Forests and Global Change

Forests hold a significant proportion of global biodiversity and terrestrial carbon stocks, and are at the forefront of human-induced global change. The dynamics and distribution of forest vegetation determine the habitat for other organisms, and regulate the delivery of ecosystem services, including carbon storage. Presenting recent research across temperate and tropical ecosystems, this volume synthesises the numerous ways that forests are responding to global change and includes perspectives on:

- the role of forests in the global carbon and energy budgets;
- historical patterns of forest change and diversification;
- contemporary mechanisms of community assembly and implications of underlying drivers of global change;
- the ways in which forests supply ecosystem services that support human lives.

The chapters represent case studies drawn from the authors’ expertise, highlighting exciting new research and providing information that will be valuable to academics, students, researchers and practitioners with an interest in this field.

DAVID A. COOMES is a forest ecologist and conservation biologist working with the forest ecology and conservation group at the University of Cambridge. He is Associate Editor of the *Journal of Ecology* and *Biological Reviews* and has authored more than 90 papers, including many from his group’s work in New Zealand.

DAVID F. R. P. BURSLEMM is a tropical forest ecologist at the University of Aberdeen. He has served as Associate Editor of the *Journal of Ecology*, and is a member of the editorial boards of *Plant Ecology and Diversity* and *Ecological Reviews* series. He was an editor of the Ecological Reviews volume on *Biotic Interactions in the Tropics* (Cambridge, 2005) and has authored more than 80 papers on the ecology and conservation of tropical forests.

WILLIAM D. SIMONSON is a forest ecologist specialising in Mediterranean systems. He has extensive practical experience, working in the UK and overseas, for governmental as well as non-governmental conservation organisations. As a trained editor, he has worked on a range of scientific and educational publications for Cambridge-based publishers.
Ecological Reviews publishes books at the cutting edge of modern ecology, providing a forum for volumes that discuss topics that are focal points of current activity and likely long-term importance to the progress of the field. The series is an invaluable source of ideas and inspiration for ecologists at all levels from graduate students to more-established researchers and professionals. The series has been developed jointly by the British Ecological Society and Cambridge University Press and encompasses the Society's Symposia as appropriate.

- **Biotic Interactions in the Tropics: Their Role in the Maintenance of Species Diversity**
 Edited by David F. R. P. Burslem, Michelle A. Pinard and Sue E. Hartley

- **Biological Diversity and Function in Soils**
 Edited by Richard Bardgett, Michael Usher and David Hopkins

- **Island Colonization: The Origin and Development of Island Communities**
 By Ian Thornton
 Edited by Tim New

- **Scaling Biodiversity**
 Edited by David Storch, Pablo Margnet and James Brown

- **Body Size: The Structure and Function of Aquatic Ecosystems**
 Edited by Alan G. Hildrew, David G. Raffaelli and Ronni Edmonds-Brown

- **Speciation and Patterns of Diversity**
 Edited by Roger Butlin, Jon Bridle and Dolph Schluter

- **Ecology of Industrial Pollution**
 Edited by Lesley C. Batty and Kevin B. Hallberg

- **Ecosystem Ecology: A New Synthesis**
 Edited by David G. Raffaelli and Christopher L. J. Frid

- **Urban Ecology**
 Edited by Kevin J. Gaston
The Ecology of Plant Secondary Metabolites: From Genes to Global Processes
Edited by Glenn R. Jason, Marcel Dicke and Susan E. Hartley

Birds and Habitat: Relationships in Changing Landscapes
Edited by Robert J. Fuller

Trait-Mediated Indirect Interactions: Ecological and Evolutionary Perspectives
Edited by Takayuki Ohgushi, Oswald Schmitz and Robert D. Holt
Forests and Global Change

Edited by

DAVID A. COOMES
University of Cambridge, UK

DAVID F. R. P. BURSLEM
University of Aberdeen, UK

WILLIAM D. SIMONSON
University of Cambridge, UK
Contents

List of contributors ix
Preface xiii

1 Forests and global change: an overview
 William D. Simonson, David A. Coomes and David F. R. P. Burslem 1

Part I Forest dynamics and global change 19

2 Forests and the climate system
 John Grace 21

3 Global change and Mediterranean forests: current impacts and potential responses
 Fernando Valladares, Raquel Benavides, Sonia G. Rabasa, Juli G. Pausas, Susana Paula, William D. Simonson and Mario Díaz 47

