476
Fig. 11.8	Geometric standard deviation σ_g for the sum of two	
	lognormal variables.	477
Fig. 11.9	Examples of frequency distribution of the sum of	
	lognormal variables and fits by a lognormal	
	distribution.	478
Fig. 11.10	Comparison of the geometric standard deviations	
	estimated by Eq. (11.56) with a Monte Carlo	
	calculation.	482
Fig. 11.11	Sensitivity study of the optimal emissions level of	
	GHG.	487
Fig. 11.12	Comparison costs and benefits of a reduction of the	
	PM_{10} emission limit for cement kilns that use waste	
	as fuel.	491
Fig. 11.13	Extra social cost (relative to optimum with perfect	
-	information) for NO_x abatement as a function of the	
	error in the estimate of the damage cost.	492
Fig. 11.14	The cost penalty ratio R versus the error $x = C_{true}/$	
0	C_{est} in the damage cost estimate.	492
Fig. 12.1	Typical damage costs in € ₂₀₀₀ /kg of pollutant for	
0	sources in the EU27.	505
Fig. 12.2	Evolution of damage cost estimates by ExternE.	507
Fig. 12.3	The cost contributions of health and environment	
0	for the classical air pollutants.	508
Fig. 13.1	Number of fatalities for severe (≥ 5 fatalities)	
2	accidents.	529
Fig. 13.2	Comparison of aggregated, normalized, energy-	
2	related fatality rates.	531

Lis	st of figures	xvii
Fig. 13.3	Percentage shares of accidental fatalities in fossil energy chains.	532
Fig. 13.4	Selected results for the costs, both external and private, of current power technologies in the EU27.	538
F1g. 13.5	Breakdown of damage costs of Fig. 13.4 by stages of fuel chain.	538
Fig. 13.6	Net electricity generation in the USA by energy.	540
Fig. 13.7	Results for damage costs of electric power in the USA in c/kWh	541
Fig. 13.8	Logarithmic plot of damage cost for the nuclear fuel	541
	chain, by stage of chain.	544
Fig. 13.9	Damage costs of fossil power plants in EU, before and after 2001	552
Fig 13 10	Change of damage cost of power with higher	552
1 ig. 15.10	valuation of mortality and GHG	553
Fig. 14.1	Greenhouse gas emissions from a municipal solid	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1 ig. 1 i.i	waste landfill versus time	566
Fig 14.2	Results for total damage cost for waste treatment	500
1 15. 1 1.2	options.	574
Fig. 14.3	Some detailed results for waste treatment, by stage	
	and pollutant.	575
Fig. 14.4	Change of damage costs for incinerator and landfill	
	with higher valuation of mortality and GHG.	577
Fig. 15.1	Emissions of a diesel bus as function of speed v.	583
Fig. 15.2	CO ₂ emissions measured for a gasoline passenger	
	car as a function of speed.	583
Fig. 15.3	Damage cost due to the vehicle production stage.	600
Fig. 15.4	Contribution of materials and vehicle assembly to	
	damage cost of vehicle production.	601
Fig. 15.5	Contribution of the pollutants to the well-to-wheel	
-	and vehicle production stages.	602
Fig. 15.6	Total damage cost, in €cent/vkm.	602
Fig. 15.7	Damage costs of gasoline and diesel passenger cars,	
-	in €cents/vkm.	603
Fig. 15.8	ERF for relative risk of all-cause mortality, as a	
	function of hours/week of physical activity.	607
Fig. 15.9	Mortality costs and benefits due to switching from	
	car to bicycle for commuting to work.	617
Fig. 15.10	Comparison of mortality costs and benefits with	
-	other impacts, for our bicycling scenario.	618

