
Part I

Secure Multiparty Computation

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-04305-3 - Secure Multiparty Computation and Secret Sharing
Ronald Cramer, Ivan Bjerre Damgård and Jesper Buus Nielsen
Excerpt
More information

http://www.cambridge.org/9781107043053
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-04305-3 - Secure Multiparty Computation and Secret Sharing
Ronald Cramer, Ivan Bjerre Damgård and Jesper Buus Nielsen
Excerpt
More information

http://www.cambridge.org/9781107043053
http://www.cambridge.org
http://www.cambridge.org


1

Introduction

1.1 Private Information, Uses and Misuses

In a modern information-driven society, the everyday life of individuals and companies is
full of cases where various kinds of private information are important resources. While a
cryptographer might think of PIN codes and keys in this context, these types of secrets
are not our main concern here. Rather, we will talk about information that is closer to the
primary business of an individual or a company. For a private person, this may be data
concerning his or her economic situation, such as income, loans, and tax data, or information
about his or her health, such as diseases and medicine usage. For a company, it might be the
customer database or information on how the business is running, such as turnover, profits,
and salaries.

What is a viable strategy for handling private information? Finding a good answer to
this question has become more complicated in recent years. When computers were in their
infancy, in the 1950s and 1960s, electronic information security was to a large extent a
military business. A military organization is quite special in that confidential information
needs to be communicated almost exclusively between its own members, and the primary
security goal is to protect this communication from being leaked to external enemies. While
it may not be trivial to reach this goal, at least the overall purpose is simple to state and
understand.

In modern society, things get much more complicated: using electronic media, we need
to interact and do business with a large number of parties, some of whom we have never met
and many of whom may have interests that conflict with ours. So how do you handle your
confidential data if you cannot be sure that the parties you interact with are trustworthy?

One could save the sensitive data in a very secure location and never access it, but this
is, of course, unreasonable. Our private data usually have value only because we want to
use them for something. In other words, we have to have ways of controlling leakage of
confidential data while these data are being stored, communicated, or computed on, even
in cases where the owner of the data does not trust the parties he or she communicates
with.

A very interesting fact that makes this problem even more important is that there are many
scenarios in which a large amount of added value can be obtained by combining confidential
information from several sources and from this computing some result that holds an interest
for all parties. To illustrate what we mean by this, we look at a number of different example
scenarios in the following subsections.

3

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-04305-3 - Secure Multiparty Computation and Secret Sharing
Ronald Cramer, Ivan Bjerre Damgård and Jesper Buus Nielsen
Excerpt
More information

http://www.cambridge.org/9781107043053
http://www.cambridge.org
http://www.cambridge.org


4 Introduction

1.1.1 Auctions

Auctions exist in many variants and are used for all kinds of purposes, but we concentrate
here on the simple variant where some item is for sale and the highest bid wins. We assume
that the auction is conducted in the usual way, where the price starts at some preset amount
and people place increasing bids until no one wants to bid more than the currently highest
bid. When you enter such an auction, you usually have some (more or less precisely defined)
idea of the maximum amount you are willing to pay and therefore when you will stop
bidding. However, every bidder, of course, wants to pay as small a price as possible for
the item. Indeed, the winner of the auction may hope to pay less than his or her maximum
amount. This will happen if all other bidders stop participating long before the current bid
reaches this maximum.

For such an auction to work in a fair way, it is obvious that the maximum amount you are
willing to pay should be kept private. For instance, if the auctioneer knows your maximum
and is working with another bidder, they can force the price to be always just below your
maximum and so force you to pay more than if the auction had been honest. Note that the
auctioneer has an incentive to do this to increase his or her own income, which is often a
percentage of the price the item is sold for. However, the result of the auction could, in
principle, be computed if one were given as input the true maximum value each bidder
assigns to the item on sale.

1.1.2 Procurement

A procurement system is a sort of inverted auction, where some party (typically a public
institution) asks companies to bid for a contract, that is, to make an offer on the price
for doing a certain job. In such a case, the lowest bid usually wins. However, bidders are
typically interested in getting as high a price as possible.