4 Recent changes in tropical forest biomass and dynamics
 Oliver L. Phillips and Simon L. Lewis 77

5 Disequilibrium and transient dynamics: disentangling responses to climate change versus broader anthropogenic impacts on temperate forests of eastern North America
 Charles D. Canham 109

Part II Species traits and responses to changing resource availability 129

6 Floristic shifts versus critical transitions in Amazonian forest systems
 Jérôme Chave 131

7 Traits, states and rates: understanding coexistence in forests
 Drew W. Purves and Mark C. Vanderwel 161

8 The functional role of biodiversity in the context of global change
 Michael Scherer-Lorenzen 195
CONTENTS

9 Exploring evolutionarily meaningful vegetation definitions in the tropics: a community phylogenetic approach
 Ary T. Oliveira-Filho, R. Toby Pennington, Jay Rotella and Matt Lavin 239

10 Drought as a driver of tropical tree species regeneration dynamics and distribution patterns
 Liza S. Comita and Bettina M. J. Engelbrecht 261

11 Tree performance across gradients of soil resource availability
 Richard K. Kobe, Thomas W. Baribault and Ellen K. Holste 309

Part III Detecting and modelling global change 341

12 A chemical-evolutionary basis for remote sensing of tropical forest diversity
 Gregory P. Asner 343

13 Forests in a greenhouse atmosphere: predicting the unpredictable?
 Harald Bugmann 359

14 Detecting and projecting changes in forest biomass from plot data
 Helene C. Muller-Landau, Matteo Detto, Ryan A. Chisholm, Stephen P. Hubbell and Richard Condit 381

15 Analysis of anthropogenic impacts on forest biodiversity as a contribution to empirical theory
 Adrian C. Newton and Cristian Echeverria 417

Index 447

The colour plates are located between pages 160 and 161
Contributors

GREGORY P. ASNER
Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA
gpa@stanford.edu

THOMAS W. BARIBAULT
Michigan State University, Department of Forestry, Graduate Program in Ecology, Evolutionary Biology, and Behavior, East Lansing, Michigan 48824, USA

RAQUEL BENAVIDES
Department of Biogeography and Global Change, National Museum of Natural Sciences, Madrid, Spain

HARALD BUGMANN
Forest Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
Harald.bugmann@env.ethz.ch

CHARLES D. CANHAM
Cary Institute of Ecosystem Studies, Box AB, Millbrook, New York 12545, USA
canhamc@caryinstitute.org

JÉRÔME CHAVE
Laboratoire Evolution et Diversité Biologique, UMR 5174, CNRS, Université Paul Sabatier, Bâtiment 4R1, 118 route de Narbonne, 31062 Toulouse, France
jerome.chave@univ-tlse3.fr

RYAN A. CHISHOLM
Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panamá

LIZA S. COMITA
Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panamá
comita.2@osu.edu

RICHARD CONDIT
Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panamá

MATTEO DETTO
Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panamá
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARIO DÍAZ</td>
<td>Department of Biogeography and Global Change, National Museum of Natural Sciences, Madrid, Spain</td>
<td>kobe@msu.edu</td>
</tr>
<tr>
<td>CRISTIAN ECHEVERRÍA</td>
<td>Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160-C, Concepción, Chile</td>
<td>cristian.echeverria@udec.cl</td>
</tr>
<tr>
<td>BETTINA M. J. ENGELBRECHT</td>
<td>Smithsonian Tropical Research Institute, PO Box 0843–03092, Balboa, Ancón, Republic of Panamá Bayreuth Center for Ecology and Environmental Research, University of Bayreuth, 95440 Bayreuth, Germany</td>
<td>bettina.engelbrecht@gmail.com</td>
</tr>
<tr>
<td>JOHN GRACE</td>
<td>University of Edinburgh School of GeoSciences, West Mains Road, Edinburgh EH9 3JN, UK</td>
<td>jgrace@ed.ac.uk</td>
</tr>
<tr>
<td>ELLEN K. HOLSTE</td>
<td>Michigan State University, Department of Forestry, Graduate Program in Ecology, Evolutionary Biology, and Behavior, East Lansing, Michigan 48824, USA</td>
<td>mullerh@si.edu</td>
</tr>
<tr>
<td>STEPHEN P. HUBBELL</td>
<td>Smithsonian Tropical Research Institute, PO Box 0843–03092, Balboa, Ancón, Republic of Panamá</td>
<td>anewton@bournemouth.ac.uk</td>
</tr>
<tr>
<td>RICHARD K. KOBE</td>
<td>Michigan State University, Department of Forestry, Graduate Program in Ecology, Evolutionary Biology, and Behavior, East Lansing, Michigan 48824, USA</td>
<td>mullerh@si.edu</td>
</tr>
<tr>
<td>MATT LAVIN</td>
<td>Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana 59717, USA</td>
<td>mlavin@montana.edu</td>
</tr>
<tr>
<td>SIMON L. LEWIS</td>
<td>School of Geography, University of Leeds, Leeds LS2 9JT, UK</td>
<td>S.L.Lewis@leeds.ac.uk</td>
</tr>
<tr>
<td>HELENE C. MULLER-LANDAU</td>
<td>Smithsonian Tropical Research Institute, P.O. Box 0843–03092, Balboa, Ancón, Republic of Panamá</td>
<td>mullerh@si.edu</td>
</tr>
<tr>
<td>ADRIAN C. NEWTON</td>
<td>Centre for Conservation Ecology and Environmental Science, School of Applied Sciences, University, Talbot Campus, Poole, Dorset BH12 5BB, UK</td>
<td>anewton@bournemouth.ac.uk</td>
</tr>
<tr>
<td>ARY T. OLIVEIRA-FILHO</td>
<td>Instituto de Ciencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil</td>
<td>mullerh@si.edu</td>
</tr>
<tr>
<td>SUSANA PAULA</td>
<td>Instituto de Ciencias Ambientales y Evolutivas, Universidade Austral de</td>
<td>mullerh@si.edu</td>
</tr>
</tbody>
</table>
Chile, Independencia 641, Valdivia, Chile