Tables

Table 1.1	Policy instruments for reducing pollution.	page 15
Table 2.1	Illustration of the DPSIR framework.	22
Table 2.2	Some databases for life cycle inventories.	36
Table 2.3	Data of the USLCI database, concerning	
	production of 1 kg of fresh fruit and its	
	transportation by three modes.	37
Table 2.4	Pollutants and impact categories that have been	
	addressed by LCIA and by ExternE.	41
Table 2.5	Summary of common errors.	53
Table 2.6	Possible format for presenting the ranks of	
	different options.	59
Table 3.1	Pollutants and their effects on health.	65
Table 3.2	Variation of acute mortality due to PM ₁₀ in Europe.	71
Table 3.3	Hill's criteria for causality of associations found in	
	epidemiological studies.	73
Table 3.4	Coefficients α and β of the Gompertz model, and	
	ERF for LE loss from chronic mortality for	
	several populations.	92
Table 3.5	Calculation of LLE for postneonatal mortality.	97
Table 3.6	Risk factors for cancer and hereditary effects of	
	ICRP (2007).	122
Table 4.1	Sensitivity of materials to air pollution and stock	
	at risk in the EU.	140
Table 4.2	ERFs for materials.	145
Table 4.3	Assumptions of ExternE for critical thickness	
	losses for maintenance or repair.	146
Table 4.4	Repair and maintenance costs $[\notin/m^2]$.	147
Table 4.5	ExternE results for cost of damage to materials	
	due to SO_2 for various sites in Europe.	147
Table 4.6	Linear regression of renovation expenditures	
	versus Income and Income × concentration	
	of PM_{13} .	149

xviii

List of tables		xix
Table 4.7	Data for the cleaning of buildings in Paris.	150
Table 4.8	Price list for cleaning of façades (without taxes).	151
Table 4.9	Results of several studies for the cost of building	
	renovation due to pollution.	152
Table 4.10	Expenditures for restoration of historical	
	monuments.	155
Table 5.1	Sensitivity factors for different crop species.	165
Table 5.2	Prices of major crops, as used by ExternE.	169
Table 5.3	Emissions and damage costs due to fertilizer	
	production, per kg of nitrogen.	171
Table 5.4	Damage costs of nitrogen fertilizer, in €/kg _N .	175
Table 5.5	Best estimate of human health impact scores for	
	the five most extensively used pesticides on each	
	crop class.	176
Table 5.6	Possible measures for decreasing the phosphorus	
	input to the Baltic Sea.	184
Table 5.7	Species number and potentially disappeared	
	fractions (PDF) for different land uses.	186
Table 5.8	Restoration costs per m ² for different target	
	biotopes for EU25 in 2004.	187
Table 5.9	Annual value, in $_{1994}/yr \times 10^9$, of the world's	
	ecosystem services and functions, as estimated	
	by Costanza et al. (1997).	189
Table 5.10	Final ecosystem services and goods provided by	
	those services.	193
Table 6.1	Annual willingness to pay (WTP) per household	
	for visibility improvements in the USA.	200
Table 6.2	Typical marginal damage cost	
	(€cent ₂₀₀₈ /vkm) due to noise from various	
	transport modes.	203
Table 6.3	Typical estimates of marginal external costs due	
	to congestion (\in_{2008} /vkm).	204
Table 7.1	Pasquill stability categories or classes.	226
Table 7.2	Gaussian dispersion parameters.	231
Table 7.3	Plume rise equations.	235
Table 7.4	Wind profile exponent.	236
Table 7.5	Proposed scheme for estimating the mixed layer	
	height h _{mix} .	238
Table 7.6	Fit coefficients and depletion velocities of	
	primary and secondary pollutants for an	
	emission source located in the middle of	
	France.	260