It is obvious that bids are private information: a participating company is clearly not
interested in competitors learning its bid before it has to make its own bid. This would
allow the competitors to beat the company’s bid by always offering a price that is slightly
lower than that offered by the company. This is also against the interests of the institution
offering the contract because it will tend to make the winning bid higher. The result of the
process, namely, who wins the contract, can, in principle, be computed given all the true
values of the bids.

1.1.3 Benchmarking

Assume that you run a company. You will naturally be interested in how well you are doing
compared with other companies in the same line of business as yours. The comparison may
be concerned with a number of different parameters, such as profit relative to size, average
salaries, and productivity. Other companies will most likely have similar interests in such
a comparison, which is known as a benchmark analysis. Such an analysis takes input from
all participating companies. Based on this, it tries to compute information on how well a
company in the given line of business should be able to perform, and each company is told
how its performance compares with this “ideal.”

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-04305-3 - Secure Multiparty Computation and Secret Sharing
Ronald Cramer, Ivan Bjerre Damgård and Jesper Buus Nielsen
Excerpt
More information

http://www.cambridge.org/9781107043053
http://www.cambridge.org
http://www.cambridge.org


1.2 Do We Have to Trust Someone? 5

It is clear that each company will insist that its own data are private and must not be
leaked to competitors. However, the desired results can be computed from the private data:
there are several known methods from information economics for doing such an analysis
efficiently.

1.1.4 Data Mining

In most countries, public institutions such as the tax authorities or the health care system
keep databases containing information on citizens. In many cases, there are advantages one
can get from coordinated access to several such databases. Researchers may be able to get
statistics they could not get otherwise, or institutions might get an administrative advantage
from being able to quickly gather the information they need on a certain individual.

However, there is clearly a privacy concern here: access to many different databases by
a single party opens the possibility that complete dossiers could be compiled on particular
citizens, which would be a violation of privacy. In fact, accessing data on the same person
in several distinct databases is forbidden by law in some countries precisely because of this
concern.

1.2 Do We Have to Trust Someone?

We are now in a position to extract some common features of all the scenarios we have
looked at so far. One way to describe them all is as follows: we have a number of parties,
and each possesses some private data. We want to do some computation that needs all the
private data as input. The parties are interested in learning the result, or at least some part of
it, but want to keep their private data as confidential as possible.

Hopefully, it is clear from the preceding section that if we can find a satisfactory solution
to this problem, a very large number of applications would benefit. Moreover, this leads to
an extremely intriguing theoretical question, as we now explain:

One possible – and trivial – solution would be to find some party T that everyone
is willing to trust. All parties privately give their input to T, who does the required
computation, announces the result to the parties, and forgets about the private data he or she
has seen. A moment’s thought will show that this is hardly a satisfactory solution: first, we
have created a single point of attack from which all the private data can potentially be stolen.
Second, the parties must all completely trust T with respect to both privacy and correctness
of the results. The reason why there are privacy concerns is that the parties do not trust each
other in the first place, so why should we believe that they can find a new party they all trust?

In some applications, one may pay a party T for doing the computation; if the amount paid
is thought to be larger than what T could gain from cheating, the parties may be satisfied
with the solution. This seems to work in some cases, for instance, when a consultancy house
is paid a large fee for doing a benchmark analysis – but this is, of course, a very expensive
solution.

Thus, we are left with a fundamental question: can the problem be solved without relying
on a trusted party?

At first sight, it may seem that this cannot be possible. We want to compute a result
that depends on private data from all involved parties. How could one possibly do this

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-04305-3 - Secure Multiparty Computation and Secret Sharing
Ronald Cramer, Ivan Bjerre Damgård and Jesper Buus Nielsen
Excerpt
More information

http://www.cambridge.org/9781107043053
http://www.cambridge.org
http://www.cambridge.org


6 Introduction

unless data from several parties become known to someone, and hence we have to trust that
party?

