Index

3'-untranslated regions (UTRs), 139
5'-untranslated region (5'UTR), 82
1000 genome project, 91, 193, 232, 271, 341, 350
1000 Mendelian disease initiative, 350
aberrant X chromosome, 182
acute myeloid leukemia (AML), 281
additive genetic factors, 15
adiponectin, 75
adiposity traits, 73
admixture, 9, 315
admixture linkage disequilibrium (ALD), 89, 93, 94, 95
admixture mapping, 100
adsorption, distribution, metabolism, and elimination (ADME), 300
adverse drug reaction (ADR), 370, 371
African ancestry, 72, 99, 330
African Diaspora SNP chip, 91
African populations, 13
African-Americans, 72, 289
age-related macular degeneration (AMD), 19, 26, 55, 59, 169
AIDS clinical trials group (ACTG), 306
alcohol dependence, 171
alcohol intoxicification, 158
alcohol use disorder (AUD), 151, 153, 156
allele frequency, 332
allelic imbalance (AI), 145
allelic ratio (AR), 145
allosteric activation, 290
alternative polyadenylation (APA), 141
alternative splicing, 194
Alu insertion, 321
Alu repeat frequencies, 259
Alu-enriched loci, 8
Alu-enriched regions, 264
Alzheimer's disease (AD), 250
amygdala, 163
ancestral allele, 330
ancestral north Indian (ANI), 318
ancestral population, 93
Andamanese, 315
aneuploidy, 182
Angelman syndrome, 124
ANGPTL4, 249
anhedonia, 5
Annovar program, 271
anthracycline, 283, 291
antipsychotic medication, 107
antiretroviral (ARV) drug toxicity, 303
antiretroviral (ARV) therapy, 297
APA-SNPs, 141, 144
apoptosis, 279
Appasani, K., 5
appetite-regulating pathways, 70
approximate Bayesian polygenic analysis (ABPA), 116
Aраб Gulf Cooperation Council (GCC), 357
ara-C-resistant variants, 288
array technology, 178
array-CGH, 184
ARV drug resistance, 299, 300
ARV drugs, 304, 305
ARV regimen, 301
Asian populations 304
assisted reproductive technologies (ART), 128
association mapping, 43, 44, 48
asthma, 59
atazanavir, 303, 304, 305
atherosclerotic plaques, 84
ATP-binding cassette subfamily B member 1 gene (ABCB1), 302
attention deficit – hyperactivity disorder (ADHD), 117, 118
Austroasiatic, 315, 320
autism, 236
autism spectrum disorder (ASD), 117, 118
autoimmune diseases, 59
Index

autoimmune disorders, 20
autoimmune lymphoproliferative syndrome (ALPS), 237
autosomal dominant, 90
azathioprine, 370
Bayes factor testing, 97
Beadarray, 210
Beadchip microarrays, 5
BEAGLE, 209, 333
behavioral economics, 4, 12
behavioral variation, 12
Beijing Genome Institute (BGI), 349
benzodiazepines, 152
best linear unbiased prediction (BLUP), 40
beta-thalasemias, 240
BMI loci, 74, 75
BMI-associated loci, 72
body mass index (BMI), 5, 64, 69
Botstein, D., 16
brain reward circuitry, 163
brain-derived neurotrophic factor (BDNF), 158
brain-expressed genes, 249
BRCA1/2 testing, 379
breakpoint-enriched regions (BERs), 256, 258, 262
breast cancer, 255, 257, 279
broad-sense heritability, 28
built-in replication samples, 53
cadherins, 330
calcium channel subunits, 109
C-alpha test, 92
cancer, 90, 193, 355
evolution, 278
hallmarks, 269
phenotypes, 271
cancer cell proliferation, 278
cancer cell survival, 269
cancer gene census, 263, 266
cancer genome, 352
cancer genome atlas, the (TCGA), 262
network, 269, 271
cancer genomic alterations, 8, 256, 270, 271, 272, 278, 279
cancer hallmark network framework, 272
candidate gene studies, 26
candidate variants, 53
cardiac rupture, 79
cardio-metabolic effects, 75
