Contents

Preface
page xi

1 **Introduction to difference equations**
1.1 A first look at discrete equations
1.2 The Riccati equation
1.3 Partial difference equations
1.4 Notes
Exercises

2 **Discrete equations from transformations of continuous equations**
2.1 Special functions and linear equations
2.2 Addition formulae
2.3 The Painlevé equations
2.4 Bäcklund transformations for nonlinear PDEs
2.5 Infinite sequence of conservation laws and KdV hierarchy
2.6 Notes
Exercises

3 **Integrability of P\(\Delta\)Es**
3.1 Quadrilateral P\(\Delta\)Es
3.2 Consistency-around-the-cube as integrability
3.3 Lax pairs and Bäcklund transformation from CAC
3.4 Yang–Baxter maps
3.5 Classification of quadrilateral P\(\Delta\)Es
3.6 Different equations on different faces of the consistency cube
3.7 CAC for multi-component equations
3.8 Lattice KdV, SKdV and mKdV equations
3.9 Higher-dimensional equations: the KP class
3.10 Notes
Exercises

© in this web service Cambridge University Press
www.cambridge.org
4 Interlude: Lattice equations and numerical algorithms

4.1 Padé approximants
4.2 Convergence acceleration algorithm
4.3 Rutishauser’s QD algorithm
4.4 Notes
Exercises

5 Continuum limits of lattice PDE

5.1 How to take a continuum limit
5.2 Plane-wave factors and linearization
5.3 The semi-continuous limits
5.4 Semi-discrete Lax pairs
5.5 Full continuum limit
5.6 All at once, or the double continuum limit
5.7 Continuum limits of the 9-point BSQ
5.8 Notes
Exercises

6 One-dimensional lattices and maps

6.1 Integrability of maps
6.2 The Kahan–Hirota–Kimura discretization
6.3 The QRT maps
6.4 Periodic reductions
6.5 Lax pair for the periodic reductions and construction of invariants
6.6 Pole reduction of the semi-discrete KP equation
6.7 Notes
Exercises

7 Identifying integrable difference equations

7.1 Singularity analysis of differential and difference equations
7.2 Algebraic entropy
7.3 Singularities from a geometric point of view
7.4 Notes
Exercises

8 Hirota’s bilinear method

8.1 Introduction
8.2 Soliton solutions
8.3 Hirota’s and Miwa’s equations
8.4 Reductions of the Hirota-Miwa equation
8.5 Bilinearization of a lattice equation
Contents

8.6 Solutions in matrix form 241
8.7 Notes 245
Exercises 246

9 Multi-soliton solutions and the Cauchy matrix scheme 250
 9.1 Cauchy matrix structure for KdV-type equations 250
 9.2 Closed-form lattice equations 255
 9.3 Derivation of Lax pairs 257
 9.4 Bilinear form from soliton solutions 261
 9.5 The NQC and Q3 equations 266
 9.6 Proof of the Q3 N-soliton solution 268
 9.7 Higher-dimensional soliton systems: the KP class 272
 9.8 Notes 277
 Exercises 277

10 Similarity reductions of integrable PDEs 280
 10.1 Introduction to dimensional reductions 280
 10.2 Compatibility of lattice constraint with quad equations 284
 10.3 The linear case 285
 10.4 Similarity constraints for the lattice KdV family 289
 10.5 Notes 300
 Exercises 301

11 Discrete Painlevé equations 304
 11.1 Early discoveries of discrete Painlevé equations 305
 11.2 Discrete Painlevé equations from Sakai’s classification 307
 11.3 Coalescences and degeneracies of the discrete Painlevé equations 310
 11.4 Bäcklund and other transformations of discrete Painlevé equations 311
 11.5 Affine Weyl groups 315
 11.6 Linear problems 322
 11.7 Linearization of discrete Painlevé equations 326
 11.8 Sakai’s elliptic discrete Painlevé equation 328
 11.9 Notes 329
 Exercises 331

12 Lagrangian multiform theory 334
 12.1 Conventional Lagrange theory and its discrete analogue 335
 12.2 Lagrangian 2-form structure 343
 12.3 Lagrangian 1-form structure 352
 12.4 Notes 359
 Exercises 360
Contents

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Elementary difference calculus and difference equations</td>
<td>363</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Theta functions and elliptic functions</td>
<td>384</td>
</tr>
<tr>
<td>Appendix C</td>
<td>The continuous Painlevé equations and the Garnier system</td>
<td>404</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Some determinantal identities</td>
<td>407</td>
</tr>
</tbody>
</table>

References 411

Index 440