Nevertheless, as we shall see, the problem is by no means impossible to solve, and
solutions do exist that are satisfactory, both from theoretical and from practical points of
view.

1.3 Multiparty Computation

Let us be slightly more precise about the problem we have to solve: the parties, or players,
that participate are called P1, . . . ,Pn. Each player Pi holds a secret input xi, and the players
agree on some function f that takes n inputs. Their goal is to compute y= f(x1, . . . ,xn) while
making sure that the following two conditions are satisfied:

• Correctness: the correct value of y is computed; and
• Privacy: y is the only new information that is released.

Regarding the latter property, note that because the purpose of the whole exercise is
to learn y, the best we can hope for in terms of privacy is that nothing but y is leaked.
Computing f such that privacy and correctness are achieved is referred to as computing f
securely. Later in this book we will be precise about what secure computing is; for now, we
will be content with the preceding intuitive idea. Note also that one may consider a more
general case where each player gets his or her own private output. We will do so later; for
now, we focus on a single, public output for simplicity.

As one example of how this connects to the scenarios from the preceding section, one
may think of xi as a number, namely, Pi’s bid in an auction, and f(x1, ...,xn) = (z, j), where
xj = z and z ≥ xi, i = 1, . . . ,n; that is, f outputs the highest bid and the identity of the
corresponding bidder. If we do not want the winner to pay his or her own bid but the bid of
the second-highest bidder, we simply change z to be this value, which is again a well-defined
function of the inputs. This would give us a function implementing a so-called second price
auction.

In this section we give a first intuition on how one might compute a function securely
without relying on trusted parties. This requires that we specify a protocol, that is, a set of
instructions that players are supposed to follow to obtain the desired result. For simplicity,
we will assume for now that players always follow the protocol. We will later address the
case in which some parties may deviate from the protocol in order to get more information
than they are supposed to or cause the result to be incorrect. We will also assume that any
pair of players can communicate securely; that is, it is possible for Pi to send a message m
to Pj such that no third party sees m, and Pj knows that m came from Pi. We discuss later
how this can be realized in practice.

1.3.1 Secure Addition and Voting

Let us first look at a simple special case, namely, where each xi is a natural number and
f(x1, . . . ,xn) =∑n

i=1 xi. Secure computation of even such a simple function can have very
meaningful applications. Consider the case where P1, ...,Pn want to vote on some yes/no
decision. Then we can let xi represent the vote of Pi, where xi = 0 means “no” and xi = 1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-04305-3 - Secure Multiparty Computation and Secret Sharing
Ronald Cramer, Ivan Bjerre Damgård and Jesper Buus Nielsen
Excerpt
More information

http://www.cambridge.org/9781107043053
http://www.cambridge.org
http://www.cambridge.org


1.3 Multiparty Computation 7

means “yes.” If we can compute the sum of the xi securely, this exactly means that we get
a way to vote with the properties we usually expect: the result

∑n
i=1 xi is indeed the result

of the vote, namely, the number of yes votes. Moreover, if the computation is secure, no
information is leaked other than

∑n
i=1 xi; in particular, no information is revealed on how a

particular player voted.
We will now design a protocol for the voting application. To be consistent with the next

example, we set n= 3. A later exercise shows how to construct a voting solution for any n.

Secret Sharing

Before we can solve the problem, we need to look at an important tool known as secret
sharing. The term may seem self-contradictory at first sight: how can anything be secret if
you share it with others? Nevertheless, the name makes good sense: the point is that secret
sharing provides a way for a party, say P1, to spread information on a secret number x across
all the players such that they together hold full information on x, yet no player (except, of
course, P1) has any information on x. First, we choose a prime p, and we define Zp as
Zp = {0,1, ...,p− 1}.1 In the following, we will think of the secret x as a number in Zp.