cardiomyocardial diseases, 69, 90, 193
cardiovascular risk profile, 74
carrier screening, 342
caste system, 316
causal/causative genes, 86, 347
causal variants, 63, 65, 91, 234, 239
causative SNPs, 144
CCR5 antagonists, 298
CD4 Cell membrane, 298
cell migration, 263
Center for Cellular and Molecular Biology (CCMB), 318
Center for Mendelian Genomics, 349
centimorgans (cM), 93
Central Drug Research Institute, 318
central nervous system (CNS) disorders, 59, 151
centromere instability, 125
CGH array, 186
CGS-C allele, 195
CGS-D allele, 195
chemokine co-receptor 5 (CCR5), 298
chemotherapy, 283, 289
childhood alcohol-dependence symptoms, 157
Chinese cohort, 82
chi-square statistics, 333
chonriotcytosis, 170
chromatin accessibility, 47
chromatin modifications (ChIP-seq), 47
chromatin structure, 187
chromosomal aneuploidies, 240
chronic kidney diseases, 99
cis-eQTL, 212, 217
Claritas Genomics, 345, 348
classical linkage studies, 3
clinical genomic medicine, 344
Clinton-Blair agreement, 365
CNS-associated gene sets, 74
CNV analysis, 178, 257
CNV mosaicism, 185
coding variant, 232
cognitive domains, 5
cohort allelic sums test (CAS), 247
Collins, F., 79, 231
colorectal cancer, 171
ComBat, 216
combined multivariate and collapsing method (CMC), 248
common disease / common variant (CD/CV), 17, 19
comparative genomic hybridization (CGH), 175, 255
complement factor H (CFH), 26
complex human disease, 53
complex traits, 14, 17
comprehensive genetic screens, 358
congenital anomalies, 169
congenital diaphragmatic hernia, 169
congenital heart disease, 169
counter testing, 22
copy number polymorphisms (CNPs), 6, 169
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy number variation/variants (CNV/CNVs)</td>
<td>6, 119, 236, 257</td>
</tr>
<tr>
<td>coronary artery diseases (CAD)</td>
<td>27, 75, 79</td>
</tr>
<tr>
<td>COSMIC database</td>
<td>271</td>
</tr>
<tr>
<td>cost–benefit analysis (CBA)</td>
<td>368</td>
</tr>
<tr>
<td>cost-effective analysis (CEA)</td>
<td>368, 369, 375, 376, 377, 378</td>
</tr>
<tr>
<td>costs of goods and services (COGS)</td>
<td>351</td>
</tr>
<tr>
<td>Council of Scientific and Industrial</td>
<td>318</td>
</tr>
<tr>
<td>Research (CSIR)</td>
<td></td>
</tr>
<tr>
<td>Cpg density</td>
<td>205</td>
</tr>
<tr>
<td>Cpg dinucleotides</td>
<td>125, 194, 197, 198, 200</td>
</tr>
<tr>
<td>Cpg Islands</td>
<td>195, 196, 257</td>
</tr>
<tr>
<td>Cpg sites</td>
<td>130</td>
</tr>
<tr>
<td>Cpg-related SNPs (CGSs)</td>
<td>7, 194</td>
</tr>
<tr>
<td>Crohn’s and Collitis Foundation of America</td>
<td>350</td>
</tr>
<tr>
<td>Crohn’s diseases</td>
<td>18, 27, 54, 59, 60, 245</td>
</tr>
<tr>
<td>cryptic relatedness</td>
<td>35</td>
</tr>
<tr>
<td>CYP2B6 gene</td>
<td>300</td>
</tr>
<tr>
<td>CYP2C9*3</td>
<td>331</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>301</td>
</tr>
<tr>
<td>cystic fibrosis</td>
<td>231</td>
</tr>
<tr>
<td>cytarabine (ara-C)</td>
<td>281, 283, 284, 285</td>
</tr>
<tr>
<td>cytarabine activation</td>
<td>285</td>
</tr>
<tr>
<td>cytidine deaminase (CDA)</td>
<td>128, 284, 289</td>
</tr>
<tr>
<td>cytidine-5′-triphosphate synthetase (CTPS)</td>
<td>290</td>
</tr>
<tr>
<td>cytochrome P450 isoenzymes, 300 cytoxines</td>
<td>321</td>
</tr>
<tr>
<td>daunorubicin</td>
<td>282</td>
</tr>
<tr>
<td>deCODE Genetics</td>
<td>72</td>
</tr>
<tr>
<td>deoxycoformycin kinase (DCK)</td>
