HEAT TRANSFER PHYSICS, SECOND EDITION

This graduate textbook describes atomic-level kinetics (mechanisms and rates) of thermal energy storage, transport (conduction, convection, and radiation), and transformation (various energy conversions) by principal energy carriers. The approach combines the fundamentals of molecular orbitals-potentials, statistical thermodynamics, computational molecular dynamics, quantum energy states, transport theories, solid-state and fluid-state physics, and quantum optics. The textbook presents a unified theory, over fine-structure/molecular-dynamics/Boltzmann/macroscopic length and time scales, of heat transfer kinetics in terms of transition rates and relaxation times, and its modern applications, including nano- and microscale size effects. Numerous examples, illustrations, and homework problems with answers to enhance learning are included. This new edition includes applications in energy conversion (including chemical bond, nuclear, and solar), expanded examples of size effects, inclusion of junction quantum transport, and discussion of graphene and its phonon and electronic conductances. New appendix coverage of phonon contributions to the Seebeck coefficient, Monte Carlo methods, and ladder operators is also included.

Massoud Kaviany is a Professor in the Department of Mechanical Engineering and in the Applied Physics Program at the University of Michigan, where he has been since 1986. His area of teaching and research is heat transfer physics, with a particular interest in porous media. His current projects include atomic structural metrics in high-performance thermoelectric materials (both electron and phonon transport) and in laser cooling of solids (including \textit{ab initio} calculations of photon-electron and electron-phonon couplings), and the effect of pore water in polymer electrolyte transport and fuel cell performance. His integration of research into education is currently focused on heat transfer physics, treating the atomic-level kinetics of transport and interaction of phonon, electron, fluid particle, and photon in a unified manner. It combines \textit{ab initio} (fine structure), molecular dynamics, Boltzmann transport, and macroscopic treatments, but on increasing length and times scales. He is author of the monographs \textit{Principles of Heat Transfer in Porous Media} (2nd Ed.) and \textit{Principles of Convective Heat Transfer} (2nd Ed.), and the undergraduate textbooks \textit{Principles of Heat Transfer} and \textit{Essentials of Heat Transfer}. He received the College of Engineering’s Education Excellence Award in 2003. He is an editor of the \textit{Journal of Nanoscale and Microscale Thermophysical Engineering} and is on the editorial board of the \textit{International Journal of Heat and Mass Transfer} and several other international journals. He is an ASME Fellow (since 1992) and an APS Fellow (since 2011), was Chair of the ASME Committee on Theory and Fundamental Research in Heat Transfer (1995–98), and is the recipient of the 2002 ASME Heat Transfer Memorial Award (Science) and the 2010 Harry Potter Gold Medal (Thermodynamics Science).
Heat Transfer Physics

Second Edition

Massoud Kaviany

University of Michigan
To curiosity, reason, doubt,
dialogue, understanding, tolerance,
and humility.
Contents

Preface ... xvii
Acknowledgments xxii

1 Introduction and Preliminaries 1

1.1 Principal Carriers: Phonon, Electron, Fluid Particle, and Photon 3

1.1.1 Phonon .. 4
1.1.2 Electron (and Hole) 7
1.1.3 Fluid Particle 8
1.1.4 Photon ... 9

1.2 Equilibrium and Nonequilibrium Energy Occupancy Distributions 10

1.2.1 Nonequilibrium Energy Carrier Occupancy by Energy Conversion 10
1.2.2 Transport Phenomena Related to Energy Occupancy Distributions 14

1.3 Particles, Waves, Wave Packets and Quasi-Particles, and Density of States 16

1.4 A History of Contributions Toward Heat Transfer Physics 17

1.5 Fundamental Constants and Fine-Structure Scales 20

1.5.1 Boltzmann and Planck Constants ... 20
1.5.2 Atomic Units and Fine-Structure Scales 21

1.6 Principal Carriers: Concentration, Energy, Kinetics, and Speed 23

1.6.1 Principal-Energy Carriers Concentration 24
1.6.2 Principal-Carrier Energy ... 25
1.6.3 Principal-Carrier Energy Transport/Transformation Kinetics 26
1.6.4 Principal-Carrier Speed .. 29

1.7 Periodic Table of Elements .. 29
Contents

1.8 Heat Transfer Physics: Atomic-Level Energy Kinetics
 1.8.1 Thermal Energy Storage 32
 1.8.2 Thermal Energy Transport 33
 1.8.3 Thermal Energy Transformation 35