In order to share the secret s, P1 chooses numbers r1,r2 uniformly at random inZp and sets

r3 = x− r1− r2 mod p

Put another way, P1 chooses r1,r2,r3 randomly from Zp, subject to the constraint that
x = r1 + r2 + r3 mod p. Note that this way of choosing r1,r2,r3 means that each of the
three numbers is uniformly chosen in Zp: for each of them, all values in Zp are possible and
equally likely. Now P1 sends privately r1,r3 to P2, r1,r2 to P3, and keeps r2,r3 himself or
herself. The rjs are called the shares of the secret x.

The process we have described satisfies two basic properties: First, the secret x is kept
private in the sense that neither P2 nor P3 knows anything about that secret. As a result, if
some hacker breaks into the machine of P2 or P3 (but not both), he or she will learn nothing
about x. Second, x can be reconstructed if shares from at least two players are available.
Let’s argue that this is true in a more precise way:

Privacy. Even though P1 has distributed shares of the secret x to the other players, neither
P2 nor P3 has any idea what x is. For P2, we can argue as follows: he or she knows r1,r3

(but not r2) and that x= r1+ r2+ r3 mod p. Take any x0 ∈Zp. From P2’s point of view,
could it be that x = x0? The answer is yes, for if x = x0, it would have to be the case
that r2 = x0− r1− r3 mod p. This is certainly a possibility. Recall that r2 is uniformly
chosen in Zp, so all values are possible. However, any other choice, say x = x′0 ̸= x0,
is also a possibility. If this were the answer, we would have r2 = x′0 − r1 − r3 mod p,
which is a value that is different from x0− r1− r3 mod p but just as likely. We conclude
that what has been sent to P2 reveals nothing new about x. A similar argument shows
that the same is true from P3’s point of view.

Correctness. If two of the three parties pool their information, the secret can be
reconstructed because then all three shares will be known, and one can simply add
them modulo p.

1 To be more precise, Zp is another name for Z/pZ, where we identify i ∈ Zp with the residue class of numbers
that are congruent to i modulo p. See more details in Chapter 2.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-04305-3 - Secure Multiparty Computation and Secret Sharing
Ronald Cramer, Ivan Bjerre Damgård and Jesper Buus Nielsen
Excerpt
More information

http://www.cambridge.org/9781107043053
http://www.cambridge.org
http://www.cambridge.org


8 Introduction

Note that the privacy property is information theoretic: as long as a party does not know
all three summands, no amount of computing power can give that party any new information
on the corresponding secret. In this book, we focus primarily on protocols with this type of
security. The secret-sharing technique just shown is a special case of so-called replicated
secret sharing. There are many ways to realize secret sharing with other desirable properties
than the method we show here, and we look at several such techniques later, as well as a
more general definition of what secret sharing is.

A Protocol for Secure Addition

The basic idea for secure addition is that all players P1,P2, and P3 will distribute shares of
their private values x1, x2, and x3 in exactly the way we saw before. It turns out that one
can now compute the sum securely by locally adding shares and announcing the result. The
complete protocol is as follows:

Protocol Secure Addition

Participants are P1,P2,P3; input for Pi is xi ∈ Zp, where p is a fixed prime agreed on in
advance.

1. Each Pi computes and distributes shares of his or her secret xi as described in the text: he
or she chooses ri,1,ri,2 uniformly at random in Zp and sets ri,3 = xi− ri,1− ri,2 mod p.

2. Each Pi sends privately ri,2,ri,3 to P1, ri,1,ri,3 to P2, and ri,1,ri,2 to P3 (note that this involves
Pi sending “to himself or herself”). So P1, for instance, now holds r1,2,r1,3, r2,2,r2,3, and
r3,2,r3,3.

3. Each Pj adds corresponding shares of the three secrets – more precisely, he or she
computes, for ℓ ̸= j, sℓ = r1,ℓ + r2,ℓ + r3,ℓ mod p and announces sℓ to all parties. Each
party computes and announces two values.

