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Foundations

1.1 Rudiments on normed algebras

Introduction In this section we develop the basic theory of normed algebras,
putting special emphasis on the case of complete normed unital associative complex
algebras. Non-associative normed algebras are considered only when they do not
offer special difficulties, or when the difficulties can be overcome in an elementary
way. Thus, this section is mainly devoted to attracting the attention of the non-
expert reader, although the expert reader should browse through it in order to become
familiar with the definitions and symbols introduced here, which need to be kept in
mind throughout the whole book.

Subsection 1.1.1 deals with the basic spectral theory, and culminates with the proof
in Theorem 1.1.46 of the celebrated Gelfand–Beurling formula. In Subsection 1.1.2,
we prove Rickart’s dense-range-homomorphism theorem. Subsection 1.1.3 deals
with the Gelfand theory for complete normed unital associative and commutative
complex algebras, as stated in Theorem 1.1.73, and some applications are discussed.
In Subsection 1.1.4, we introduce topological divisors of zero in a normed algebra,
and involve this notion to prove in Corollary 1.1.95 that (bounded linear) operators
on a Banach space are neither bounded below nor surjective whenever they lie in
the boundary of the set of all bijective operators. Subsections 1.1.5 and 1.1.6 discuss
the complexification, the unital extension, and the completion of a normed algebra.
These tools allow us to show how many results, proved originally for complete
normed unital associative complex algebras, remain true (sometimes in a suitably
altered form) for general normed associative algebras. This section, and throughout,
concludes with a subsection of historical notes and comments.

1.1.1 Basic spectral theory

Throughout this work, K will stand for the field of real or complex numbers. Given
vector spaces X ,Y over K, we denote by L(X ,Y ) the vector space over K of all linear
mappings from X to Y , and we set L(X) := L(X ,X).

By an algebra over K we mean a vector space A over K endowed with a bilinear
mapping (a,b)→ ab from A×A to A, which is called the product or the multiplic-
ation of A. An algebra is said to be associative (respectively, commutative) if its
product is associative (respectively, commutative). An element e of an algebra A is
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2 Foundations

said to be a unit for A if ea = ae = a for every a ∈ A. Clearly, an algebra has at
most a unit. The algebra A is said to be unital if it has a nonzero unit (equivalently,
if A has a unit and A 	= 0). The unit of a given unital algebra will be denoted by
1 unless otherwise stated. Given subsets B,C of an algebra A, we set

BC := {xy : (x,y) ∈ B×C}.

Exceptionally, but never in Chapter 1, we will consider algebras over an arbitrary
field F. These are defined as above with F instead of K.

Example 1.1.1 (a) Let E be a non-empty set. Then the set FK(E) (of all functions
from E to K), with operations defined pointwise, becomes a unital associative and
commutative algebra over K.

(b) Let X be a nonzero vector space over K. Then the vector space L(X), with the
product defined as the composition of mappings, becomes a unital associative algebra
over K. It is easily realized that L(X) is commutative if and only if dim(X) = 1. We
denote by IX the unit of L(X), namely the identity mapping on X .

(c) By a subalgebra of an algebra A over K we mean a (vector) subspace (say B)
of A such that BB ⊆ B. In this way, subalgebras of algebras become new examples of
algebras.

Let A and B be algebras over K. By an algebra homomorphism from A to B we
mean a linear mapping F : A → B satisfying F(xy) = F(x)F(y) for all x,y ∈ A.
We say that A and B are (algebra) isomorphic if there exists a bijective algebra
homomorphism from A to B.

Exercise 1.1.2 Prove that every one-dimensional algebra over K with nonzero
product is isomorphic to K.

A norm ‖ · ‖ on (the vector space of) an algebra A over K is said to be an algebra
norm if the inequality ‖ab‖ � ‖a‖‖b‖ holds for all a,b ∈ A. By a normed algebra
we mean an algebra A over K endowed with an algebra norm. A normed algebra
A is said to be complete if it becomes a complete metric space under the distance
d(a,b) := ‖a−b‖, i.e. if the normed space underlying A is a Banach space.