1.9 Density of States and Carrier Density 40

1.10 Ab Initio/MD/BTE/Macroscopic Treatments 42

1.11 Scope 44

1.12 Problems 46

2 Molecular Orbitals/Potentials/Dynamics and Quantum Energy States 50

 2.1 Interatomic Forces and Potential Wells 50
 2.1.1 Interatomic Forces 52
 2.1.2 Intermolecular Forces 52
 2.1.3 Kinetic and Potential Energies and Potential Wells 53

 2.2 Orbitals and Interatomic Potential Models 58
 2.2.1 Atomic and Molecular Electron Orbitals 58
 2.2.2 Ab Initio Computation of Interatomic Potentials 61
 2.2.3 Potential Models and Phases 65
 2.2.4 Examples of Atomic Bond Length and Energy 72
 2.2.5 Radial Distribution of Atoms in Dense Phase 73

 2.3 Molecular Ensembles, Temperature, and Thermodynamic Relations 75
 2.3.1 Ensembles and Computational Molecular Dynamics 75
 2.3.2 Energy Equipartition 75
 2.3.3 Thermodynamic Relations 76

 2.4 Hamiltonian Mechanics 77
 2.4.1 Classical and Quantum Hamiltonians 77
 2.4.2 Probability and Partition Function 79
 2.4.3 Ergodic Hypothesis in Theoretical Statistical Mechanics 81

 2.5 Molecular Dynamics Simulations 81
 2.5.1 Ensemble and Discretization of Governing Equations 81
 2.5.2 A Molecular Dynamics Simulation Case Study: L–J Ar FCC 86
 2.5.3 L–J FCC MD Scales in Classical Harmonic Oscillator 88
 2.5.4 L–J Potential Phase Transformations 92
 2.5.5 Atomic Displacement in Solids and Quantum Effects 93
 2.5.6 Specific Heat Capacity 94
 2.5.7 Heat Flux Vector 95

