Contents

Preface

1. Definitions of risk and return
 1.1 Introduction
 1.2 Measuring return
 1.3 Portfolio constraints
 1.4 Defining risk with variance
 1.5 Other risk measures
 1.6 Review
 1.7 Problems

2. Efficient portfolios: the two-asset case
 2.1 Defining efficiency
 2.2 Two-asset portfolios
 2.2.1 The effect of correlation
 2.2.2 Classifying the curves
 2.3 Review
 2.4 Problems

3. Portfolios with a risk-free asset
 3.1 The risk-free asset
 3.2 Efficiency with a risk-free asset
 3.3 Tangent portfolios
 3.4 Examples
 3.5 Borrowing restrictions
 3.6 Review
 3.7 Problems

4. Finding the efficient frontier – the multi-asset case
 4.1 Finding the tangent portfolio
 4.2 Geometry of the frontier
Contents

4.3 The minimal variance portfolio 42
4.4 Illustrating the method 43
4.5 The derivation of the algorithm 44
4.6 Solution via Lagrange multipliers 52
4.7 Review 53
4.8 Problems 54

5 Single-factor models
5.1 Introduction 57
5.2 Mathematical formulation of the single-factor model 58
5.3 Data requirements for the single-factor model 59
5.4 Understanding beta 60
5.5 Techniques for parameter estimation 62
5.6 Assessing estimates 64
5.7 Portfolio betas 67
5.8 Blume’s technique 67
5.9 Fundamental analysis 70
5.10 Review 71
5.11 Problems 72

6 Multi-factor models
6.1 Mathematical formulation 75
6.2 Types of multi-factor models 78
6.3 Orthogonalisation for multi-factor models 79
6.4 Review 84
6.5 Problems 84

7 Introducing utility
7.1 Limitations of mean–variance analysis 88
7.2 Defining utility 90
7.3 Properties of utility functions 91
7.4 Quadratic utility and portfolio theory 93
7.5 Indifference curves 94
7.6 Approximating with quadratic utility 95
7.7 Indifference pricing 96
7.8 Review 98
7.9 Problems 98

8 Utility and risk aversion
8.1 Risk aversion and curvature 102
8.2 Absolute risk aversion 103
8.3 Relative risk aversion 105
8.4 Varying the utility function 107
Contents

8.5 St Petersburg revisited ... 109
8.6 Review .. 110
8.7 Problems ... 110

9 Foundations of utility theory 113
9.1 Analysing utility theory through experimental economics ... 113
9.2 The rational investor ... 115
9.3 The rational expectations theorem 117
9.4 Review .. 121
9.5 Problems ... 121

10 Maximising long-term growth 122
10.1 Geometric means .. 122
10.2 Kelly’s theorem ... 125
10.3 Review .. 130
10.4 Problems ... 130

11 Stochastic dominance .. 133
11.1 Introduction .. 133
11.2 Dominance .. 133
11.3 First-order stochastic dominance 134
11.4 Second-order stochastic dominance 138
11.5 Review .. 145
11.6 Problems ... 145

12 Risk measures .. 148
12.1 Introduction .. 148
12.2 Value-at-Risk .. 149
12.3 Computing VAR .. 152
12.4 VAR estimates and excesses 154
12.5 Evaluating risk measures .. 154
12.6 Other risk measures and the axioms 158
12.7 Conditional expected shortfall 160
12.8 CES and the coherence axioms 162
12.9 Risk measures and utility .. 165
12.10 Economic capital modelling 165
12.11 Review ... 166
12.12 Problems ... 167
12.13 Additional problems .. 168

