Since its introduction in the early 1980s, quasiconformal surgery has become a major tool in the development of the theory of holomorphic dynamics, and it is essential background knowledge for any researcher in the field.

In this comprehensive introduction the authors begin with the foundations and a general description of surgery techniques before turning their attention to a wide variety of applications. They demonstrate the different types of surgeries that lie behind many important results in holomorphic dynamics, dealing in particular with Julia sets and the Mandelbrot set. Two of these surgeries go beyond the classical realm of quasiconformal surgery and use trans-quasiconformal surgery. Another deals with holomorphic correspondences, a natural generalization of holomorphic maps.

The book is ideal for graduate students and researchers requiring a self-contained text including a variety of applications. It particularly emphasizes the geometrical ideas behind the proofs, with many helpful illustrations seldom found in the literature.

Bodil Branner is Professor Emerita at the Technical University of Denmark, Lyngby. Her research interests include holomorphic dynamics and complex analysis. She has published in several renowned international journals and given numerous invited talks at conferences, workshops and symposia. Branner has served as Vice-President of the European Mathematical Society, as President of Dansk Matematisk Forening (DMF), and she was one of the founders of European Women in Mathematics. She is an honorary member of DMF, and a Fellow of the AMS.

Núria Fagella is currently Associate Professor at Universitat de Barcelona. Her research is in the area of holomorphic dynamics with an emphasis on the iteration of transcendental functions. She publishes in renowned international journals and with a diverse range of collaborators worldwide. Fagella has been invited to deliver talks and short courses at numerous international conferences and workshops, and has been an organiser of several such events.
CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS

Editorial Board:
B. Bollobás, W. Fulton, A. Katok, F. Kirwan, P. Sarnak, B. Simon, B. Totaro

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit: www.cambridge.org/mathematics.

Already published
104 A. Ambrosetti & A. Malchiodi Nonlinear analysis and semilinear elliptic problems
105 T. Tao & V. H. Vu Additive combinatorics
106 E. B. Davies Linear operators and their spectra
107 K. Kodaira Complex analysis
108 T. Ceccherini-Silberstein, F. Scarabotti & F. Tolli Harmonic analysis on finite groups
109 H. Geiges An introduction to contact topology
110 J. Faraut Analysis on Lie groups: An introduction
111 E. Park Complex topological K-theory
112 D. W. Stroock Partial differential equations for probabilists
113 A. Kirillov, Jr An introduction to Lie groups and Lie algebras
114 F. Gesztesy et al. Soliton equations and their algebro-geometric solutions, II
115 E. de Faria & W. de Melo Mathematical tools for one-dimensional dynamics
116 D. Applebaum Lévy processes and stochastic calculus (2nd Edition)
117 T. Szamuely Galois groups and fundamental groups
118 G. W. Anderson, A. Guionnet & O. Zeitouni An introduction to random matrices
119 C. Perez-Garcia & W. H. Schikhof Locally convex spaces over non-Archimedean valued fields
120 P. K. Friz & N. B. Victoir Multidimensional stochastic processes as rough paths
121 T. Ceccherini-Silberstein, F. Scarabotti & F. Tolli Representation theory of the symmetric groups
122 S. Kalikow & R. McCutcheon An outline of ergodic theory
123 G. F. Lawler & V. Limic Random walk: A modern introduction
124 K. Lux & H. Pahlings Representations of groups
125 K. S. Kellaya p-adic differential equations
126 R. Beals & R. Wong Special functions
127 E. de Faria & W. de Melo Mathematical aspects of quantum field theory
128 A. Terras Zeta functions of graphs
129 D. Goldfeld & J. Hundley Automorphic representations and L-functions for the general linear group, I
130 D. Goldfeld & J. Hundley Automorphic representations and L-functions for the general linear group, II
131 D. A. Craven The theory of fusion systems
132 J. Väänänen Models and games
133 G. Malle & D. Testerman Linear algebraic groups and finite groups of Lie type
134 P. Li Geometric analysis
135 F. Maggi Sets of finite perimeter and geometric variational problems
136 M. Brodmann & R. Y. Sharp Local cohomology (2nd Edition)
137 C. Muscalu & W. Schlag Classical and multilinear harmonic analysis, I
138 C. Muscalu & W. Schlag Classical and multilinear harmonic analysis, II
139 B. Helffer Spectral theory and its applications
140 R. Pemantle & M. C. Wilson Analytic combinatorics in several variables
141 B. Branner & N. Fagella Quasiconformal surgery in holomorphic dynamics
142 R. M. Dudley Uniform central limit theorems (2nd Edition)
143 T. Leinster Basic category theory
Quasiconformal Surgery in Holomorphic Dynamics