4. All parties compute the result v= s1+ s2+ s3 mod p.

To analyze the secure addition protocol, let us first see why the result v is indeed the
correct result. This is straightforward:

v=
∑

j

sj mod p=
∑

j

∑
i

ri,j mod p=
∑

i

∑
j

ri,j mod p=
∑

i

xi mod p

This shows that the protocol computes the sum modulo p of the inputs, no matter how the
xi are chosen. However, if we let the parties choose xi = 1 for “yes” and xi = 0 for “no” and
make sure that p> 3, then

∑
i xi mod p=∑i xi because all xi are 0 or 1, and so, their sum

cannot be larger than p. So, in this case, v is indeed the number of yes votes.
Now why is it the case that no new information other than the result v is leaked to any

player? Let us concentrate on P1 for concreteness. In step 1, x1,x2, and x3 are secrets shared,
and we have already argued that this tells P1 nothing whatsoever about x2,x3. In the final
step, s1,s2,s3 are announced. Note that P1 already knows s2,s3, so s1 is the only new piece of
information. However, we can argue that seeing s1 will tell P1 what v is and nothing more.
The reason for this is that if one is given s2,s3, and v, one can compute s1= v−s2−s3 mod p.
Put another way, given what P1 is supposed to know, namely, v, we can already compute
what he or she sees in the protocol, namely, s1, and therefore, seeing the information from
the protocol tells him or her nothing beyond v.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-04305-3 - Secure Multiparty Computation and Secret Sharing
Ronald Cramer, Ivan Bjerre Damgård and Jesper Buus Nielsen
Excerpt
More information

http://www.cambridge.org/9781107043053
http://www.cambridge.org
http://www.cambridge.org


1.3 Multiparty Computation 9

This type of reasoning is formalized later in this book and is called a simulation argument:
given what a player is supposed to know, we show how to efficiently compute (simulate)
everything he or she sees in the protocol, and from this, we conclude that the protocol tells
the player nothing beyond what we wanted to tell him or her.

Note that given the result, P1 is in fact able to compute some information about other
people’s votes. In particular, he or she can compute v− x1 = x2 + x3, that is, the sum of
the other players’ votes. It is easy to get confused and think that because of this, something
must be wrong with the protocol, but in fact, there is no problem: it is true that P1 can
compute the sum of the votes of P2 and P3, but this follows from information P1 is supposed
to know, namely, the result and his or her own input. There is nothing the protocol can do to
deprive P1 of such information – in other words, the best a protocol can do is to make sure
that players only learn what they are supposed to learn, and this includes whatever can be
derived from the player’s own input and the intended result.

1.3.2 Secure Multiplication and Matchmaking

To do general secure computation, we will, of course, need to do more than secure addition.
It turns out that the secret-sharing scheme from the preceding subsection already allows us
to do more: we can also do secure multiplication.

Suppose that two numbers a,b ∈ Zp have been secret shared as described earlier, so that
a = a1+ a2+ a3 mod p and b = b1 + b2+ b3 mod p, and we wish to compute the product
ab mod p securely. We obviously have

ab= a1b1+ a1b2+ a1b3+ a2b1+ a2b2+ a2b3+ a3b1+ a3b2+ a3b3 mod p

It is now easy to see that if the ais and bis have been distributed as described earlier, it is
the case that for each product aibj, there is at least one player among the three who knows
ai and bj and therefore can compute aibj. For instance, P1 has been given a2,a3,b2,b3 and
can therefore compute a2b2,a2b3,a3b2, and a3b3. The situation is therefore that the desired
result ab is the sum of some numbers where each summand can be computed by at least one
of the players. But now we are essentially done because from Protocol Secure Addition we
already know how to add securely!

The protocol resulting from these observations follows. To argue why it works, one first
notes that correctness, namely, ab= u1+u2+u3 mod p, follows trivially from the preceding.
To show that nothing except ab mod p is revealed, one notes that nothing new about a,b is
revealed in the first step, and because Protocol Secure Addition is private, nothing except
the sum of the inputs is revealed in the last step, and this sum always equals ab mod p.