<td>284</td>
</tr>
<tr>
<td>deoxyctydylate deaminase (DCTD)</td>
<td>284</td>
</tr>
<tr>
<td>deoxyribonucleoside phosphates, 288</td>
<td>155</td>
</tr>
<tr>
<td>developmental origin of health and diseases (DOHaD)</td>
<td>128</td>
</tr>
<tr>
<td>diabetes type 1</td>
<td>1, 27, 18, 92, 128, 133, 172, 343, 358</td>
</tr>
<tr>
<td>diabetes type 2</td>
<td>2, 27, 69, 70, 74, 79, 193, 330, 356</td>
</tr>
<tr>
<td>diabetic nephropathy</td>
<td>75</td>
</tr>
<tr>
<td>Diagnostic and Statistical Manual of Mental Disorders (DSM)</td>
<td>106</td>
</tr>
<tr>
<td>diagnostic testing</td>
<td>239</td>
</tr>
<tr>
<td>dichorionic diamniotic monozygotic (DCDA)</td>
<td>170</td>
</tr>
<tr>
<td>differential methylation</td>
<td>265</td>
</tr>
<tr>
<td>differential susceptibility</td>
<td>160</td>
</tr>
<tr>
<td>differentially methylated region 2 (DMR2)</td>
<td>124</td>
</tr>
<tr>
<td>differentially methylated regions (DMRs)</td>
<td>256, 258, 260, 261, 262, 264</td>
</tr>
<tr>
<td>diplidop copy number</td>
<td>175</td>
</tr>
<tr>
<td>DISC1 gene</td>
<td>107</td>
</tr>
<tr>
<td>disease architecture</td>
<td>17</td>
</tr>
<tr>
<td>disease gene-mapping</td>
<td>90</td>
</tr>
<tr>
<td>disease phenotypes</td>
<td>16</td>
</tr>
<tr>
<td>disease risk</td>
<td>247</td>
</tr>
<tr>
<td>disease susceptibility</td>
<td>366</td>
</tr>
<tr>
<td>disease-associated variants</td>
<td>17, 34</td>
</tr>
<tr>
<td>disease-causing genes</td>
<td>343</td>
</tr>
<tr>
<td>disease-in-a-dish</td>
<td>342</td>
</tr>
<tr>
<td>dizygosity</td>
<td>175</td>
</tr>
<tr>
<td>dizygotic twins</td>
<td>16, 171</td>
</tr>
<tr>
<td>DNA copy number</td>
<td>184</td>
</tr>
<tr>
<td>DNA fingerprinting</td>
<td>361</td>
</tr>
<tr>
<td>DNA methyl transferases (DNMTs)</td>
<td></td>
</tr>
<tr>
<td>DNA methylation</td>
<td>8, 47, 127, 128, 129, 130, 131, 187, 193, 194, 197, 198, 200, 202, 203, 206, 258, 265</td>
</tr>
<tr>
<td>profiling</td>
<td>256</td>
</tr>
<tr>
<td>DNA repair</td>
<td>275</td>
</tr>
<tr>
<td>DNA synthesis</td>
<td>284, 299</td>
</tr>
<tr>
<td>DNA variations</td>
<td>169</td>
</tr>
<tr>
<td>dopaminergic systems</td>
<td>163</td>
</tr>
<tr>
<td>Down syndrome (trisomy 21)</td>
<td>344</td>
</tr>
<tr>
<td>Dravidian</td>
<td>315</td>
</tr>
<tr>
<td>driving regulator</td>
<td>272</td>
</tr>
<tr>
<td>DROSHA</td>
<td>323</td>
</tr>
<tr>
<td>Drosophila</td>
<td>76</td>
</tr>
<tr>
<td>drug resistance</td>
<td>299</td>
</tr>
<tr>
<td>drug response</td>
<td>335</td>
</tr>
<tr>
<td>drug screening</td>
<td>278, 342, 364</td>
</tr>
<tr>
<td>drug therapy</td>
<td>10, 356</td>
</tr>
<tr>
<td>druggable hits</td>
<td>21</td>
</tr>
<tr>
<td>DTXNB1 gene</td>
<td>107</td>
</tr>
<tr>
<td>Duchenne muscular dystrophy</td>
<td>231</td>
</tr>
<tr>
<td>dyslipidemia</td>
<td>193, 305</td>
</tr>
<tr>
<td>East Asian ancestry</td>
<td>62</td>
</tr>
<tr>
<td>East Asians</td>
<td>64</td>
</tr>
<tr>
<td>economic evaluation</td>
<td>367, 368, 373</td>
</tr>
<tr>
<td>economic theory</td>
<td>367</td>
</tr>
<tr>
<td>economics of gene therapy</td>
<td>372</td>
</tr>
<tr>
<td>EGLN1 gene</td>
<td>323, 330</td>
</tr>
<tr>
<td>electroencephalography (EEG)</td>
<td>153</td>
</tr>
<tr>
<td>embryogenesis</td>
<td>123</td>
</tr>
<tr>
<td>embryonic lethality</td>
<td>126</td>
</tr>
<tr>
<td>ENCODE</td>
<td>76</td>
</tr>
<tr>
<td>Encyclopedia of DNA Elements (ENCODE)</td>