BODIL BRANNER
Technical University of Denmark, Lyngby

NÚRIA FAGELLA
Universitat de Barcelona

With contributions by
Xavier Buff, Shaun Bullett, Adam L. Epstein,
Peter Haïssinsky, Christian Henriksen,
Carsten L. Petersen, Kevin M. Pilgrim, Tan Lei
and Michael Yampolsky
Dedicated to the memory of Adrien Douady
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of contributors</td>
<td>ix</td>
</tr>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xiii</td>
</tr>
<tr>
<td>List of symbols</td>
<td>xv</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1 Quasiconformal geometry</td>
<td>7</td>
</tr>
<tr>
<td>1.1 The linear case: Beltrami coefficients and ellipses</td>
<td>7</td>
</tr>
<tr>
<td>1.2 Almost complex structures and pullbacks</td>
<td>14</td>
</tr>
<tr>
<td>1.3 Quasiconformal mappings</td>
<td>20</td>
</tr>
<tr>
<td>1.4 The Integrability Theorem</td>
<td>39</td>
</tr>
<tr>
<td>1.5 An elementary example</td>
<td>49</td>
</tr>
<tr>
<td>1.6 Quasiregular mappings</td>
<td>55</td>
</tr>
<tr>
<td>1.7 Application to holomorphic dynamics</td>
<td>60</td>
</tr>
<tr>
<td>2 Boundary behaviour of quasiconformal maps: extensions and interpolations</td>
<td>64</td>
</tr>
<tr>
<td>2.1 Preliminaries: quasisymmetric maps and quasicircles</td>
<td>65</td>
</tr>
<tr>
<td>2.2 Extensions of mappings from their domains to their boundaries</td>
<td>69</td>
</tr>
<tr>
<td>2.3 Extensions of boundary maps</td>
<td>77</td>
</tr>
<tr>
<td>3 Preliminaries on dynamical systems and actions of Kleinian groups</td>
<td>92</td>
</tr>
<tr>
<td>3.1 Conjugacies and equivalences</td>
<td>94</td>
</tr>
<tr>
<td>3.2 Circle homeomorphisms and rotation numbers</td>
<td>97</td>
</tr>
<tr>
<td>3.3 Holomorphic dynamics: the phase space</td>
<td>105</td>
</tr>
<tr>
<td>3.4 Families of holomorphic dynamics: parameter spaces</td>
<td>126</td>
</tr>
<tr>
<td>3.5 Actions of Kleinian groups and the Sullivan dictionary</td>
<td>133</td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press www.cambridge.org
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Introduction to surgery and first occurrences</td>
<td>147</td>
</tr>
<tr>
<td>4.1</td>
<td>Changing the multiplier of an attracting cycle</td>
<td>151</td>
</tr>
<tr>
<td>4.2</td>
<td>Changing superattracting cycles to attracting ones</td>
<td>162</td>
</tr>
<tr>
<td>4.3</td>
<td>No wandering domains for rational maps</td>
<td>169</td>
</tr>
<tr>
<td>5</td>
<td>General principles of surgery</td>
<td>179</td>
</tr>
<tr>
<td>5.1</td>
<td>Shishikura principles</td>
<td>180</td>
</tr>
<tr>
<td>5.2</td>
<td>Sullivan’s Straightening Theorem</td>
<td>184</td>
</tr>
<tr>
<td>5.3</td>
<td>Non-rational maps</td>
<td>186</td>
</tr>
<tr>
<td>6</td>
<td>Soft surgeries</td>
<td>188</td>
</tr>
<tr>
<td>6.1</td>
<td>Deformation of rotation rings</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Xavier Buff and Christian Henriksen</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Branner–Hubbard motion</td>
<td>207</td>
</tr>
<tr>
<td>7</td>
<td>Cut and paste surgeries</td>
<td>218</td>
</tr>
<tr>
<td>7.1</td>
<td>Polynomial-like mappings and the Straightening Theorem</td>
<td>219</td>
</tr>
<tr>
<td>7.2</td>
<td>Gluing Siegel discs along invariant curves</td>
<td>224</td>
</tr>
<tr>
<td>7.3</td>
<td>Turning Siegel discs into Herman rings</td>
<td>235</td>
</tr>
<tr>
<td>7.4</td>
<td>Simultaneous uniformization of Blaschke products</td>
<td>244</td>
</tr>
<tr>
<td>7.5</td>
<td>Gluing along continua in the Julia set</td>
<td>248</td>
</tr>
<tr>
<td>7.6</td>
<td>Disc-annulus surgery on rational maps</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>Kevin M. Pilgrim and Tan Lei</td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td>Perturbation and counting of non-repelling cycles</td>
<td>282</td>
</tr>
<tr>
<td>7.8</td>
<td>Mating a group with a polynomial</td>
<td>291</td>
</tr>
<tr>
<td></td>
<td>Shaun Bullett</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Cut and paste surgeries with sectors</td>
<td>307</td>
</tr>
<tr>
<td>8.1</td>
<td>Preliminaries: sectors and opening modulus</td>
<td>308</td>
</tr>
<tr>
<td>8.2</td>
<td>Creating new critical points</td>
<td>320</td>
</tr>
<tr>
<td>8.3</td>
<td>Embedding limbs of \mathcal{M} into other limbs</td>
<td>337</td>
</tr>
<tr>
<td>8.4</td>
<td>Intertwining surgery</td>
<td>343</td>
</tr>
<tr>
<td></td>
<td>Adam Epstein and Michael Yampolsky</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Trans-quasiconformal surgery</td>
<td>364</td>
</tr>
<tr>
<td>9.1</td>
<td>David maps and David–Beltrami differentials</td>
<td>365</td>
</tr>
<tr>
<td>9.2</td>
<td>Siegel discs via trans-quasiconformal surgery</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>Carsten Lunde Petersen</td>
<td></td>
</tr>
<tr>
<td>9.3</td>
<td>Turning hyperbolics into parabolics</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>Peter Hässinsky</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>408</td>
</tr>
</tbody>
</table>
Contributors