JULI G. PAUSAS
CIDE, CSIC, Valencia, Spain

R. TOBY PENNINGTON
Tropical Biology Group, Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, UK
T.Pennington@rbge.ac.uk

OLIVER L. PHILLIPS
School of Geography, University of Leeds, Leeds LS2 9JT, UK
o.phillips@leeds.ac.uk

DREW W. PURVES
Computational Ecology and Environmental Science Group, Microsoft Research Cambridge, UK
dpurves@microsoft.com

SONIA G. RABASA
Department of Biogeography and Global Change, National Museum of Natural Sciences, Madrid, Spain

JAY ROTELLA
Ecology, Montana State University, Bozeman, Montana 59717, USA

MICHAEL SCHERER-LORENZEN
Faculty of Biology - Geobotany, University of Freiburg, Germany
michael.scherer@biologie.uni-freiburg.de

WILLIAM SIMONSON
Forest Ecology and Conservation Group, Department of Plant Sciences, University of Cambridge, UK
wds10@cam.ac.uk

FERNANDO VALLADARES
Department of Biogeography and Global Change, National Museum of Natural Sciences, Madrid, Spain
valladares@ccma.csic.es

MARK C. VANDERWEL
Computational Ecology and Environmental Science Group, Microsoft Research Cambridge, UK
Forests house a significant proportion of global biodiversity and terrestrial carbon, as well as providing livelihoods for millions of people, yet they are changing at an unprecedented rate. They are disappearing rapidly in many parts of the tropics, but are increasing in cover and biomass in many higher-latitude regions. They are responding to industrial pollution and introduced organisms. The dynamics and distribution of forest vegetation are important because they determine the amount of habitat for numerous other organisms, and regulate the delivery of ecosystem services such as carbon storage, and water and soil quality. It is increasingly recognised that forests influence the energy budget of the planet, making an understanding of forest dynamics an essential aspect of climate change modelling.

Despite the importance of forests to biodiversity conservation and the provision of ecosystem services such as erosion control and carbon storage, the community of forest ecologists is strongly differentiated by biome, which constrains conceptual integration at a global scale. In the tropics, there is a concentration of effort and expertise around the networks of large plots coordinated by the Center for Tropical Forest Science on the one hand, and the alliance of smaller plots forming the RAINFOR, AfriTRON and GEM networks on the other, with many others working outside these networks. In temperate and boreal forest regions, there are long-term ecological monitoring sites (e.g. the Long-Term Ecological Research Network, LTER) and impressive national inventory systems that were originally established for monitoring timber stocks but increasingly available to ecologists. In this volume we draw together perspectives from across these diverse communities of forest ecologists to attempt a global synthesis of forest responses to global change.