<td></td>
</tr>
<tr>
<td>project consortium</td>
<td>47, 48, 49, 196, 206, 237</td>
</tr>
<tr>
<td>endogamous groups</td>
<td>316</td>
</tr>
<tr>
<td>endogyamy practices</td>
<td>9, 315</td>
</tr>
<tr>
<td>endophenotypes</td>
<td>152, 157</td>
</tr>
<tr>
<td>energy metabolism</td>
<td>74</td>
</tr>
<tr>
<td>English National Health Service (NHS)</td>
<td>370</td>
</tr>
<tr>
<td>enigmatic tribes</td>
<td>317</td>
</tr>
<tr>
<td>enzyme polymorphisms</td>
<td>316</td>
</tr>
<tr>
<td>epidemiology</td>
<td>14</td>
</tr>
<tr>
<td>epigenetic abnormalities</td>
<td>123</td>
</tr>
<tr>
<td>epigenetic changes</td>
<td>183</td>
</tr>
<tr>
<td>epigenetic inactivation</td>
<td>125</td>
</tr>
<tr>
<td>epigenetic marks</td>
<td>129, 130</td>
</tr>
<tr>
<td>epigenetic mechanisms</td>
<td>123, 187</td>
</tr>
<tr>
<td>epigenetic modifications</td>
<td>178</td>
</tr>
<tr>
<td>epigenetic signatures</td>
<td>187</td>
</tr>
</tbody>
</table>
Index

epigenome, 342
profiling, 188
epigenome-wide association studies (EWAS), 5, 123, 131
epigenomic disease signature, 123
epigenotype, 131
epistasis, 28, 114
epistatic interactions, 22
epithelial-to-mesenchymal transition, 263
epigenetic analysis, 212, 220, 224
electrical diagrams (eQED), 220
mapping, 211, 213, 217, 223
Eschericia coli two hybrid system, 81
esophageal atresia, 176, 185
Estonian biobank, 348, 349
estrogen receptor alpha 1b gene, 130
ethnic museum, 315
ethnicities, 343
etravirine-resistance-associated mutations (ETV-RAMs), 299
Eurasians, 64, 322
European ancestry, 72, 73, 108, 147
European and African ancestry, 288
European genetic ancestry, 19
European genome, 322
European GWAS, 63, 86
European populations, 343
European Union (EU) development, 357
evolutionary biology, 4, 12
evolutionary genomics, 323
evolutionary mixed model for pooled associated testing (EMMPAT), 249
exome, 352
exome sequencing, 7, 232, 234, 236, 238
prenatal, 240
expectation-maximization (EM) method, 257
expression quantitative trait loci (eQTLs) mapping, 7
expression quantitative traits (eQTs), 6, 21, 46, 208
family-based linkage studies, 26
family-based sequencing of affected individuals, 245
finasteride, 158
Fisher, R. A., 3, 28
Fisher’s test, 274
fluorescent in situ hybridization (FISH), 175
Food and Drug Administration (FDA), 298
fragile X mental retardation syndrome (FMR1) gene, 125, 129
Framingham Heart Study, 69
FTO variant, 70
functional validation, 149
functional variants, 236
GABA synapse, 152
GABA type A receptors, 152, 155
GABRA2, 159, 160, 161, 163
galecin-2, 83
gastrointestinal atresia, 173
Gaussian distribution, 39
Gaussian graphical models (GGM), 220
gene burden testing, 92
gene ontology (GO), 219, 274
gene redundancy, 235
gene silencing, 139
gene-centric chip, 73
gene-environment interactions, 10, 75, 151, 159, 160, 188, 243
gene-gene interactions, 75, 84
gene-protein networks, 10
genetic and environmental factors, 14
genetic and physical mapping, 7, 231
genetic architecture, 14, 16, 49, 108, 114, 208
genetic association studies, 200
genetic bases of diseases, 334
genetic disorders, 344
genetic diversity, 13
genetic drift, 9, 13, 315
genetic epidemiology, 14
genetic etiology, 108
genetic footprints, 317
genetic heterogeneity, 322
genetic linkage, 89
genetic pleiotropy, 75
genetic polymorphisms, 300, 302, 303
genetic predisposition, 130
genetic regulatory network, 220