§1.1.3 It is clear that the product of any normed algebra is continuous. Actually,
the axiom ‖ab‖ � ‖a‖‖b‖ of normed algebras does not give much more. Indeed, if
||| · ||| is a norm on an algebra A over K making the product of A continuous (say
|||ab||| � M|||a||||||b||| for all a,b ∈ A and some positive number M), then by setting
‖ · ‖ := M||| · |||, we are provided with an equivalent norm on A converting A into a
normed algebra.

Given a normed space X over K, we denote by

BX := {x ∈ X : ‖x‖� 1}

the closed unit ball of X , by

SX := {x ∈ X : ‖x‖= 1}

the unit sphere of X , and by X ′ the (topological) dual of X . When necessary, every
normed space X will be seen as a subspace of its bidual X ′′. Given normed spaces
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1.1 Rudiments on normed algebras 3

X ,Y over K, we denote by BL(X ,Y ) the normed space over K of all bounded linear
mappings from X to Y , and we set BL(X) := BL(X ,X).

Example 1.1.4 (a) Let E be a locally compact Hausdorff topological space. Then
the subalgebra CK

0 (E) of FK(E) (consisting of all K-valued continuous functions on
E vanishing at infinity), endowed with the norm

‖x‖ := max{|x(t)| : t ∈ E},

becomes a complete normed associative and commutative algebra over K. This alge-
bra is unital if and only if E is compact. When this is the case, we also write CK(E)
instead of CK

0 (E). We note that, by taking E equal to N endowed with the discrete
topology, we obtain that the real or complex Banach space c0 (of all null sequences
in K) naturally becomes a complete normed associative and commutative algebra
over K.

(b) Let X be a nonzero normed space over K. Then BL(X) is a subalgebra of
L(X), and, endowed with the operator norm

‖F‖ := sup{‖F(x)‖ : x ∈ BX},

becomes a normed unital associative algebra over K. Moreover, the normed algebra
BL(X) is complete if and only if X is a Banach space. Involving the Hahn–Banach
theorem, it is easily realized that BL(X) is commutative if and only if dim(X) = 1.

(c) By restricting the norm, any subalgebra of a normed algebra will be seen
without notice as a new normed algebra.

(d) Let E be a topological space, and let A be a normed algebra over K. Then, by
the continuity of the product of A, the vector space C(E,A) of all continuous func-
tions from E to A becomes an algebra over K under the product defined pointwise.
The subalgebra Cb(E,A) of C(E,A), consisting of all bounded continuous functions
from E to A, becomes a normed algebra over K under the sup norm.

§1.1.5 An element e of an algebra is said to be an idempotent if e2 = e. If e is a
nonzero idempotent in a normed algebra, then we clearly have ‖e‖� 1. In particular,
the unit 1 of a normed unital algebra satisfies ‖1‖� 1. Moreover, no more can be said.
Indeed, if M is any real number with M � 1, and if for λ ∈ K we set ‖λ‖ := M|λ |,
where | · | stands for the usual module on K, then ‖ · ‖ becomes an algebra norm on
K satisfying ‖1‖= M.

Fact 1.1.6 Let E be a connected topological space, let A be a normed algebra over
K, let t0 be in E, and let B stand for the subalgebra of C(E,A) consisting of those
continuous functions from E to A vanishing at t0. Then B has no nonzero idempotent.

Proof Assume to the contrary that there is a nonzero idempotent e ∈ B. Then e(t)
is an idempotent in A for every t ∈ E, and e(t) is nonzero for some t ∈ E. Therefore,
since e(t0) = 0, the continuous mapping t → ‖e(t)‖ from E to R would have a
disconnected range (cf. §1.1.5 above), contradicting the connectedness of E.

As an application of §1.1.3, we have the following.