Bodil Branner
Technical University of Denmark

Xavier Buff
Université Paul Sabatier, Toulouse

Shaun Bullett
Queen Mary, University of London

Adam Epstein
University of Warwick

Núria Fagella
Universitat de Barcelona

Peter Haïssinsky
Université Paul Sabatier, Toulouse

Christian Henriksen
Technical University of Denmark

Carsten Lunde Petersen
Roskilde Universitet

Kevin M. Pilgrim
Indiana University
x

Contributors

Tan Lei
Université d’Angers

Michael Yampolsky
University of Toronto
The firm intention of writing this book was born in the fall of 2003 during the Ecole Thématique du CNRS Chirurgie holomorphe. This workshop was part of a trimester organized by Adrien Douady at the Institut Henri Poincaré in Paris. Douady was one of the fathers of the theory of holomorphic dynamics and of many of the surgery constructions that the workshop addressed. He used surgery as a tool in a number of ways, but especially to obtain a better understanding of different structures in parameter space. As he said: ‘plough in dynamical spaces and harvest in parameter space’.

Douady’s creative and geometric point of view inspired many to explore holomorphic dynamics. Furthermore, he encouraged generous collaboration and believed strongly in the value of sharing ideas. He gathered a large mathematical family around him, and the success of the workshop is a tribute to his influence.

Many of those who had originally developed holomorphic surgery presented lectures. It became clear that the content of these wonderful sessions ought to be the core of a book about surgery. We ourselves felt strongly that the book should be more than a collection of papers, though: our goal became to enlist the help of the speakers in creating a comprehensive study of quasiconformal surgery.

We are delighted that our wishes have come true in the form of this book, which puts together the foundations of surgery and many of its applications, with, as we had hoped, contributions by a number of the workshop participants who themselves had played such an important part in developing the field. We are grateful for their support. They have our sincere and enthusiastic thanks.

Writing and collecting the material and then unifying it into a book was not an easy task for us. Douady’s excitement about the project and his constant encouragement were very important. They kept us going until this very moment. It is to him that we dedicate every word written here, wishing he could have seen the final result.
Acknowledgements

This book has taken a long time to write, and we have received a lot of assistance along the way. It is our pleasure to thank many friends and colleagues for their generous help that made it possible.

First and foremost we are extremely grateful to Xavier Buff, Shaun Bullett, Adam Epstein, Peter Häiïssinsky, Christian Henriksen, Carsten Lunde Petersen, Kevin Pilgrim, Tan Lei and Michael Yampolsky for agreeing to participate in the project, making the book so much better and special with their contributions. Among them we owe special gratitude to Buff, Häiïssinsky and Henriksen whose valuable suggestions helped to improve other parts of the book.