13 The Capital Asset Pricing Model 169
13.1 Introduction .. 169
13.2 From tangent to market .. 169
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3</td>
<td>Assessing the CAPM assumptions</td>
<td>173</td>
</tr>
<tr>
<td>13.4</td>
<td>Using CAPM</td>
<td>173</td>
</tr>
<tr>
<td>13.5</td>
<td>Implementing CAPM</td>
<td>174</td>
</tr>
<tr>
<td>13.6</td>
<td>Eliminating the risk-free asset</td>
<td>176</td>
</tr>
<tr>
<td>13.7</td>
<td>Testing CAPM</td>
<td>178</td>
</tr>
<tr>
<td>13.8</td>
<td>Roll’s objection</td>
<td>179</td>
</tr>
<tr>
<td>13.9</td>
<td>Review</td>
<td>179</td>
</tr>
<tr>
<td>13.10</td>
<td>Problems</td>
<td>180</td>
</tr>
<tr>
<td>14</td>
<td>The arbitrage pricing model</td>
<td>182</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>182</td>
</tr>
<tr>
<td>14.2</td>
<td>Defining arbitrage</td>
<td>182</td>
</tr>
<tr>
<td>14.3</td>
<td>The one-step binomial tree</td>
<td>183</td>
</tr>
<tr>
<td>14.4</td>
<td>The principle of no arbitrage</td>
<td>184</td>
</tr>
<tr>
<td>14.5</td>
<td>Using replication to price a call option</td>
<td>184</td>
</tr>
<tr>
<td>14.6</td>
<td>Risk-neutrality</td>
<td>185</td>
</tr>
<tr>
<td>14.7</td>
<td>Interest rates and discounting</td>
<td>186</td>
</tr>
<tr>
<td>14.8</td>
<td>The trinomial tree and limitations of no arbitrage</td>
<td>188</td>
</tr>
<tr>
<td>14.9</td>
<td>Arbitrage and randomness</td>
<td>189</td>
</tr>
<tr>
<td>14.10</td>
<td>Arbitrage Pricing Theory</td>
<td>190</td>
</tr>
<tr>
<td>14.11</td>
<td>Computations</td>
<td>192</td>
</tr>
<tr>
<td>14.12</td>
<td>An alternative approach to computation</td>
<td>196</td>
</tr>
<tr>
<td>14.13</td>
<td>Introducing realism</td>
<td>197</td>
</tr>
<tr>
<td>14.14</td>
<td>APT versus CAPM</td>
<td>197</td>
</tr>
<tr>
<td>14.15</td>
<td>APT in practice</td>
<td>198</td>
</tr>
<tr>
<td>14.16</td>
<td>Applications of APT</td>
<td>199</td>
</tr>
<tr>
<td>14.17</td>
<td>Criticising APT</td>
<td>199</td>
</tr>
<tr>
<td>14.18</td>
<td>Review</td>
<td>200</td>
</tr>
<tr>
<td>14.19</td>
<td>Problems</td>
<td>200</td>
</tr>
<tr>
<td>15</td>
<td>Market efficiency and rationality</td>
<td>203</td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>203</td>
</tr>
<tr>
<td>15.2</td>
<td>Defining efficiency</td>
<td>203</td>
</tr>
<tr>
<td>15.3</td>
<td>Testing efficiency</td>
<td>206</td>
</tr>
<tr>
<td>15.4</td>
<td>Anomalies</td>
<td>207</td>
</tr>
<tr>
<td>15.5</td>
<td>Conclusions on efficiency</td>
<td>209</td>
</tr>
<tr>
<td>15.6</td>
<td>Rationality</td>
<td>210</td>
</tr>
<tr>
<td>15.7</td>
<td>Famous bubbles</td>
<td>211</td>
</tr>
<tr>
<td>15.8</td>
<td>Justifying high stock prices</td>
<td>213</td>
</tr>
<tr>
<td>15.9</td>
<td>Further reading</td>
<td>213</td>
</tr>
<tr>
<td>15.10</td>
<td>Review</td>
<td>213</td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press

www.cambridge.org
Contents

15.11 Questions 214

16 Brownian motion and stock price models across time 215
16.1 Introduction 215
16.2 Brownian motion 215
16.3 Differentiability properties of Brownian motion 216
16.4 Computing with Brownian motion 219
16.5 More properties 220
16.6 Arithmetic and geometric Brownian motions 222
16.7 Log-normal models for stock prices 224
16.8 Auto-regressive processes 226
16.9 The Wilkie model 227
16.10 Using the Wilkie model 230
16.11 Review 231
16.12 Questions 232

Appendix A
Matrix algebra 234

Appendix B
Solutions 238

References 309

Index 311