Proposition 1.1.7 Let A be a finite-dimensional algebra over K. Then A can be
provided with an algebra norm.
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4 Foundations

Proof Let {u1, . . . ,un} be a basis of A. Then, for j,k = 1, . . . ,n, we have u juk =

∑n
i=1ρ

jk
i ui, for suitable ρ jk

1 , . . . ,ρ jk
n ∈K. Now, for a=∑n

i=1λiui, set |||a||| :=∑n
i=1 |λi|.

Then, for a as above and b = ∑n
i=1 μiui, we have

ab = ∑n
i=1 τiui, with τi := ∑n

j,k=1λ jμkρ
jk

i ,

and hence

|||ab|||=
n

∑
i=1

|τi|� M
n

∑
j,k=1

|λ j||μk|= M|||a||||||b|||,

where M := nmax{|ρ jk
i | : i, j,k = 1, . . . ,n} does not depend on the couple (a,b).

Finally, apply §1.1.3.

Lemma 1.1.8 Let X be a Banach space over K, let Y,Z be normed spaces over
K, and let f : X ×Y → Z be a separately continuous bilinear mapping. Then f is
(jointly) continuous.

Proof For u ∈ X (respectively, v ∈ Y ), let us denote by fu (respectively, fv) the
bounded linear mapping from Y to Z (respectively, from X to Z) defined by fu(y) :=
f (u,y) for every y ∈ Y (respectively, fv(x) := f (x,v) for every x ∈ X). Then F :=
{ fv : v ∈ BY} is a pointwise bounded family of bounded linear mappings from the
Banach space X to the normed space Z. Indeed, for each x ∈ X and every v ∈ BY

we have

‖ fv(x)‖= ‖ f (x,v)‖= ‖ fx(v)‖� ‖ fx‖.

It follows from the uniform boundedness principle that F is uniformly bounded on
BX . This implies the existence of a positive number M satisfying

‖ f (x,y)‖� M‖x‖‖y‖ for every (x,y) ∈ X ×Y .

By combining §1.1.3 and Lemma 1.1.8, we obtain the following.

Proposition 1.1.9 Let A be an algebra over K endowed with a complete norm ‖ · ‖
making the product of A separately continuous. Then, up to the multiplication of ‖ ·‖
by a suitable positive number, A becomes a complete normed algebra.

Definition 1.1.10 Let A be an algebra over K. The annihilator, Ann(A), of A is
defined by

Ann(A) := {a ∈ A : aA = Aa = 0}.

By a centralizer on A we mean a linear mapping (say f ) from A to A satisfying
f (ab) = f (a)b = a f (b) for all a,b ∈ A. The set ΓA of all centralizers on A is a
subalgebra of L(A) containing IA. This subalgebra is called the centroid of A. The
algebra A is said to be central over K whenever ΓA =KIA.

The next proposition contains an easy ‘automatic continuity theorem’.

Proposition 1.1.11 Let A be an algebra over K with Ann(A) = 0. We have:

(i) ΓA is a commutative algebra.
(ii) If A is complete normed, then ΓA ⊆ BL(A).
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1.1 Rudiments on normed algebras 5

Proof Given f ,g ∈ ΓA and a,b ∈ A, we see that

( f ◦g)(a)b = f (g(a))b = g(a) f (b) = g(a f (b))

= g( f (a)b) = g( f (a))b = (g◦ f )(a)b

and

b( f ◦g)(a) = b f (g(a)) = f (b)g(a) = g( f (b)a)

= g(b f (a)) = bg( f (a)) = b(g◦ f )(a).

It follows from the arbitrariness of b in A that ( f ◦g−g◦ f )(a) belongs to Ann(A).
Therefore ( f ◦ g− g ◦ f )(a) = 0. Now, since a is arbitrary in A, we conclude that
f ◦g = g◦ f . Thus ΓA is a commutative algebra.

Assume that A is complete normed. Let f be in ΓA, and let an be a sequence in A
with an → 0 and f (an)→ b ∈ A. Then, for every a ∈ A we have

0 ← f (a)an = a f (an)→ ab and 0 ← an f (a) = f (an)a → ba,

hence ab = ba = 0. Since a is arbitrary in A, and A has zero annihilator, we get that
b = 0. Thus the continuity of f follows from the closed graph theorem.

