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Making fringes

1.1 The need for angular resolution

Progress in astronomy is dependent on the development of new instrument-
ation that can provide data which are better in some way than the data which
were available before. One improvement that has consistently led to astro-
nomical discoveries is that of seeing finer detail in objects. In astronomy, the
majority of the objects under study cannot easily be brought closer for inspec-
tion, so the typical angular scales subtended by objects, which depend on the
ratio of the typical sizes of the objects to their typical distances from the Earth,
are a more useful indicator of how easily they can be seen than their linear
sizes alone. The angular separation of two features in a scene which can be
just be distinguished from one another is called the angular resolution and the
smaller this scale is, the more detail can be seen.

The impact of increased angular resolution can be appreciated from com-
paring the important angular scales of objects of interest with the angular
resolution of the instrumentation available at different times in history. Prior
to the invention of the telescope, the human eye was the premier ‘instru-
ment’ in astronomy, with an angular resolution of about 1 arcminute (about
300 microradians). With the notable exceptions of the Sun, Moon and comets,
most objects visible in the night sky are ‘star-like’: they have angular sizes
smaller than 1 arcminute and so appear as point-like objects. The first tele-
scopes improved the angular resolution of the naked eye by factors of three to
six: Galileo’s telescopes are thought to have had angular resolutions of about
10–20 arcseconds (Greco et al., 1993; Strano, 2009) and it became possible
to see that planets appear as discs or crescents and have their own moons.
Subsequent improvements to telescopes have culminated in telescopes like
the Hubble Space Telescope (HST) which have typical angular resolutions of
around 50 milliarcseconds (about 250 nanoradians) – better by a factor of more
than a thousand than the naked eye.
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2 Making fringes

The increased angular resolution offered by the HST and other high-
angular-resolution telescopes has transformed the study of astrophysics.
Astronomers have seen many phenomena that were undreamed of even a
few decades earlier: young stars surrounded by discs of material left over
from their formation, hugely complex filamentary structure in the ‘planet-
ary nebulae’ surrounding stars at the end of their lives and bright ‘cusps’
of stellar emission at the centres of galaxies indicating the presence of
black holes.

Nevertheless, the angular resolution available with a conventional opti-
cal telescope is still inadequate to resolve many important astrophysical
phenomena. Amongst the most obvious examples are the following:

Stars – The photospheres of the nearest stars (except for the Sun) are a few
milliarcseconds across.

Planet formation – A planet in an Earth-like orbit forming around a star in
the nearest star-forming region (around 150 parsecs away) will be about
6 milliarcseconds from its parent star.

Black-hole accretion – The standard model for active galactic nuclei con-
sists of an accreting black hole surrounded by a broad-line region which
reprocesses the radiaton emerging from the accretion disc, and a torus of
dusty material which can block direct radiation from the accretion disk.
The dust tori in the nearest active galactic nuclei have angular diame-
ters of a few milliarcseconds and the broad-line regions are predicted to
have sub-milliarcsecond angular radii. The accretion disks themselves
are thought to have micro arcsecond-scale diameters.

Undeniably, then, there is scope for observing new phenomena if angular
resolutions much greater than those available with current telescopes could be
achieved.

1.2 The resolution of a single telescope

If a telescope is built so that all optical imperfections are overcome and the
distorting effects of the Earth’s atmosphere are removed (for example by plac-
ing the telescope in space), then the angular resolution of the telescope will be
limited by diffraction. This can be understood by considering the observation
of a point source of light using such an idealised telescope.

The telescope can be modelled as a perfect lens projecting an image onto a
detector as shown in Figure 1.1. The finite size of the telescope is modelled as
a circular aperture of diameter d placed in front of the lens. When observing
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1.2 The resolution of a single telescope 3

Figure 1.1 A telescope focussing the light from a point source of light (e. g. a
star) onto a screen. The telescope is represented as a perfect lens with a circular
aperture of diameter d in front of it.