genetic risk prediction, 3
genetic screening, 239
genetic variations, 208, 238, 290, 306
genetics of complex disorders, 232
genome England project, 346, 354
genome Qatar, 346, 359
genome rearrangements, 8, 255, 256
genome sequencing, 92, 342
genome technology, 8
genome test, 351
genome-wide ancestry, 97
genome-wide complex trait analysis (GCTA), 115
genome-wide scale, 8
genome-wide screening, 8
genome-wide significance, 27
genome-wide SNP arrays, 175
 genomic diagnostics, 361, 362
 genomically imprinted loci, 131
genomic instability, 266
genomic investigation of anthropometric traits (GIANT Consortium), 71
genomic medicine, 9, 341, 347, 350, 353, 356, 357, 358, 361
 genomic variability, 53
Index

genotype, 196, 335

HIV, 90
HIV drugs, 301
HIV infection, 298
HIV-associated neuropathy, 98
HL-60 leukemic cell line, 288
HLA-DRA, 323
homopolymers, 238

Illumina DNA sequencing platform, 196
Illumina HiSeq platform, 345
immunohistochemistry, 84
IMPUTE2, 209, 333
Indian genome variation (IGV) consortium, 318, 323
Indian Institute of Chemical Biology, 318
Indian populations, 315, 318
indinavir therapy, 303
Indo-European, 315, 331
induction therapy, 282
Industrial Toxicological Research Center, 318
inflammation, 79
inflammatory bowel disease, 239
inflammatory diseases, 370
inheritance pattern, 15
inherited genetic diseases, 342
insertion/deletions (inDel), 178
INSIG2 gene, 69
insulin resistance, 305
insulin secretion, 74

HIV, 90
HIV drugs, 301
HIV infection, 298
HIV-associated neuropathy, 98
HL-60 leukemic cell line, 288
HLA-DRA, 323
homopolymers, 238

Illumina DNA sequencing platform, 196
Illumina HiSeq platform, 345
immunohistochemistry, 84
IMPUTE2, 209, 333
Indian genome variation (IGV) consortium, 318, 323
Indian Institute of Chemical Biology, 318
Indian populations, 315, 318
indinavir therapy, 303
Indo-European, 315, 331
induction therapy, 282
Industrial Toxicological Research Center, 318
inflammation, 79
inflammatory bowel disease, 239
inflammatory diseases, 370
inheritance pattern, 15
inherited genetic diseases, 342
insertion/deletions (inDel), 178
INSIG2 gene, 69
insulin resistance, 305
insulin secretion, 74

HIV, 90
HIV drugs, 301
HIV infection, 298
HIV-associated neuropathy, 98
HL-60 leukemic cell line, 288
HLA-DRA, 323
homopolymers, 238

Illumina DNA sequencing platform, 196
Illumina HiSeq platform, 345
immunohistochemistry, 84
IMPUTE2, 209, 333
Indian genome variation (IGV) consortium, 318, 323
Indian Institute of Chemical Biology, 318
Indian populations, 315, 318
indinavir therapy, 303
Indo-European, 315, 331
induction therapy, 282
Industrial Toxicological Research Center, 318
inflammation, 79
inflammatory bowel disease, 239
inflammatory diseases, 370
inheritance pattern, 15
inherited genetic diseases, 342
insertion/deletions (inDel), 178
INSIG2 gene, 69
insulin resistance, 305
insulin secretion, 74
Index

Institute of Microbial Technology, 318
integrated networks, 273
internal tandem duplication (ITD), 282
international Cancer Genome Consortium, 323
International Cancer Genome Consortium, 61, 91
International HapMap 3 Consortium, 14, 233
International Schizophrenia Consortium (ISC), 60, 108
inter-sample correlation (ICE), 216
interval mapping, 213
invasion, 263
IRX3 gene, 71
JAK/STAT signaling, 282
Japanese population, 83
Kabuki syndrome, 236
cytotype, 182, 183, 184