Let A be a unital associative algebra. An element x ∈ A is said to be invertible in A
if there exists y ∈ A such that xy = yx = 1. If x is invertible, then the element y above
is unique, is called the inverse of x, and is denoted by x−1. We denote by Inv(A) the
set of all invertible elements of A.

Example 1.1.12 (a) Let E be a non-empty set, let FK(E) be as in Example 1.1.1(a),
and let x be in FK(E). Then x ∈ Inv(FK(E)) if and only if x(t) 	= 0 for every t ∈ E.

(b) Let X be a nonzero vector space over K, and let F be in L(X). Then F ∈
Inv(L(X)) if and only if F is bijective.

(c) Let E be a compact Hausdorff topological space, let CK(E) be as in Ex-
ample 1.1.4(a), and let x be in CK(E). Then x ∈ Inv(CK(E)) if and only if x(t) 	= 0
for every t ∈ E. Therefore x ∈ Inv(CK(E)) if and only if x ∈ Inv(FK(E)).

(d) Let X be a nonzero normed space over K, and let F be in BL(X). Then F ∈
Inv(BL(X)) if and only if F is bijective and F−1 is continuous. Therefore, in the
case that X is in fact a Banach space, the Banach isomorphism theorem gives that
F ∈ Inv(BL(X)) if and only if F is bijective, and hence F ∈ Inv(BL(X)) if and only
if F ∈ Inv(L(X)).

Lemma 1.1.13 Let A be a normed unital associative algebra over K, and let a and
b be in Inv(A). Then we have:

(i) ‖a−1 −b−1‖� ‖a−1‖‖b−1‖‖a−b‖.

(ii)
∣∣∣ 1
‖a−1‖ −

1
‖b−1‖

∣∣∣� ‖a−b‖.

(iii) If ‖a−b‖< 1
‖a−1‖ , then ‖b−1‖� ‖a−1‖

1−‖a−1‖‖a−b‖ .

Proof We have

‖a−1 −b−1‖= ‖a−1(b−a)b−1‖� ‖a−1‖‖b−1‖‖a−b‖,

which proves assertion (i). Now, keeping in mind that

‖b−1‖−‖a−1‖� ‖a−1 −b−1‖,
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6 Foundations

it follows from assertion (i) that

1
‖a−1‖ − 1

‖b−1‖ � ‖a−b‖. (1.1.1)

The proof of assertion (ii) is concluded by combining the inequality (1.1.1) with the
one obtained by interchanging the roles of a and b. On the other hand, it follows from
the inequality (1.1.1) that

1−‖a−1‖‖a−b‖
‖a−1‖ =

1
‖a−1‖ −‖a−b‖� 1

‖b−1‖ . (1.1.2)

Since the condition ‖a− b‖ < 1
‖a−1‖ leads to 1−‖a−1‖‖a− b‖ > 0, assertion (iii)

follows from (1.1.2).

Corollary 1.1.14 Let A be a normed unital associative algebra over K, let a be in
A, and let z be in K such that a− z1 ∈ Inv(A) and |z|> ‖1‖‖a‖. Then

‖(a− z1)−1‖� ‖1‖
|z|−‖1‖‖a‖ .

Proof We have ‖− z1− (a− z1)‖= ‖a‖< 1
‖(z1)−1‖ , and hence, by Lemma

1.1.13(iii),

‖(a− z1)−1‖� ‖(z1)−1‖
1−‖(z1)−1‖‖a‖ =

‖1‖
|z|−‖1‖‖a‖ .

Let A be a unital associative algebra over K. It is straightforward that ab and a−1

belong to Inv(A) whenever a,b are in Inv(A). As a consequence, the set Inv(A) is a
group with respect to the product of A. We recall that a topological group is a group
G endowed with a topology making the mappings (x,y)→ xy from G×G to G, and
x → x−1 from G to G, continuous.