Intensity

Angular offset

(a) (b)

Figure 1.2 The diffraction-limited intensity pattern (known as the ‘Airy disc’)
seen on the screen in the focal plane of the telescope in Figure 1.1 (a) and a cut
through the intensity pattern (b).

a point-like object (which will be referred to as a ‘star’, since most stars are
close enough to point-like for these purposes), this arrangement corresponds
to a Fraunhofer diffraction experiment. What is seen on the screen is not an
infinitely sharp point of light but rather the diffraction pattern of the circular
aperture, known as an Airy disc, which consists of a central spot surrounded by
circular rings as shown in Figure 1.2. This diffraction pattern is known as the
point-spread function (PSF) of the telescope. Diffraction therefore introduces
a finite amount of ‘blurring’ to the image of the point-like source, even though
the lens is modelled as being free from any defects.
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4 Making fringes

Δθ = 2.0λ /d Δθ = 1.0λ /d Δθ = 0.5λ /d Δθ = 0.1λ /d

Figure 1.3 Patterns seen in the focal plane of a telescope when pairs of stars of
different separations Δθ are observed through a telescope.

The effect of the blurring on angular resolution can be quantified by con-
sidering what happens if there is a second star close to the first one as shown
in Figure 1.3. The light from the second star will produce a second identi-
cally shaped diffraction pattern on the screen, offset by an angular distance Δθ
where Δθ is the angular separation of the two stars. Since the phase of the light
waves from one star varies randomly and independently of the phase of the
light waves from the other star, there is no interference between the two (the
justification for this lack of interference is discussed further in Section 1.4.3),
and so what is seen on the screen is simply the sum of the intensity patterns
that would be seen with either star alone.

If the two stars are brought closer and closer to one another as shown in
Figure 1.3, then at some point it becomes impossible to tell whether there is
one star or two. At this point the pair of stars is said to be ‘unresolved’ and the
separation at which this occurs is the angular resolution of the telescope. While
the exact separation at which the stars become indistinguishable depends on a
number of factors such as their relative brightnesses, the Rayleigh criterion
defines the stars as being ‘just resolved’ when the peak of the blur pattern
produced by one star overlaps with the first null of the blur pattern produced
by the second. As shown in Figure 1.2, the angular distance from the peak to
the first null of the Airy disc is given by 1.22λ/d, where λ is the wavelength of
the light being observed. Thus, the required overlap occurs when

Δθ = 1.22λ/d. (1.1)

By the Rayleigh criterion, Equation (1.1) gives value of the angular resolution
of any sufficiently well-corrected telescope. As an example, we can consider
the HST, which has a 2.4-m-diameter primary mirror. When observing at a
visible wavelength of 500 nm, the diffraction spot from this telescope will have
an angular radius of 52 milliarcseconds and so two stars closer together than
this cannot be reliably distinguished.
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1.3 A long-baseline interferometer 5

The angular resolution can be improved by building larger telescopes. How-
ever, to achieve 1 milliarcsecond resolution at a wavelength of 500 nm would
require a telescope 126 m in diameter. Even the largest optical telescopes being
proposed at present will have aperture diameters of less than 40 metres, and
they come with billion-dollar price tags. The cost of a telescope scales as the
square or cube of the aperture diameter so building telescopes more than three
times as large seems unlikely in the medium term.

What is required is a method of gaining large factors of improvement in
angular resolution which do not require unfeasibly large telescopes. The only
known method with this property is long-baseline interferometry. Interfero-
metry uses the interference of light from two or more small telescopes
separated by a large distance B to get images with an angular resolution of
order λ/B without the mechanical and optical complexities inherent in con-
structing a single large telescope of diameter B. The next sections serve to
show the principles of this method.

1.3 A long-baseline interferometer

An astronomical interferometer collects the light originating from a single
region of the sky at two or more locations and brings the collected beams
of light together to form an interference pattern. Figure 1.4 shows perhaps
the simplest interferometer which could be implemented in practice. Most real
interferometers include magnifying and/or demagnifying optics to make the
construction of the interferometer easier and cheaper, but the design shown
has the advantage that it achieves all the essential functions of an interfero-
meter using only plane (flat) mirrors and so the optical functions of all the
elements are readily understandable.