karyotyping, 178
Lander, E., 17, 21, 26, 79
large-buoyant low-density lipoprotein cholesterol (lbLDL-C), 305
large-effect size, 56
lifetime alcohol problem score, 157
linear mixed models (LMM), 28, 115
linear mixed models approach, 32, 33, 41
linear regression, 36, 197
linkage analysis, 153, 235
linkage complex associations, 6
linkage disequilibrium (LD), 13, 28, 61, 80, 94, 98, 139, 153, 168, 212, 320
lipodystrophy, 304
lipodystrophy, 304, 305
lipohypertrophy, 304
livestock selection, 12
logistic regression, 36
long interspersed elements (LINE), 263
long-term environmental stimuli, 127
low-density lipoprotein cholesterol (LDL-C), 305
low-effect risk variants, 56
low-effect size, 56
lymphoblast cell line, 289
lymphoblastic leukemia, 148
machine learning technique, 143
macrophages, 84
Madras motor neuron diseases, 322
maladaptive behavior, 162
MALDI/TOP Mass spectrometry, 83, 352
MAP kinase family, 271
MAPK pathways, 271, 274
marker genotypes, 208
Markov cluster (MCL) algorithm, 274
mature-onset obesity, 72
MC4 R gene, 74
McCellan and King, 9
Mckusick, V., 7, 109
medical genetics, 4
meiosis, 182, 183
melanocortin-4 receptor (MC4 R), 71
Mendelian diseases, 5, 7, 90, 92, 231, 237, 356, 358, 363
recessive, 235, 236
Mendelian inheritance, 3
recessive, 236
Mendelian trait, 6
mental disorders, 128, 133
mental illness, 343
mental stress, 129
MethoChip, 73
metabolic disorders, 128
metabolic syndrome traits, 27
metabolome, 342
methylated cytosine, 200
methylation chip, 198
methylolation oligonucleotide microarray analysis (MOMA), 256, 257
methyl-CpG-binding domain proteins (MBDs), 125
methylome, 257
methyl-RRBS, 196
Michigan Longitudinal Study (MLS), 161
microarray, 175, 208
microbiome, 342
microRNA (miRNAs), 6, 139, 246
million veteran program (MVP), 345, 352, 354, 361
minimum allele frequency (MAF), 147
minimum free energy (MFE), 145
minor allele frequencies (MAF), 21
miR-125b, 140
miR-525-3p, 148
miR-571, 147
miRNA binding sites, 141
miRNA regulation, 146
miRNA target prediction, 143
miRNA target sites (miRSNPs), 6, 139, 141, 143, 144, 145, 147
mismatched model structure, 44
mitochondrial DNA damage, 306
mitochondrial DNA markers, 316, 317
mitogen-activated protein (MAP) kinase, 85
monoallelic expression, 124
monochromatic diamnionic monozygotic (MCDATA), 182
monogenic obesity, 72
monozygotic (MZ) twins, 16, 107, 128, 187
sisters, 184
monozygous twins, 170, 171, 173, 174, 175, 178
mosaicism, 182
motivational enhancement therapy (MET), 155

© in this web service Cambridge University Press
www.cambridge.org
mouse insulin-like growth factor 2 (IGF2) gene, 124
mRNA stability, 141
multi-drug resistance protein 1 (MDR1), 302
multifactorial diseases, 243
multiple genomic loci, 123
multiple system atrophy (MSA), 186
multiple testing, 18
myocardial infarction (MI), 5, 62, 79
myostatin gene, 140
narrow-sense heritability, 15, 29
National Center for Advancing Translational Science (NCATS), 349
national healthcare systems, 365
National Human Genome Research Institute (NHGRI), 44, 349
natural selection, 9, 315
network analysis, 270, 278
network wiring, 270
neurodegenerative diseases, 148
neurodevelopmental delay 126
neurodevelopmental disorder, 124, 133
neuronal and axonal mitochondrial injury, 305
neuropathy, 305
newborn screening, 362
next-generation sequencing (NGS), 5, 7, 92, 119, 187, 231, 239, 379