There are many others who should also be mentioned. In particular, the participants in the Quasiconformal Surgery course at the Complex Dynamics Seminar at Universitat de Barcelona, Antonio Garijo, Xavier Jarque, Helena Mihaljević-Brandt, Jörn Peter and Jordi Taixés inspired us with questions and suggestions and read parts of early drafts of the book. There are also those who made valuable comments to different parts of later drafts. These include Anna Miriam Benini, Jordi Canela, Matías Carrasco, Jonguk Yang and, very specially, Jonathan Brezin, Albert Clop, Ernest Fontich, Linda Keen, Curtis McMullen and Caroline Series. We heartfully thank all of them, and others who helped in various ways, for their effort. Of course, we take full responsibility for any errors that remain.

Furthermore, we wish to thank our editor, Roger Astley, for his kindness, enthusiasm and dedication during the whole process. On the technical side we are grateful to Christian Mannes for creating \texttt{It}, the computer program with which many of the illustrations were made. Our thanks also go to the Institut for Matematik og Computer Science at Danmarks Tekniske Universitet, the Departament de Matemàtica Aplicada i Anàlisi at Universitat de Barcelona, the IMUB (Institut de Matemàtica de la UB) and the CRM (Centre de Recerca Matemàtica) for their support.
And finally, but most especially, our sincere gratitude goes to our families, for their encouragement, support and patience throughout this long, but for us so very exciting, project.

This book would not have been possible without financial support from different sources. We first and most wish to thank the Marie Curie project CODY (MRTN-CT-2006-035651), which included this book as one of its mathematical training goals. Most of the travel expenses over the last five years were covered by CODY, together with the grant 272-07-0321 from the Danish Research Council for Nature and Universe and by the grants MTM2008-01486 and MTM2006-05849 from the spanish Ministry of Science. Most recently, we were also partially supported by the grant MTM2011-26995-C02-02 from the same source and the catalan grant 2009SGR-792.

Bodil Branner and Núria Fagella
Kongens Lyngby and Barcelona
Symbols

\(\tilde{\text{affine}}\) \hspace{1cm} \text{affine conjugate}

\(\tilde{\text{hyb}}\) \hspace{1cm} \text{hybrid equivalent}

\(\sim\) \hspace{1cm} \text{quasiconformally conjugate}

\(\sim\) \hspace{1cm} \text{topologically conjugate}

\(\simeq\) \hspace{1cm} \text{conformal equivalence}

\(I_A\) \hspace{1cm} \text{The characteristic function takes the value 1 on } A \text{ and 0 on } \mathbb{C} \setminus A

\(A_f(\alpha)\) \hspace{1cm} \text{The basin of attraction of an attracting } p\text{-cycle } \alpha = \{\alpha_0, \ldots, \alpha_{p-1}\} \text{ of } f

\(A^*_f(\alpha)\) \hspace{1cm} \text{The immediate basin of attraction of a cycle } \alpha \text{ as above}

\(A_f(\infty)\) \hspace{1cm} \text{The basin of attraction of infinity of a polynomial } f

\(\mathbb{A}_r\) \hspace{1cm} \text{Round open annulus } \{r < |z| < 1\}

\(\mathbb{A}_{r,R}\) \hspace{1cm} \text{Round open annulus } \{r < |z| < R\}

\(B\) \hspace{1cm} \text{The Bryuno numbers or a Bers’ slice}

\(\mathbb{C}\) \hspace{1cm} \text{The complex plane}

\(\mathbb{C}^*\) \hspace{1cm} \text{The punctured complex plane } \mathbb{C} \setminus \{0\}

\(\hat{\mathbb{C}}\) \hspace{1cm} \text{The extended complex plane } \mathbb{C} \cup \{\infty\}

\(C_f\) \hspace{1cm} \text{Set of critical points of } f

\(C^r(U), r \geq 1\) \hspace{1cm} \text{The space of } r \text{ times differentiable maps on } U, \text{ whose } n\text{th derivatives are continuous for all } 1 \leq n \leq r

\(C^\infty(U)\) \hspace{1cm} \text{The spaces of functions which belong to } C^r(U) \text{ for all } r \geq 1

\(C^r_c(U)\) \hspace{1cm} \text{The space of functions in } C^r(U) \text{ with compact support, for } 1 \leq r \leq \infty

\(\text{Crit}(f)\) \hspace{1cm} \text{Set of finite critical points of } f, \text{ i.e. in } \mathbb{C}

\(\partial_z, \partial_{\bar{z}}\) \hspace{1cm} \text{Ordinary partial derivatives with respect to } z \text{ and } \bar{z}

\(\partial, \overline{\partial}\) \hspace{1cm} \text{Partial derivatives in the sense of distributions with respect to } z \text{ and } \bar{z}
Symbols

Δ A Siegel disc or a linearizing domain around an attracting periodic point.

