A concise but rigorous treatment of variational techniques, focusing primarily on Lagrangian and Hamiltonian systems, this book is ideal for physics, engineering and mathematics students.

The book begins by applying Lagrange’s equations to a number of mechanical systems. It introduces the concepts of generalized coordinates and generalized momentum. Following this, the book turns to the calculus of variations to derive the Euler–Lagrange equations. It introduces Hamilton’s principle and uses this throughout the book to derive further results. The Hamiltonian, Hamilton’s equations, canonical transformations, Poisson brackets and Hamilton–Jacobi theory are considered next. The book concludes by discussing continuous Lagrangians and Hamiltonians and how they are related to field theory.

Written in clear, simple language, and featuring numerous worked examples and exercises to help students master the material, this book is a valuable supplement to courses in mechanics.

PATRICK HAMIL is Professor Emeritus of Physics at San Jose State University. He has taught physics for over 30 years, and his research interests are in celestial mechanics and atmospheric physics.
A Student’s Guide to Lagrangians and Hamiltonians

PATRICK HAMILL
San Jose State University
CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge. It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107617520

© P. Hamill 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014
3rd printing 2014

Printed in the United Kingdom by TJ International Ltd, Padstow, Cornwall

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

Hamill, Patrick.

A student’s guide to Lagrangians and Hamiltonians / Patrick Hamill.

pages cm

Includes bibliographical references.

QA805.H24 2013
515’.39–dc23 2013027058

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.
Contents

<table>
<thead>
<tr>
<th>Introduction</th>
<th>page ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>x</td>
</tr>
</tbody>
</table>

I LAGRANGIAN MECHANICS

1 Fundamental concepts

1.1 Kinematics
1.2 Generalized coordinates
1.3 Generalized velocity
1.4 Constraints
1.5 Virtual displacements
1.6 Virtual work and generalized force
1.7 Configuration space
1.8 Phase space
1.9 Dynamics
1.9.1 Newton’s laws of motion
1.9.2 The equation of motion
1.9.3 Newton and Leibniz
1.10 Obtaining the equation of motion
1.10.1 The equation of motion in Newtonian mechanics
1.10.2 The equation of motion in Lagrangian mechanics
1.11 Conservation laws and symmetry principles
1.11.1 Generalized momentum and cyclic coordinates
1.11.2 The conservation of linear momentum
1.11.3 The conservation of angular momentum
1.11.4 The conservation of energy and the work function
1.12 Problems

© in this web service Cambridge University Press
www.cambridge.org
Contents

2 The calculus of variations 44
 2.1 Introduction 44
 2.2 Derivation of the Euler–Lagrange equation 45
 2.2.1 The difference between δ and d 52
 2.2.2 Alternate forms of the Euler–Lagrange equation 55
 2.3 Generalization to several dependent variables 58
 2.4 Constraints 60
 2.4.1 Holonomic constraints 60
 2.4.2 Non-holonomic constraints 64
 2.5 Problems 67

3 Lagrangian dynamics 70
 3.1 The principle of d’Alembert. A derivation of Lagrange’s equations 70
 3.2 Hamilton’s principle 73
 3.3 Derivation of Lagrange’s equations 75
 3.4 Generalization to many coordinates 75
 3.5 Constraints and Lagrange’s λ-method 77
 3.6 Non-holonomic constraints 81
 3.7 Virtual work 83
 3.7.1 Physical interpretation of the Lagrange multipliers 84
 3.8 The invariance of the Lagrange equations 86
 3.9 Problems 88

II HAMILTONIAN MECHANICS 91

4 Hamilton’s equations 93
 4.1 The Legendre transformation 93
 4.1.1 Application to thermodynamics 95
 4.2 Application to the Lagrangian. The Hamiltonian 97
 4.3 Hamilton’s canonical equations 98
 4.4 Derivation of Hamilton’s equations from Hamilton’s principle 100
 4.5 Phase space and the phase fluid 101
 4.6 Cyclic coordinates and the Routhian procedure 104
 4.7 Symplectic notation 106
 4.8 Problems 107

5 Canonical transformations; Poisson brackets 109
 5.1 Integrating the equations of motion 109
 5.2 Canonical transformations 110
Contents

5.3 Poisson brackets 117
5.4 The equations of motion in terms of Poisson brackets 119
5.4.1 Infinitesimal canonical transformations 120
5.4.2 Canonical invariants 124
5.4.3 Liouville’s theorem 127
5.4.4 Angular momentum 128
5.5 Angular momentum in Poisson brackets 129
5.6 Problems 132

6 Hamilton–Jacobi theory 134
6.1 The Hamilton–Jacobi equation 135
6.2 The harmonic oscillator – an example 137
6.3 Interpretation of Hamilton’s principal function 139
6.4 Relationship to Schrödinger’s equation 140
6.5 Problems 142

7 Continuous systems 144
7.1 A string 144
7.2 Generalization to three dimensions 150
7.3 The Hamiltonian density 151
7.4 Another one-dimensional system 154
7.4.1 The limit of a continuous rod 156
7.4.2 The continuous Hamiltonian and the canonical field equations 160
7.5 The electromagnetic field 162
7.6 Conclusion 166
7.7 Problems 166

Further reading 168
Answers to selected problems 169
Index 171
Introduction

The purpose of this book is to give the student of physics a basic overview of Lagrangians and Hamiltonians. We will focus on what are called variational techniques in mechanics. The material discussed here includes only topics directly related to the Lagrangian and Hamiltonian techniques. It is not a traditional graduate mechanics text and does not include many topics covered in texts such as those by Goldstein, Fetter and Walecka, or Landau and Lifshitz. To help you to understand the material, I have included a large number of easy exercises and a smaller number of difficult problems. Some of the exercises border on the trivial, and are included only to help you to focus on an equation or a concept. If you work through the exercises, you will better prepared to solve the difficult problems. I have also included a number of worked examples. You may find it helpful to go through them carefully, step by step.
I would like to acknowledge the students in my graduate mechanics classes whose interest in analytical mechanics were the inspiration for writing this book. I also wish to acknowledge my colleagues in the Department of Physics and Astronomy at San Jose State University, especially Dr. Alejandro Garcia and Dr. Michael Kaufman, from whom I have learned so much. Finally, I acknowledge the helpful and knowledgeable editors and staff at Cambridge University Press for their support and encouragement.