 2.6 Schrödinger Equation and Quantum Energy States 96
 2.6.1 Time-Dependent Schrödinger Equation and Wave Vector 97
 2.6.2 Bloch Wave Form 99
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.3 Quantum-Mechanics Formalism, Bra–Ket and Matrix Element</td>
<td>100</td>
</tr>
<tr>
<td>2.6.4 Quantum Mechanical, Harmonic Oscillator</td>
<td>101</td>
</tr>
<tr>
<td>2.6.5 Periodic, Free Electron (Gas) Model for Metals</td>
<td>105</td>
</tr>
<tr>
<td>2.6.6 Electron Orbitals in Hydrogenlike Atoms</td>
<td>109</td>
</tr>
<tr>
<td>2.6.7 Perturbation and Numerical Solutions to Schrödinger Equation</td>
<td>111</td>
</tr>
<tr>
<td>2.7 Problems</td>
<td>115</td>
</tr>
<tr>
<td>3 Carrier Energy Transport and Transformation Theories</td>
<td>119</td>
</tr>
<tr>
<td>3.1 Boltzmann Transport Equation</td>
<td>120</td>
</tr>
<tr>
<td>3.1.1 Particle Probability Distribution (Occupancy) Function</td>
<td>120</td>
</tr>
<tr>
<td>3.1.2 A Simple Derivation of BTE</td>
<td>120</td>
</tr>
<tr>
<td>3.1.3 In- and Out-Scattering</td>
<td>123</td>
</tr>
<tr>
<td>3.1.4 Relaxation-Time Approximation of Scattering and Transport Properties</td>
<td>124</td>
</tr>
<tr>
<td>3.1.5 Boltzmann Transport Scales</td>
<td>128</td>
</tr>
<tr>
<td>3.1.6 Momentum, Energy, and Average Relaxation Times</td>
<td>129</td>
</tr>
<tr>
<td>3.1.7 Moments of BTE</td>
<td>130</td>
</tr>
<tr>
<td>3.1.8 Numerical Solution to BTE</td>
<td>131</td>
</tr>
<tr>
<td>3.2 Energy Transition Kinetics and Fermi Golden Rule</td>
<td>131</td>
</tr>
<tr>
<td>3.2.1 Elastic and Inelastic Scattering</td>
<td>132</td>
</tr>
<tr>
<td>3.2.2 Phonon Interaction and Transition Rates</td>
<td>133</td>
</tr>
<tr>
<td>3.2.3 Electron (and Hole) Interaction and Transition Rates</td>
<td>134</td>
</tr>
<tr>
<td>3.2.4 Fluid Particle Interaction and Transition Rates</td>
<td>138</td>
</tr>
<tr>
<td>3.2.5 Photon Interaction and Transition Rates</td>
<td>138</td>
</tr>
<tr>
<td>3.3 Maxwell Equations and Electromagnetic Waves</td>
<td>138</td>
</tr>
<tr>
<td>3.3.1 Maxwell Equations</td>
<td>138</td>
</tr>
<tr>
<td>3.3.2 Electromagnetic Wave Propagation Equation</td>
<td>142</td>
</tr>
<tr>
<td>3.3.3 EM Wave and Photon Energy</td>
<td>144</td>
</tr>
<tr>
<td>3.3.4 Electric Dipole and Emission, Absorption, and Scattering of EM Waves</td>
<td>145</td>
</tr>
<tr>
<td>3.3.5 Dielectric Function and Dielectric Heating</td>
<td>147</td>
</tr>
<tr>
<td>3.3.6 Electrical Resistivity and Mobility and Joule Heating</td>
<td>151</td>
</tr>
<tr>
<td>3.4 Onsager Coupled Transport Coefficients</td>
<td>152</td>
</tr>
<tr>
<td>3.5 Stochastic Particle Dynamics and Transport</td>
<td>154</td>
</tr>
<tr>
<td>3.5.1 Langevin Particle Dynamics Equation and Brownian Motion</td>
<td>154</td>
</tr>
<tr>
<td>3.5.2 Fokker–Planck Particle Conservation Equation</td>
<td>155</td>
</tr>
<tr>
<td>3.5.3 Mean-Field Theory</td>
<td>155</td>
</tr>
<tr>
<td>3.6 Equilibrium Fluctuation–Dissipation and Green–Kubo Transport Theory</td>
<td>156</td>
</tr>
<tr>
<td>3.7 Macroscopic Fluid Dynamics Equations</td>
<td>159</td>
</tr>
<tr>
<td>3.8 Macroscopic Elastic Mechanics Equations</td>
<td>159</td>
</tr>
</tbody>
</table>
Contents

3.9 Macroscopic Scales .. 161
3.10 Problems ... 163

4.1 Phonon Dispersion in One-Dimensional Classical Lattice Vibration 174
4.2 Phonon Density of States and Debye Model 181
 4.2.1 Phonon DOS for One-Dimensional Lattice and van Hove Singularities 182
 4.2.2 Debye and Other Phonon DOS Models ... 184
4.3 Reciprocal Lattice, Brillouin Zone, and Primitive Cell and Its Basis 186
 4.3.1 Reciprocal Lattice .. 187
 4.3.2 Brillouin Zone ... 189
 4.3.3 Primitive Cell and Its Basis: Number of Phonon Branches 190
4.4 Normal Modes and Dynamical Matrix ... 191
4.5 Quantum Theory of Lattice Vibration ... 196
4.6 Examples of Phonon Dispersion and DOS 198
4.7 Phonon Specific Heat Capacity and Debye Average Acoustic Speed 201
 4.7.1 Acoustic Phonon Specific Heat Capacity 201
 4.7.2 Estimate of Directional Acoustic Velocity 206
4.8 Atomic Displacement in Lattice Vibration 208
4.9 Phonon BTE and Callaway Conductivity Model 211
 4.9.1 Single-Mode Relaxation Time ... 211
 4.9.2 Callaway Phonon Conductivity Model from BTE 212
 4.9.3 Callaway–Holland Phonon Conductivity Model 215
 4.9.4 Phonon Scattering Relaxation Time Models 215
 4.9.5 Phonon Dispersion Models: Ge As Example 223
 4.9.6 Comparison of Dispersion Models .. 226
 4.9.7 Lattice Thermal Conductivity Prediction 228
4.10 Einstein and Cahill–Pohl Minimum Phonon Conductivities 231
4.11 Material Metrics of Phonon Conductivity: Slack Relation 233
 4.11.1 Derivation of Slack Relation ... 234
 4.11.2 Force-Constant Combinative Rule for Arbitrary Pair-Bond 235
 4.11.3 Evaluation of Sound Velocity and Debye Temperature 241
 4.11.4 Prediction of Grüneisen Parameter .. 244
 4.11.5 Prediction of Thermal Conductivity ... 249
4.12 Phonon Conductivity Decomposition: Acoustic Phonons 254
 4.12.1 Heat Current Autocorrelation Function 255
 4.12.2 Phonon Conductivity Decomposition .. 258
 4.12.3 Comparison with Experiment ... 260
Contents