\(\mathbb{D} \) The open unit disc \{ |z| < 1 \} in \(\mathbb{C} \)

\(\mathbb{D}^* \) The punctured unit disc \(\mathbb{D} \setminus \{0\} \)

\(\mathbb{D}_r \) The open disc \{ |z| < r \}

\(\mathbb{D}_r(z_0) \) The open disc \{ |z - z_0| < r \}

\(D^+(U, V) \) The set of orientation preserving continuous functions \(f : U \to V \) which are differentiable almost everywhere and whose differential \(D_u f \) is non-singular almost everywhere and depends measurably on \(u \in U \)

\(D^+_0(U, V) \) The set of functions in \(D^+(U, V) \) which are absolutely continuous with respect to the Lebesgue measure

\(\hat{d}_C(z, w) \) The spherical distance between two points in the Riemann sphere

Ent The set of entire transcendental maps

Ent\(^*\) The set of holomorphic transcendental self-maps of \(\mathbb{C}^* \)

ext(\(\gamma \)) The domain to the right of \(\gamma \), an oriented Jordan curve

\(\mathcal{F}_f \) The Fatou set of \(f \)

\(\mathcal{F}_c \) The Fatou set of \(Q_c \)

\(f^n \) \(f \circ \cdots \circ f \), the map \(f \) composed by itself \(n \) times

\(GL(2, \mathbb{C}) \) General linear group \(\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{C} \right\} \)

\(\mathbb{H} \) The upper half plane \{ \(\text{Im} \ z > 0 \} \)

\(\mathbb{H}_L \) The left half plane \{ \(\text{Re} \ z < 0 \} \)

\(\mathbb{H}_R \) The right half plane \{ \(\text{Re} \ z > 0 \} \)

\(\mathcal{H} \) The Herman numbers or, in Section Section 8.4, a hyperbolic component

\(\text{Im} \ z \) The imaginary part of \(z \)

\(\text{int}(\gamma) \) The domain to the left of \(\gamma \), an oriented Jordan curve

\(\text{int}(X) \) Interior of the set \(X \)

\(\mathcal{J}_f \) The Julia set of \(f \)

\(\mathcal{J}_c \) The Julia set of \(Q_c \)

\(\mathcal{K}_f \) The filled Julia set of a polynomial or a polynomial-like map \(f \)

\(\mathcal{K}_c \) The filled Julia set of \(Q_c \)

\(\mathcal{L}_{p/q} \) The \(p/q \)-limb of the Mandelbrot set

\(\mathcal{M} \) The Mandelbrot set

\(\text{Mer} \) The set of transcendental meromorphic maps with at least one pole which is not omitted
Symbols

\(Mer^\mathbb{C} \) The set of transcendental maps which are meromorphic outside a compact countable set of singularities

\(\text{mod} \) modulus

\(\mathbb{N} \) The natural numbers \(\{1, 2, \ldots \} \)

\(\mathcal{O}(X) \) The orbit of \(X \), where \(X \) is a point or a set

\(P_f \) The postsingular set or the postcritical set

\(\text{Pol} \) The set of polynomials of degree at least two

\(\text{Pol}_d \) The set of polynomials of degree \(d \geq 2 \)

\(\mathbb{Q} \) The rational numbers

\(Q_c \) The quadratic polynomial \(Q_c(z) = z^2 + c \)

\(\mathbb{R} \) A Riemann map

\(\mathbb{R}^\ast \) The punctured real line \(\mathbb{R} \setminus \{0\} \)

\(\mathbb{R}^\ast \) The extended real line \(\mathbb{R} \cup \infty \)

\(\text{Rat} \) The set of rational maps of degree at least two

\(\text{Rat}_d \) The set of rational maps of degree \(d \geq 2 \)

\(\text{Re} z \) The real part of \(z \)

\(R_\theta \) The rigid rotation by \(\theta \in \mathbb{R} \), represented either by \(z \mapsto e^{2\pi i \theta}z \), where \(z \in \mathbb{S}^1 \) or \(x \mapsto x + \theta \) (mod 1) where \(x \in \mathbb{R} \)

\(\sigma(z, w) \) The chordal distance between two points in the Riemann sphere

\(\mathbb{S}^1 \) The unit circle \(\{ |z| = 1 \} \)

\(\mathbb{S}^1_r \) The circle \(\{ |z| = r \} \)

\(\text{Sing}(f^{-1}) \) Set of singularities of an inverse map

\(T \) The quotient space \(\mathbb{R}/\mathbb{Z} \)

\(V_f \) Set of critical values of \(f \)

\(\mathbb{Z} \) The integers \(\{ \ldots, -2, -1, 0, 1, 2, \ldots \} \)