XX	List of tables	
Table 7	7.7 Comparison of depletion velocities (cm/s) using different methods of estimation.	266
Table 7	List of depletion velocities, determined through	
	regression analysis of EcoSense concentrations.	267
Table 7	$S_{\rm sh}$ and $S_{\rm ct}$ coefficients for Eqs. (7.63) and (7.64).	277
Table 7	C.10 Country-averaged dilution rates DR (m^2/s) for	2 0 5
T.1.1. 7	ground-level urban sources.	285
Table /	.11 Ground-level dilution rates DR (m ⁻ /s) for select	206
Table 7	V 12 Country specific input data for PM and NH	280
	marginal damage cost calculations	203
Table 7	13 Mortality impacts of emissions in the	295
1 4010 7	Shandong Province of China: Comparison of	
	UWM calculations with EcoSense for China	
	results.	296
Table 7	7.14 Comparison of UWM and GAINS-China results	
	for the loss of life expectancy from 2005	
	anthropogenic emissions in China.	298
Table 7	Influence of power sector emissions (PM_{10}) on	
	urban air quality in Beijing, China.	300
Table 7	1.16 Intake fractions (in parts per million, ppm) for	
	elevated sources in the US and China.	302
Table 7	2.17 2010 EMEP source–receptor relationships	
	("blame matrices") for primary PM _{2.5}	
	emissions.	307
Table 7	1.18 PM _{2.5} concentration decrease (incl. aerosols) in	
	the EU-27 for 15% emission reduction in	
	emitter country, UWM versus 2010 EMEP	200
Table 7	10 Improvement in air quality in the emitter country	509
	for a 15% reduction of its own PM emissions	
	(emitter = receiver country), comparison I/WM	
	with 2010 EMEP source-receptor matrices	311
Table 8	Our estimates of the total worldwide lifetime	511
	impact and damage cost, and of the marginal	
	damage cost D of Hg emissions.	333
Table 8	Default annual consumption rates $\dot{Q}_{food i}$.	341
Table 8	Collective doses for central European conditions,	
	by exposure pathway as intake fraction in mg per	
	emitted kg.	347
Table 8	Ratio of total doses calculated by our model	
	(UWM) and by CalTOX.	349

List	of tables	xxi
Table 8.5	ERFs and impacts, per kg emitted, for the	
	carcinogenic metals.	351
Table 9.1	Social discount rates in practice.	360
Table 9.2	Schedule of standard discount rate of the Green	
	Book of the UK.	361
Table 9.3	Values of cost of noise, recommended for France.	370
Table 9.4	The number of responses for each of the patterns	
	in Fig. 9.1.	377
Table 9.5	Generic unit costs of hospital health care,	
	in € ₂₀₀₀ .	386
Table 9.6	Years of life lost (YOLL) per world-average	
	cancer death, for selected cancers.	390
Table 9.7	A small subset of QALY and DALY scores.	393
Table 9.8	International Life Sciences Institute classification	
	scheme for human health impact categories and	
	YOLL-equivalents per end point.	394
Table 9.9	Transfer approaches and their applicability	399
Table 9.10	Conversion of 1 $$_{2000}$ to ϵ_{2010} . The required data	
	are in part (a), the results in part (b).	401
Table 10.1	GWP values and lifetimes.	411
Table 10.2	Characteristics of the stabilization scenarios of	
	Fig. 10.10.	419
Table 10.3	Impact categories of climate change and key	
	difficulties encountered in the estimation of	
	their costs.	421
Table 10.4	Ratio of marginal utilities of the same monetary	
	value for the example of a person or country R	
	that is 10 times as rich as person or country P.	424
Table 10.5	Parameter values for ρ as assumed in several	
	widely employed integrated assessment models	
	of climate change.	429
Table 10.6	The country groupings in Fig. 10.16.	436
Table 10.7	GHG emission reductions required by the year	
	2050, for the stabilization scenarios I to IV of	
	Table 10.2 and Fig. 10.10.	436
Table 11.1	Examples of a combination of errors in a sum	
	$w = v_1 + v_2$ of two uncorrelated random variables	
	v_1 and v_2 , each with mean μ_i and relative error	
	$\sigma_i/\mu_i = 300\%.$	450
Table 11.2	Uncertainty of VPF.	466
Table 11.3	Uncertainty of damage cost estimates per kg of	
	pollutant for mortality.	468