Proposition 1.1.15 Let A be a normed unital associative algebra over K. Then
Inv(A) is a topological group in the induced topology from A.

Proof Keeping in mind the continuity of the product of A, it only remains to verify
the continuity of the mapping x → x−1 from Inv(A) to A. By Lemma 1.1.13(ii), the
mapping x → 1

‖x−1‖ from Inv(A) to R is continuous, and hence so is the mapping

x →‖x−1‖. Now, the proof concludes by invoking Lemma 1.1.13(i).

§1.1.16 Let A be a normed associative algebra over K, and let a be in A. We define
powers of a by a1 := a and an+1 := aan. It is easily realized that an+m = anam for all
n,m ∈ N. Now assume that A is normed. Then we define the spectral radius r(a) of
a by

r(a) := inf
{
‖an‖ 1

n : n ∈ N
}
.

Obviously, r(a) � ‖a‖ and r(λa) = |λ |r(a) for λ ∈ K. It is also clear that, as the
infimum of a family of continuous functions, r(·) becomes an upper semicontinuous
function on A.
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1.1 Rudiments on normed algebras 7

Lemma 1.1.17 Let αn be a sequence of non-negative real numbers satisfying

αn+m � αnαm for all n,m ∈ N.

Then the limit limα
1
n

n exists and is equal to inf{α
1
n

n : n ∈ N}.

Proof Write α = inf{α
1
n

n : n ∈ N} and let ε > 0. Fix k such that α
1
k

k < α+ ε . Any
natural number n � k can be written uniquely in the form n = q(n)k+ r(n), where
q(n) ∈ N and 0 � r(n)� k−1, and hence, setting α0 equal to 1, we obtain

αn � αr(n)α
q(n)
k � max{1,α1,α2, . . . ,αk−1}(α+ ε)q(n)k.

Since r(n)
n → 0, we have q(n)k

n → 1 as n → ∞, and hence

α
1
n

n � max{1,α1,α2, . . . ,αk−1}
1
n (α+ ε)

q(n)k
n → α+ ε

as n →∞. Thus limsupα
1
n

n � α+ε and, since ε was arbitrary and α � α
1
n

n for every

n, we conclude that limα
1
n

n = α .

Corollary 1.1.18 Let A be a normed associative algebra over K, and let a be in A.
We have:

(i) r(a) = lim‖an‖ 1
n .

(ii) If r(a)< 1, then the sequence an converges to zero.

Proof Assertion (i) follows from Lemma 1.1.17 above and the fact that

‖an+m‖� ‖an‖‖am‖ for all n,m ∈ N.

Assume that r(a)< 1. Choose r(a)< η < 1. By assertion (i), we have ‖an‖ 1
n < η

for n ∈ N large enough, and hence ‖an‖ < ηn → 0. Thus assertion (ii) has been
proved.

Corollary 1.1.19 Let A and B be normed associative algebras over K, let F : A→B
be a continuous algebra homomorphism, and let a be in A. Then r(F(a))� r(a). As
a consequence, every equivalent algebra norm on A gives rise to the same spectral
radius on A.

Proof For n ∈ N, we have

‖F(a)n‖= ‖F(an)‖� ‖F‖‖an‖.

Therefore, by taking nth roots, and letting n → ∞, Corollary 1.1.18(i) gives
r(F(a))� r(a).

Lemma 1.1.20 (von Neumann) Let A be a complete normed unital associative
algebra over K, and let a be in A with r(a)< 1. Then 1−a ∈ Inv(A) and

(1−a)−1 =
∞

∑
n=0

an,

where a0 := 1.
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8 Foundations

Proof Choose η with r(a) < η < 1. By Corollary 1.1.18(i), we have ‖an‖ � ηn

for n large enough, and therefore the series ∑‖an‖ converges. It follows from the
completeness of A that the series ∑an is convergent in A. Since for each n we have

(1−a)(1+a+ · · ·+an) = (1+a+ · · ·+an)(1−a) = 1−an+1,

it follows that

(1−a)

(
∞

∑
n=0

an

)
=

(
∞

∑
n=0

an

)
(1−a) = 1.