NGS technologies, 244, 245, 252
NIH Roadmap Epigenomics project, 76
Nihalis, 315
non-allelic homologous recombination (NAHR), 263
non-coding regions, 47, 139, 237
non-coding SNPs, 76
non-Mendelian transmission, 238
non-nucleosome reverse transcriptase inhibitors (NNRTIs), 298, 299, 300
Norwegian breast cancer cohort, 256
nuclear factor k B (NFKB), 81
nuclear receptor cistrome, 76
nucleoside reverse transcriptase inhibitors (NRTIs), 298, 305
nutritional factors, 183
obesity, 76, 79, 128
odds ratio (OR), 14
OncoMine, 344
online Mendelian inheritance in man (OMIM), 109
open reading frame (ORF), 223
organic anion transporting polypeptide, 302
ovarian cancer, 263
Ozaki and Tanaka, 5
PAGE Consortium, 64
Parkinson’s disease, 148, 186
Parkinson-like discordant monozygotic twins, 186
paternal imprints, 124
pathway information, 46
pathway-based analyses, 75
Pearson regression, 197
pediatric leukemia, 283
pericentromeric, 263
peripheral neuropathy, 306
peroxisome proliferator-activated receptor alpha (PPARalpha) gene, 128
personal biology, 342
Personalis, 345
personalized genetic testing, 22
personalized medicine, 8, 9, 10, 341, 345, 362, 366, 370, 372, 375, 379, 380
personalized therapy, 291, 334
phage display, 81
pharmaADME database, 331
pharmaco-genetic markers, 8
pharmaco-genetic traits, 3
pharmaco-genomic technologies, 367
variants, 330
pharmacokinetics (PK), 281, 283, 290, 302
PharmGKB database, 331
phenotypic coherence, 119
phenotypic variation, 15
phenotypical discordant twins, 184
phylogenetic conservation, 249
placental anastomoses, 173
pleiotropy, 44, 116
PLINK, 36
poly (A) tail, 141
polyadenylation signals, 144, 145
polycystic ovary syndrome, 54
polygenicity, 27
polymerase chain reaction (PCR)-invader assay, 79, 80
polymorphic genetic markers, 4
polymorphic loss of function (LoF), 234
polyphagia, 74
pooled sequencing data, 246
population genetics, 8
population genomics, 19
population screening programs, 363
population stratification, 18
population-scale genome sequencing, 353
post-GWAS analyses, 90
post-GWAS era, 49
postnatal disease screening, 240
post-zygotic mutations, 182
potassium channels, 330
Prader-Willi syndrome, 124
precocious coronary artery diseases (PROCARDIS), 80
premature death, 69
primordial germ cells (PGCs), 124
principal component analysis (PCA), 35, 48, 209, 319
Index

- programmable DNA nucleases, 76
- proinflammatory factors, 85
- protein kinases, 81
- proteome, 342
- pseudocholinesterase deficiency, 322
- psychiatric diseases, 118
- psychopathology, 160
- psychiatric disorders, 44
- Psychiatric Genomics Consortium (PGC), 27
- p-values, 26, 55, 57, 117, 219, 223, 249, 274, 332
- quality adjusted life years (QALYs), 370, 378
- quantitative polymerase chain reaction (qPCR), 175, 352
- quantitative traits, 7, 35
- rare genetic disease, 349
- rare mutations, 247
- rare variant association, 247
- recessive association model, 80
- recessive or X-linked, 90
- RegulomeDB, 47
- relative risk (RR), 14
- REML estimator, 41
- reporter gene analysis, 85
- representational oligonucleotide microarray analysis (ROMA), 256
- restriction fragment length polymorphism (RFLP), 16
- retinohlastoma, 231
- retro-transposable SINE elements, 265
- Rett syndrome, 128, 187
- rheumatoid arthritis (RA), 27, 59
- ribonucleotide reductase, 284, 290
- ridge regression, 38, 41, 48