4.13 Phonon Conductivity Decomposition: Optical Phonons 261
4.14 Quantum Corrections to MD/G-K Predictions 262
4.15 Phonon Conductivity from BTE: Variational Method 267
4.16 Experimental Data on Phonon Conductivity 269
4.17 Phonon Boundary Resistance 271
4.18 Absorption of Ultrasound Waves in Solids 275
4.19 Size Effects 276
4.19.1 Finite-Size Effect on Phonon Conductivity 276
4.19.2 Superlattice Phonon Conductivity 278
4.19.3 Phonon Density of States of Nanoparticles 280
4.19.4 Phonon Conductivity Rectification in Anisotropic, One-Dimensional Systems 286
4.19.5 Heat Flow in Molecular Wire 287
4.19.6 Quantum Vibrational Energy Flow in Nanostructures 288
4.19.7 Nanocone Conductivity 289
4.20 Problems 289

5 Electron Energy Storage, Transport, and Transformation Kinetics . . . 306
5.1 Schrödinger Equation for Periodic-Potential Electronic Band Structure 309
5.2 Electronic Band Structure in One-Dimensional Ionic Lattice 311
5.3 Three-Dimensional Bands Using Tight-Binding Approximation 315
5.3.1 General LCAO 315
5.3.2 Example of Tight-Binding Approximation: FCC, Single s-Band 317
5.4 Ab Initio Computation of Electron Band Structure 319
5.5 Electron Band Structure for Semiconductors and Effective Mass 321
5.6 Periodic Electron Gas Model for Metals 325
5.7 Electron/Hole Density of Carrier and States for Semiconductors 327
5.8 Specific Heat Capacity of Conduction Electrons 331
5.9 Electron BTE for Semiconductors: Thermoelectric Force 334
5.10 Electron Relaxation Time and Fermi Golden Rule 335
5.11 Average Relaxation Time \(\langle \tau_e \rangle \) for Power-Law \(\tau_e \) (Momentum) \(\langle E_e \rangle \) 338
5.12 Thermoelectric Transport Property Tensors for Power-Law \(\tau_e \) (\(E_e \)) 343
5.13 TE Transport Coefficients for Cubic Semiconductors 346
5.13.1 Seebeck, Peltier, and Thomson Coefficients, and Electrical and Thermal Conductivities 346
5.14 Magnetic Field and Hall Factor and Coefficient 349
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.15</td>
<td>Electron–Phonon Relaxation Times in Semiconductors</td>
<td>350</td>
</tr>
<tr>
<td>5.15.1</td>
<td>Electron–Phonon Wave Function</td>
<td>351</td>
</tr>
<tr>
<td>5.15.2</td>
<td>Rate of Acoustic-Phonon Scattering of Electrons</td>
<td>353</td>
</tr>
<tr>
<td>5.15.3</td>
<td>Rate of Optical-Phonon Scattering of Electrons</td>
<td>354</td>
</tr>
<tr>
<td>5.15.4</td>
<td>Summary of Electron-Scattering Mechanisms and Relaxation-Time Relations</td>
<td>359</td>
</tr>
<tr>
<td>5.16</td>
<td>TE Transport Coefficients Data for Metals and Semiconductors</td>
<td>359</td>
</tr>
<tr>
<td>5.16.1</td>
<td>Structural Defects in Crystalline Solids</td>
<td>359</td>
</tr>
<tr>
<td>5.16.2</td>
<td>Metals</td>
<td>360</td>
</tr>
<tr>
<td>5.16.3</td>
<td>Semiconductors</td>
<td>366</td>
</tr>
<tr>
<td>5.16.4</td>
<td>TE Figure of Merit Z_e</td>
<td>372</td>
</tr>
<tr>
<td>5.17</td>
<td>Ab Initio Computation of TE Transport Property Tensors</td>
<td>377</td>
</tr>
<tr>
<td>5.17.1</td>
<td>TE Transport Tensors and Variable Chemical Potential</td>
<td>377</td>
</tr>
<tr>
<td>5.17.2</td>
<td>Introduction to BoltzTraP</td>
<td>379</td>
</tr>
<tr>
<td>5.17.3</td>
<td>Relaxation Times Based on Kane Band Model</td>
<td>380</td>
</tr>
<tr>
<td>5.17.4</td>
<td>Predicted Seebeck Coefficient and Electrical Conductivity</td>
<td>385</td>
</tr>
<tr>
<td>5.17.5</td>
<td>Electric and Phonon Thermal Conductivites</td>
<td>388</td>
</tr>
<tr>
<td>5.18</td>
<td>Electron and Phonon Transport Under Local Thermal Nonequilibrium</td>
<td>393</td>
</tr>
<tr>
<td>5.18.1</td>
<td>Derivations</td>
<td>393</td>
</tr>
<tr>
<td>5.18.2</td>
<td>Phonon Modal Energy Equations</td>
<td>395</td>
</tr>
<tr>
<td>5.18.3</td>
<td>Summary of Conservation (Electrohydrodynamic) Equations</td>
<td>396</td>
</tr>
<tr>
<td>5.19</td>
<td>Cooling Length in Electron–Phonon Local Thermal Nonequilibrium</td>
<td>397</td>
</tr>
<tr>
<td>5.20</td>
<td>Electronic Energy States of Ions in Crystals</td>
<td>400</td>
</tr>
<tr>
<td>5.21</td>
<td>Electronic Energy States of Gases</td>
<td>404</td>
</tr>
<tr>
<td>5.22</td>
<td>Size Effects</td>
<td>407</td>
</tr>
<tr>
<td>5.22.1</td>
<td>Quantum Well for Improved TE $Z_e T$</td>
<td>408</td>
</tr>
<tr>
<td>5.22.2</td>
<td>Reduced Electron–Phonon Scattering Rate in Quantum Wells</td>
<td>411</td>
</tr>
<tr>
<td>5.22.3</td>
<td>Electronic and Phonon Thermal Conductance of Graphene–Flake Junctions</td>
<td>413</td>
</tr>
<tr>
<td>5.22.4</td>
<td>Heterobarrier for Converting Hot–Phonon Energy to Electric Potential</td>
<td>418</td>
</tr>
<tr>
<td>5.23</td>
<td>Problems</td>
<td>422</td>
</tr>
</tbody>
</table>