This volume consists of 15 invited contributions, providing a global synthesis of recent scientific developments concerning the interactions of forests with the drivers of global change. Similarly to other volumes in the Ecological Reviews series, this one has arisen from plenary talks given at a British Ecological Society Symposium. The meeting, entitled Forests and Global Change, was held at the University of Cambridge in 2011, attracting over 300 researchers from at least 30 countries. Chapters are organised into three
overarching themes which form subsections of the book: (Part I), forest dynamics and global change; (Part II), species traits and responses to changing resource availability; and (Part III), detecting and modelling global change. Within those themes, there are perspectives on the role of forests in the global carbon and energy budgets; historical patterns of forest change and diversification; contemporary mechanisms of community assembly and implications of underlying drivers of global change; and the multiple ways in which forests supply ecosystem services that support human lives and livelihoods. This volume seeks to target ecologists across the spectrum, from postgraduate students to senior scientists seeking state-of-the-art reviews on specific topics, but it is not an elementary textbook covering all aspects of global change. Rather, our focus is on promising areas of research where new ideas are under development and exciting discoveries are being made.

Technological advances mean that ecologists are better than ever at monitoring how forests are changing, understanding the knock-on consequence of change and making predictions about future responses. The book integrates across different methodologies and biomes to derive a global synthesis based on the following methodologies: statistical analyses of decadal-scale inventory data, ecophysiological approaches, remote sensing and modelling, and historical analyses using phylogenetic information.

Decadal-scale inventory data: Traditionally, information on changes in forests has been obtained from permanent plots that sample the local tree flora. In northern temperate regions, distributed networks containing many thousands of plots have been established for forestry purposes, and these are now being used to answer ecological questions. Sampling is less systematic in tropical regions; many plots have been established that are 100 × 100 m (1 ha) in size, although often smaller (0.1 ha) plots and occasionally much larger ones (25 and 50 ha) have also been established. These plots may then be integrated into national or regional networks to address questions of importance at these larger spatial scales. The value of census plot data increases with the length of the records available, and there are now robust analyses of forest change based on multi-year time series.

Ecophysiological approaches: A network of distributed plots has the potential to capture stand-level data on species composition and dynamics, but understanding the mechanisms of underlying forest–canopy interactions requires instrumentation and manipulative experiments, and measurements over short (diurnal to annual) time scales. Insights into the physiological mechanisms that drive forest responses to changing environments have been obtained from networks of canopy flux towers and experimental sites that now extend across all forest ecosystems. These point-source data provide time series of
physiological processes that help to calibrate and interpret the inventory data obtained from plots, but in order to maximise the potential to achieve these aims it is necessary to move across scales using modelling techniques.

Modelling: More recently, forest ecologists have begun to use census plot and ecophysiological data to develop and test models that simulate changes on mapped stands. These forest simulators are then applied to topics ranging from theoretical models of tree species coexistence through to scenario-testing for forest management. There is an important synergistic relationship between forest plots and simulation models: plots are required to generate realistic parameters for most types of forest simulation model, while models add value to plot networks by projecting over longer time scales and multiple alternative scenarios. In order to realise the added value of these approaches, it is important for ecologists who hold plot data and those with expertise in modelling to communicate effectively in the same fora.

Remote sensing: Remote sensing techniques represent a tool for rapid monitoring of land-use changes over substantial areas, and are likely to increase in importance as the resolution of image analysis improves. Satellite images have a long history for monitoring land-use. For instance, the LANDSAT satellites provide unparalleled evidence of the changes of cover and seasonality of forests. Emerging technologies include the use of LiDAR (light detection and ranging) sensors to provide detailed information about canopy structure, and hyperspectral imagery provides, for the first time, methods to identify the positions of species and functional groups over entire landscapes based on the chemical signatures of individual tree crowns.

Molecular phylogenies: Rapid advances in high-throughput sequencing and new bioinformatics tools are allowing ecologists to construct dated community-level phylogenies that permit inference of patterns of diversification in response to historical phases of global change. These data are providing new perspectives into the processes that influence contemporary patterns of plant distribution, and represent an important resource for researchers attempting to forecast the impacts of contemporary global change.

We are indebted to all the authors who contributed chapters, and to everybody who helped make the symposium a memorable success. We are especially grateful to the anonymous reviewers of chapters, the Editorial Board of *Ecological Reviews*, and Cambridge University Press. The future of forests depends on how humans decide to manage them in the decades to come. It is our hope that after reading this volume you will have a greater appreciation of the multiple drivers of forest change, and feel inspired to become involved in conservation of these unique and vulnerable ecosystems.

David Burslem
David Coomes and William Simonson