Thus 1−a is an invertible element of A, and its inverse is
∞

∑
n=0

an .

Corollary 1.1.21 Let A be a complete normed unital associative algebra over K.
We have:

(i) If a ∈ A satisfies ‖1−a‖< 1, then a ∈ Inv(A).

(ii) If a ∈ Inv(A), and if b ∈ A satisfies ‖a−b‖< 1
‖a−1‖ , then b ∈ Inv(A).

Proof Assertion (i) follows by writing a = 1− (1− a) and by applying Lemma
1.1.20. Given a ∈ Inv(A) and b ∈ A such that ‖a−b‖< 1

‖a−1‖ , we see that

‖1−a−1b‖= ‖a−1(a−b)‖� ‖a−1‖‖a−b‖< 1.

Therefore, by assertion (i), a−1b ∈ Inv(A), and so b = a(a−1b) ∈ Inv(A).

Lemma 1.1.22 Let A be a unital associative algebra over K, and let x and y be in
Inv(A). Then

x−1 − y−1 − y−1(y− x)y−1 = y−1(y− x)x−1(y− x)y−1.

Proof We have

x−1 − y−1 − y−1(y− x)y−1 = x−1(y− x)y−1 − y−1(y− x)y−1

= (x−1 − y−1)(y− x)y−1

= y−1(y− x)x−1(y− x)y−1.

Let X ,Y be normed spaces over K, let Ω be a non-empty open subset of X , let
x0 be in Ω, and let f : Ω→ Y be a function. We recall that f is said to be (Fréchet)
differentiable at x0 if there exists T ∈ BL(X ,Y ) such that

lim
x→x0

x∈Ω\{x0}

‖ f (x)− f (x0)−T (x− x0)‖
‖x− x0‖

= 0.

In this case, the operator T is unique, and is called the (Fréchet) derivative of f at x0.
When X =K, the natural identification BL(K,Y )≡ Y allows us to see the derivative
of f at x0 as the element f ′(x0) ∈ Y given by

f ′(x0) := lim
x→x0

x∈Ω\{x0}

f (x)− f (x0)

x− x0
.
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1.1 Rudiments on normed algebras 9

Theorem 1.1.23 Let A be a complete normed unital associative algebra over K.
Then Inv(A) is open in A. Moreover, the mapping x → x−1 from Inv(A) to A
is differentiable at any point a ∈ Inv(A), with derivative equal to the mapping
x →−a−1xa−1 from A to A.

Proof The first conclusion follows from Corollary 1.1.21(ii). Let us fix a ∈ Inv(A).
Then, by Lemma 1.1.22, for each x ∈ Inv(A) we have

x−1 −a−1 − [−a−1(x−a)a−1] = a−1(x−a)x−1(x−a)a−1,

and hence

‖x−1 −a−1 − [−a−1(x−a)a−1]‖� ‖a−1‖2 ‖x−1‖‖x−a‖2.

Since the mapping x →‖x−1‖ is continuous (by Lemma 1.1.13(ii)), we derive

lim
x→a

x∈Inv(A)\{a}

‖x−1 −a−1 − [−a−1(x−a)a−1]‖
‖x−a‖ = 0.

Therefore, the mapping x → x−1 is differentiable at a with derivative the mapping
T ∈ BL(A) given by T (x) =−a−1xa−1.

§1.1.24 Let A be an algebra over K, and let S be a non-empty subset of A. Since the
intersection of any family of subalgebras of A is again a subalgebra of A, it follows
that the intersection of all subalgebras of A containing S is the smallest subalgebra
of A containing S. This subalgebra is called the subalgebra of A generated by S, and
is denoted by A(S).

Exercise 1.1.25 Let A be a unital algebra over K, and let S be a non-empty subset
of A. Prove that A(S∪{1}) =K1+A(S).