It is interesting to note that even in a very simple case where both a and b are either 0
or 1, secure multiplication has a meaningful application: consider two parties, Alice and
Bob. Suppose that Alice is wondering whether Bob wants to go out with her, and Bob
is asking himself if Alice is interested in him. They would very much like to find out
if there is mutual interest but without running the risk of the embarrassment that would
result if, for instance, Bob tells Alice that he is interested, only to have Alice turn him
down. The problem can be solved if we let Alice choose a ∈ Zp, where a = 1 if she is
interested in Bob and a = 0 otherwise. In the same way, Bob chooses b to be 0 or 1. Then
we compute the function f(a,b)= ab mod p securely. It is clear that the result is 1 if and only

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-04305-3 - Secure Multiparty Computation and Secret Sharing
Ronald Cramer, Ivan Bjerre Damgård and Jesper Buus Nielsen
Excerpt
More information

http://www.cambridge.org/9781107043053
http://www.cambridge.org
http://www.cambridge.org


10 Introduction

Protocol Secure Multiplication

Participants are P1,P2, andP3; input for P1 is a∈Zp; input for P2 is b∈Zp, where p is a fixed
prime agreed on in advance. P3 has no input.

1. P1 distributes shares a1,a2,a3 of a, while P2 distributes shares b1,b2,b3 of b.
2. P1 locally computes u1 = a2b2 + a2b3 + a3b2 mod p, P2 computes u2 = a3b3 + a1b3 +

a3b1 mod p, and P3 computes u3 = a1b1+ a1b2+ a2b1 mod p.
3. The players use Protocol Secure Addition to compute the sum u1+u2+u3 mod p securely,

where Pi uses ui as input.

if there is mutual interest. However, if, for instance, Alice is not interested, she will choose
a = 0, and in this case, she learns nothing new from the protocol. To see why, notice that
security of the protocol implies that the only (possibly) new information Alice will learn
is the result ab mod p. But she already knows that the result will be 0! In particular, she
does not learn whether Bob was interested or not, so Bob is safe from embarrassment. By a
symmetric argument, this is, of course, also the case for Alice.

This argument assumes, of course, that both players choose their inputs honestly
according to their real interests. In the following section we discuss what happens if players
do not follow the instructions and what we can do about the problems resulting from this.

From Protocol Secure Multiplication, we see that if Alice and Bob play the roles of P1

and P2, respectively, they just need to find a third party to help them to do the multiplication
securely. Note that this third party is not a completely trusted third party of the kind we
discussed earlier: he or she does not learn anything about a or b other than ab mod p. Alice
and Bob do have to trust, however, that the third party does not share his or her information
with Bob or with Alice.

It is an obvious question whether one can do secure multiplication such that only Alice
and Bob have to be involved? The answer turns out to be yes, but then information-theoretic
security is not possible, as we shall see. Instead, one has to use solutions based on
cryptography. Such solutions can always be broken if one party has enough computing
power, but this is an issue with virtually all the cryptographic techniques used in practice.

For completeness, we remark that Alice and Bob’s problem is a special case of the
so-called matchmaking problem that has somewhat more serious applications than secure
dating. Consider a set of companies where each company has a set of other companies it
would prefer to do business with. We want each pair of companies to find out whether there
is mutual interest, but without forcing companies to reveal their strategy by announcing their
interests in public.

EXERCISE 1.1 Consider the third party helping Alice and Bob to do secure multiplication.
Show that the Protocol Secure Multiplication is indeed insecure if the third party reveals
what he sees in the protocol to Alice or Bob.

EXERCISE 1.2 We have used replicated secret sharing, where each player receives two
numbers in Zp, even though only one secret number is shared. This was done so that we
would be able to do both secure addition and secure multiplication, but for secure addition
only, something simpler can be done. Use the principle of writing the secret as a sum of
random numbers to design a secret-sharing scheme for any number of parties, where each

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-04305-3 - Secure Multiparty Computation and Secret Sharing
Ronald Cramer, Ivan Bjerre Damgård and Jesper Buus Nielsen
Excerpt
More information

http://www.cambridge.org/9781107043053
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9781107043053: 