List of tables	
1.4 Our estimates of the uncertainties of the marginal damage cost of Hg.	470
1.5 Assumptions for the uncertainties of the key input parameter for the calculation of the damage cost	
of cancers due to inhalation of As, Cd, Cr and Ni. 1.6 Assumptions for the uncertainties of cancers due	471
to dioxins.	473
to Pb.	473
1.8 Summary of geometric standard deviations σ_{g} for the damage costs.	474
1.9 Central values and ranges of the parameters p for the damage and abatement costs in the	
optimization problem of Rabl and van der Zwaan (2009).	486
2.1 Key assumptions for the calculations of ExternE.	498
2.2 Primary and secondary air pollutants for which EMEP provides concentrations or	
depositions.	500
2.3 Exposure-response function slopes and unit costs, assumed by ExternE (2008).	502
2.4 Epidemiology studies employed in NRC (2010).	510
2.5 Distribution of air pollution damages per ton of emissions from coal fired and gas fired plants, in	
p_{2007} /ton of pollutant.	511
2.6 Results for the total damage attributable to the criteria air pollutants emitted in 2002 in the	
USA, in \$billion/year.	512
2.7 Comparison of the APEEP results with those of USEPA (1999), for the benefit of the 1990	
amendments of the Clean Air Act in the year	512
3.1 Overview in matrix form of the stages and	512
burdens of the coal fuel chain and the major	
essentially subsets, except for upstream	
impacts).	522
nuclear fuel chain and the major impact	
categories.	523
time and space.	524
	 List of tables 1.4 Our estimates of the uncertainties of the marginal damage cost of Hg. 1.5 Assumptions for the uncertainties of the key input parameter for the calculation of As, Cd, Cr and Ni. 1.6 Assumptions for the uncertainties of cancers due to inhalation of As, Cd, Cr and Ni. 1.7 Assumptions for the uncertainties of IQ loss due to Pb. 1.8 Summary of geometric standard deviations σg for the damage costs. 1.9 Central values and ranges of the parameters p for the damage and abatement costs in the optimization problem of Rabl and van der Zwaan (2009). 2.1 Key assumptions for the calculations of ExternE. 2.2 Primary and secondary air pollutants for which EMEP provides concentrations or depositions. 2.3 Exposure-response function slopes and unit costs, assumed by ExternE (2008). 2.4 Epidemiology studies employed in NRC (2010). 2.5 Distribution of air pollution damages per ton of emissions from coal fired and gas fired plants, in \$2007/ton of pollutant. 2.6 Results for the total damage attributable to the criteria air pollutants emitted in 2002 in the USA, in \$billion/year. 2.7 Comparison of the APEEP results with those of USEPA (1999), for the benefit of the 1990 amendments of the Clean Air Act in the year 2000. 3.1 Overview in matrix form of the stages and burdens of the coal fuel chain and the major impact categories (oil and gas cycles are essentially subsets, except for upstream impacts). 3.2 Overview in matrix form of the stages of the nuclear fuel chain and the major impact categories.

List of tables		xxiii
Table 13.4	Summary of severe accidents with at least five immediate fatalities that occurred in fossil,	
	hydro and nuclear energy chains in the period 1970–2005.	530
Table 13.5	Average selling price of electricity in the USA and in France, for industrial and for residential	
Table 13.6	consumers. Emissions and damage costs for coal and gas	536
Table 13.7	power plants. Total public dose for the French nuclear fuel	540
Table 13.8	chain in routine operation, person Sv/TWh. Nuclear fuel chain impacts by time, space	543
Table 13.9	and impact category at 0% discount rate.	545
T-1-12 10	nuclear power.	549
	the EU, in g/kWh_e .	551
Table 13.11	Emission (to air) and damage cost of toxic metals from coal fired power plants.	553
Table 13.12	The calculations of Rabl and Rabl (2013) for the damage costs of producing base load	
	power by wind turbines with natural gas combined cycle (NGCC) plants as cleanest	
Table 14.1	fossil backup.	555
	landfill of MSW.	563
1 able 14.2	of MSW.	564
Table 14.3	Concentrations in leachate and drinking water under the extreme scenario where untreated	
	leachate is used for water supply.	569
Table 14.4	Assumptions for energy recovery.	572
Table 14.5	Assumptions for recovery rates and avoided	
	damage costs for materials recovery from	572
Table 14 6	Comparison of incinerator emissions and damage	512
10010 11.0	costs for limit values and actual emissions in	
Table 15.1	The EURO standards for emission limits of	573
	passenger cars, in g/km.	582
Table 15.2	Damage costs for ground level emissions, in $ \in_{2008}/\text{kg.} $	585