Now, let A be a normed algebra, and let S be a non-empty subset of A. Since the
intersection of any family of closed subalgebras of A is again a closed subalgebra of
A, it follows that the intersection of all closed subalgebras of A containing S is the
smallest closed subalgebra of A containing S. This subalgebra is called the closed
subalgebra of A generated by S, and is denoted by Ā(S).

Exercise 1.1.26 Let A be a normed algebra over K, and let S be a non-empty subset
of A. Prove that:

(i) If S is a subalgebra of A, then so is S̄.

(ii) Ā(S) = A(S).

(iii) If A is unital, then Ā(S∪{1}) =K1+ Ā(S).

§1.1.27 As usual, we denote by K[x] the algebra of all polynomials in the inde-
terminate x with coefficients in K. Let A be a unital associative algebra over K, and
let a ∈ A. Given a polynomial p(x) =∑n

k=0αkxk with coefficients αk ∈K, we denote
by p(a) the element of A given by p(a) = ∑n

k=0αkak. It is clear that the mapping
p → p(a) is a unit-preserving algebra homomorphism from K[x] onto the subalgebra
of A generated by 1 and a.
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10 Foundations

If A is a unital associative algebra and if B is a subalgebra of A containing the
unit of A, then it is clear that Inv(B)⊆ B∩ Inv(A). The next example shows that the
reverse inclusion may not, in general, be true, even in a complete normed context.

Example 1.1.28 Consider the complete normed unital associative and commutative
algebra CC(T), where T= {z ∈C : |z|= 1}. Let u be the element of CC(T) given by
u(z) = z for every z ∈T. It is clear that u is invertible in CC(T) and that the inverse of
u is the function defined by u−1(z) = 1

z for every z∈T. Let B (respectively, C) denote
the subalgebra (respectively, closed subalgebra) of CC(T) generated by {1,u}. Note
that B is nothing other than the subalgebra of CC(T) consisting of all complex poly-
nomial functions, and that C = B̄ because of Exercise 1.1.26(ii). If u were invertible
in C, then we would have u−1 ∈ C, and therefore there would be a polynomial
function p satisfying ‖u−1 − p‖< 1. Thus, for z ∈ T we would have | 1

z − p(z)|< 1,
and hence |1− zp(z)|< 1. Then, by the maximum modulus principle, the inequality
|1− zp(z)|< 1 would be true for every z ∈ BC, and in particular 1 = |1−0p(0)|< 1.
This contradiction shows that u is not invertible in C.

§1.1.29 Given an element a in a complete normed unital associative algebra A,
exp(a) is defined as the element of A given by

exp(a) :=
∞

∑
n=0

an

n!
,

where a0 := 1.

Exercise 1.1.30 Let a and b be commuting elements of a complete normed unital
associative algebra A. Prove that

exp(a+b) = exp(a)exp(b), exp(a) ∈ Inv(A), and exp(a)−1 = exp(−a).

Let A be a unital associative algebra over K. By a one-parameter semigroup in A
we mean a mapping S : R+

0 → A satisfying

(i) S(0) = 1.
(ii) S(t1 + t2) = S(t1)S(t2) for all t1, t2 ∈ R+

0 .

If A is complete normed, and if a is any element of A, then it is clear that the
mapping S :R+

0 →A defined by S(t) := exp(ta) becomes a continuous one-parameter
semigroup in A. Conversely, we have the following.

Theorem 1.1.31 Let A be a complete normed unital associative algebra over K,
and let S : R+

0 → A be a continuous one-parameter semigroup in A. Then there exists
an element a in A such that S(t) = exp(ta) for every t ∈ R+

0 . Moreover, this element
is given by the formula

a = lim
t→0

S(t)−1
t

.

Proof Since S is continuous, the integral
∫ β
α S(t)dt exists for all α,β ∈ R+

0 and is
an element of A. Further, by the fundamental theorem of calculus, we have

lim
β→α

1
β −α

∫ β

α
S(t)dt = S(α)
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