The example interferometer collects starlight using a pair of siderostats, flat
mirrors which can be tilted appropriately to reflect the light from a chosen
region of sky into a fixed direction. The diameter of the siderostat mirrors can
be modest, perhaps only 5 cm if only bright objects are to be observed. In an
interferometer used for studying faint objects, the siderostats would typically
be replaced by individual telescopes acting as light collectors, each perhaps
several metres in diameter.

The distance between the two collectors is typically much larger than the
size of any feasible individual collector, perhaps hundreds of metres. The ori-
entation in space of the collector separation is also important: the baseline
vector Bpq between the light-collecting elements p and q of an interferometer
is defined as Bpq = xp − xq, where the elements are situated at locations xp
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6 Making fringes
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Figure 1.4 A simple long-baseline interferometer constructed out of plane (flat)
mirrors. Some of the mirrors have been included to maintain certain symmetries
of the optical path – these symmetries are explained in Section 4.4.2.

and xq. In much of the following the pq suffix is dropped, but it will be used
later when considering multi-baseline interferometers. The length of the base-
line vector is called the ‘baseline length’ or just the ‘baseline’ and is shown as
B in Figure 1.4.

The collected starlight is brought to a central point using reflections off a
series of ‘beam-relay’ mirrors. Included in the beam path are a pair of mirrors,
which can be moved backwards or forwards, acting like an ‘optical trombone’
to vary the distance the light travels before reaching the central combination
point. These ‘path compensators’ or ‘delay lines’ serve to control the relative
delays between the light beams coming from different collectors: as will be
discussed in Section 1.7, in practice it is necessary for the times taken for the
light to travel from the object to the point of interference via the two collectors
to be matched with one another to in order to see interference.

The light beams are combined in a ‘beam combiner’ to produce interfer-
ence fringes. There are many arrangements which can be used to do this: the
arrangement shown here uses a so-called ‘pupil-plane’ arrangement where the
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1.4 The interferometric measurement equation 7

two beams are simply allowed to overlap on a screen. The intensity pattern on
the screen can be observed visually but it is more usual to replace the screen
by an electronic detector in order to obtain more quantiative information and
to observe fainter objects. The detector converts the intensity at each location
on its face into an electronic signal, which is digitised, analysed and displayed
on a computer.

Interference between the two beams results in a sinusoidal intensity pattern.
In the next section it will be demonstrated that this ‘fringe pattern’ contains
information about the size and shape of the object being observed.

1.4 The interferometric measurement equation

The properties of the fringe pattern seen when observing complex objects is
derived in the following analysis by considering first the fringe pattern formed
when observing a point source, and then how the characteristics of the fringe
pattern change when the object consists of two closely spaced point sources.
Finally, the properties of the fringe pattern formed when observing an arbitrary
object will then be derived by considering it as a collection of closely spaced
point sources.

1.4.1 The fringe pattern from a point source

The form of the fringe pattern is derived here using a model of the interfero-
meter which is shown schematically in Figure 1.5. In this model, light arrives
from a source of light that is the object of interest. The source is assumed to be
a point-like ‘star’, which is sufficiently distant that the light can be accurately
represented as a plane wave, in other words there are plane surfaces known as
‘wavefronts’ over which the instantaneous electromanetic field E0 is the same
at any given moment in time.

Light propagates from this wavefront along two parallel rays and arrives
at the two collectors. The rays then travel via the interferometer optics to the
beam combination point, at which point the light waves are superposed and
then converted into an intensity i(x). These rays are subject to a series of delays
consisting of three different components:

1. An ‘external’ or ‘geometric’ delay τext due to the light travel time from the
wavefront to the collector.

2. An ‘internal’ delay τint due to the light travel time along the beam-relay and
delay-line beam paths.
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8 Making fringes

 ext = B cos θ
C

Figure 1.5 A simplified model of fringe formation in an interferometer.

3. A beam-combiner delay τBC(x), which is dependent on the location x on the
detector on which the beam lands, as shown in Figure 1.6. It will be seen
in the following analysis that an important function of any beam-combiner
design is to allow the sampling of the interference patterns at multiple loca-
tions in ‘delay space’ and in this case these locations are dependent on the
detector coordinate x.