- Risch and Merkangas, 3
- Ross and Merkangas, 3
- risk genotype, 160
- risk prediction, 48
- RNA polymerase 46
- RNAi knockdown, 269, 270
- RNAi screening, 270, 271, 272
- RNA-induced silencing complex (RISC), 139
- RNA-seq, 47, 208, 225
- ROLLOFF method, 322
- Saudi Arabia, 358
- Saudi genome project, 346, 361
- Saudi population, 345
- Schinzel-Giedion syndrome, 236
- schizophrenia, 5, 106, 117, 119, 171, 178, 236, 250
- schizophrenia-associated genetic variants, 44
- Scripture, 210
- sequence kernel association test, 92
- sequencing technology, 344
- sex determination, 240
- short interspersed elements (SINE), 263
- short-tandem repeats (STRs), 317
- signaling networks, 272, 277
- signaling pathways, 279
- signalosome protein, 85
- SINE Alu elements, 266
- single rare variants, 250
- single-gene disorders, 344
- siRNA, 82, 85
- small-density lipoprotein cholesterol (sdLDL-C), 305
- small-effect variants, 48
- SMARTPCA tool, 333
- SNP alleles, 143
- SNP array, 185, 186
- analysis, 187
- SNP array-based GWAS, 187
- SNP chips, 5
- SNP expression, 146
- SNP genotyping, 90
- SNP microarray, 183
- SNP prioritization, 46
- somatic nuclear transfer, 125
- Soto’s syndrome, 169
- South-Asian ancestry, 72
- spinocerebellar ataxia, 178
- spondylitis, 16
- sporadic diseases, 236
- squamous cell carcinoma, 132
- stakeholders, 362
- statistical genetics, 343
- structural variation (SV), 13
- support vector machines (SVM), 143
- surrogate variable analysis (SVA), 216
- susceptibility locus, 64, 80
- susceptibility variants, 4
- SWITCH-MHMM, 95
- synaptic strength, 151
- tag SNPs, 61, 81, 155, 168, 323
- Taiwan biobank project, 347
- Taiwanese population, 83
- target allele, 145
- telomere extension, 275
- Thangaraj, 315
- Thermo Fisher Enterprise Genomics Solutions Group, 361
- Thermo Fisher ion torrent sequencing proton platform, 345, 351, 354
- Tibeto-Burman, 315
- TopHat, 210
- transcription factor (TF), 46
- binding site, 47, 215
- transcription factor FOXA 1, 47
- transcription start site (TSS), 195
- trans-eQTL, 212, 217
- TRANSCAN database, 85
- translational research, 353
Index

transmission disequilibrium test (TDT), 97
transposable elements, 264
treatment regimens, 282
tree-structured penalty, 215
trial-based evaluation, 372
triple-negative breast cancer, 270
Trypanosomes, 98
tumor necrosis factor-alpha gene (TNF-alpha), 304
tumorigenesis, 266
twelve-step facilitation (TSF), 155
twin pregnancies, 170
twin-to-twin transfusion syndrome (TTTS), 173
ubiquitinligase, 85
ulcerative colitis, 323
under control – disinhibition behavior, 156
uridine diphosphate-gluronosyltransferase 1A1 (UGT1A1), 303, 304
USDA, 206
vantage-sensitive hypothesis, 162
Venter, C., 26
ventral tegmental area (VTA), 152
ventricular fibrillation, 79
visceral fat-associated SNP, 149
Visscher, P., 16, 19, 20, 27, 114
Wellcome Trust Case Control Consortium (WTCCC), 4, 19, 27, 55, 56, 57
weak-effect variants, 49
whole exome sequencing, 239
whole-association mapping, 53
whole-genome sequencing (WGS), 10, 232, 318, 345, 352, 363, 375
whole-genome SNPs, 38
willingness-to-pay (WTP) techniques, 368
WINPOP, 95
World Health Organization (WHO), 282
X chromosome, 125
X-inactivation, 187
Y chromosome, 125, 321
Vesicella pestis, 321
Yoruba individuals, 84
zinc finger transcription factor, 285
zygosity, 174
testing, 175
typing, 175