Cambridge University Press & Assessment
978-1-107-04313-8 — How Much Is Clean Air Worth?
Ari Rabl , Joseph V. Spadaro , Mike Holland
Frontmatter
More Information

xxiv List of tables

Table 15.3	Average damage costs (excluding congestion) of	
	passenger transport in the $EU27$, in $\epsilon cent_{2008}$	500
m 11 <i>i e i</i>	pkm.	590
Table 15.4	Average damage costs (excluding congestion) of	
	freight transport in the EU27, in €cent ₂₀₀₈ /tkm.	591
Table 15.5	Results for damage costs of light-duty vehicles in	
	the USA due to classical air pollutants.	592
Table 15.6	Results for damage costs of light-duty vehicles in	
	the USA due to GHG.	593
Table 15.7	Marginal damage costs in € per kg of pollutant,	
	assumed by Spadaro and Rabl ([2006) for the	
	comparison of HEV and conventional cars.	596
Table 15.8	Vehicle data, fuel consumption and tailpipe	
	emissions.	599
Table 15.9	Key assumptions for analysis of active transport.	606
Table 15 10	Passenger car emissions for urban driving, as	
10010 15110	calculated by COPERT 4	610
Table 15 11	Results for the damage cost in \neq_{0000}/kg (columns	010
14010 19:11	2 to 4) of PM ₂ - emitted by cars in 7 countries of	
	the EU as calculated by ExternE (2000)	613
Table 15.12	Calculations and results for mortality impacts of a	015
14010 19.12	switch from car to bicycle	615
Table 15 12	Greenhouse are organized as of different travel	015
Table 15.15	Greenhouse gas emissions of unterent travel	
	LIDASTO	(10
T-11-01	LIPASTO.	619
Table C.1	Equations and input data for concentrations in	(50
T 11 0 0		658
Table C.2	Equations and input data for concentrations in	
	water.	660
Table C.3	Equations and input data for concentrations in	
	vegetation.	661
Table C.4	Equations and input data for concentrations in	
	meat, milk and fish.	663
Table C.5	Sensitivity of intake fractions to changes of input	
	parameters.	664

Foreword

In the Western world, it has been a long journey to achieve the current ecological and social transition. The US National Environmental Policy Act of 1969 and the European Community Environmental Action Programme of 1973 opened the way to establishing cost–benefit analysis and, later, the polluter-pays principle. The 1981 US Presidential Executive Order 12191 required Impact Assessment studies to be carried out for all major policies presented by the Federal Government, while the 1986 Single European Act stipulated that, when developing environmental policies, the European Community will take account of available scientific and technical data, and of benefits and costs of actions and lack of action.

Within this context, at the end of the eighties, the EU and USA (European Commission's DG XII – Science and Research and US Department of Energy) launched a fruitful collaboration on a joint study on fuel cycle cost that gave birth to the so-called ExternE – Externalities of Energy – project series, funded since then and with different names by the European Commission through its successive Research Framework Programmes.

Among the pioneer actors of this interdisciplinary research work, one can mention David Pearce, Ari Rabl, Anil Markandya, Olav Hohmeyer, Robert Shelton, Russell Lee, Alan Krupnick, Nick Eyre and Richard Ottinger. More recently, key researchers in the field of external costs quantification, tackling the issues of energy, environment and transport have been Mike Holland, Jacquie Berry, Rainer Friedrich, Andrea Ricci, Joseph V. Spadaro, Stale Navrud, Stefan Hirschberg and Milan Scasny.

The concept of external costs entered the European political jargon with the 1993 Jacques Delors White Paper on growth, competitiveness and employment, which stated that "energy can no longer be seen as an unlimited resource, particularly if the external costs associated with climate change, acidification and health are not taken into account (...). The way the Community uses its labour and environmental resources highlights some fundamental weaknesses in the incentive structure of the

xxv