This model neglects the effects of light losses in the interferometer. It
also neglects other effects such as optical imperfections along the beam path
because it assumes that all rays passing through one collector and arriving at
the entrance of the beam combiner experience the same delay. The benefits
of using this model are that the analysis is simpler and, perhaps more impor-
tantly, the results can be readily applied to interferometers of different designs.
For example, the model can be straightforwardly applied to an interferometer
which uses temporal coding of the fringes (see Section 4.7) instead of spatial
fringes by replacing the detector coordinate x with a time coordinate t.

The analysis starts by considering the electromagnetic field incident on the
interferometer. The light is assumed to be perfectly monochromatic so the light
wave consists of an electromagnetic wave oscillating at frequency ν and the
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1.4 The interferometric measurement equation 9
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Figure 1.6 (a) Beams of starlight arriving at angles of ±β on a detector. (b)
The fringe pattern on the detector. (c) A one-dimensional cut through the fringe
pattern.

therefore instantaneous electric field at any point on the initial wavefront is
given by

E0 =
2
ε0

Re
[
Ψ0e−2πiνt

]
, (1.2)

where ε0 is the electric permittivity of free space and Ψ0 is a ‘complex wave
amplitude’ given by

Ψ0 = |Ψ0| eiφ0 , (1.3)

where φ0 is the phase of the wave. The electric field is not represented as a
vector in this ‘scalar wave’ analysis. It is assumed that the properties of the
system being analysed are the same for any polarisation, and so the vector
properties of the electromagnetic field are ignored.

At optical frequencies, the oscillations of the wave are typically not directly
observable: optical detectors effectively measure the accumulated light energy
received over an ‘exposure time’ or ‘integration time’, which can be anywhere
from several picoseconds to many minutes, whereas the oscillation period is a
few femtoseconds. What is observable is the mean intensity of the wave (i. e.
the mean energy crossing unit area per unit time, also known as the ‘flux’ from
the object) given by

F0 =
〈
ε0E2

0

〉
, (1.4)
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10 Making fringes

where 〈〉 represents averaging over the integration time of the detector.
Substituting Equation (1.2) into Equation (1.4) and using the relationship

Re {X} = 1
2 (X + X∗), (1.5)

where X is any complex number and X∗ denotes the complex conjugate of X,
gives

F0 = |Ψ0|2 , (1.6)

after dropping terms which average to zero over the exposure time. The sim-
plicity of this expression explains the seemingly arbitrary factor of 2/ε0 in
Equation (1.2), which serves to define Ψ0.

In an interferometer, the incident intensity F0 is not measured directly.
Instead, the wave is incident on the two collectors and travels via the
beam-relay optics to the beam combiner where the beams are combined and
arrive at a given location on the detector surface denoted by a coordinate x. At
this location the electric field is given by the superposition of the two fields
E1(x) and E2(x) that would have been observed from each collector alone. The
mean intensity of the light received by the detector at a given location x is
therefore given by

i(x) = ε0
〈
(E1(x) + E2(x))2

〉
=

〈(
Re

[
Ψ1(x)e−2πiνt + Ψ2(x)e−2πiνt

])2
〉
, (1.7)

where Ψ1(x) and Ψ2(x) are defined analagously to Ψ0.
Expanding and dropping terms which average to zero over the integration

time of the detector gives

i(x) = |Ψ1(x)|2 + |Ψ2(x)|2 + 2Re
[
Ψ1(x)Ψ∗2(x)

]
. (1.8)

The intensity is therefore the sum of the intensities which would be observed
on either beam alone, plus a cross term which depends on a product of the
two wave amplitudes. This ‘interference term’ can be positive or negative,
corresponding to constructive and destructive interference respectively.

Assuming that the interferometer optics introduce no losses in the light
intensity, then the waves arriving at the detector are simply time-delayed
versions of the incident wave E0(t), given by

E1(t) = E0(t − τext,1 − τint,1 − τBC,1(x)) (1.9)

and

E2(t) = E0(t − τext,2 − τint,2 − τBC,2(x)). (1.10)
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