5. Fluid Particle Energy Storage, Transport, and Transformation

Kinetics

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Fluid Particle Quantum Energy States and Partition Functions</td>
<td>436</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Translational Energy and Partition Function</td>
<td>436</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Vibrational Energy and Partition Function</td>
<td>438</td>
</tr>
</tbody>
</table>
Contents

6.1.3 Rotational Energy and Partition Function 439
6.1.4 Electronic Energy and Partition Function 440
6.1.5 *Ab Initio* Computation of Vibrational and Rotational Energy States 441

6.2 Ideal-Gas Specific Heat Capacity 443

6.3 Dense-Fluid Specific Heat Capacity: van der Waals Model 447

6.4 Gas BTE, f_f, and Thermal Velocities 451
 6.4.1 Interparticle Collisions 451
 6.4.2 Equilibrium Distribution Function for Translational Energy 453
 6.4.3 Inclusion of Gravitational Potential Energy 456

6.5 Ideal-Gas Binary Collision Rate and Relaxation Time 457

6.6 Ideal-Gas Mean Free Path and Viscosity 459

6.7 Kinetic-Limit Evaporation/Condensation Heat Transfer Rate 461

6.8 Ideal-Gas Thermal Conductivity from BTE 462
 6.8.1 Nonequilibrium BTE and Relaxation-Time Approximation 462
 6.8.2 Thermal Conductivity 463

6.9 Liquid Thermal Conductivity from Mean Free Path and Molecular Dynamics 469

6.10 Effective Conductivity with Dispersed Particles in Thermal Motion 470
 6.10.1 Langevin Derivation of Brownian Diffusion 471
 6.10.2 Thermal Relaxation Time and Effective Fluid Thermal Conductivity 472

6.11 Interaction of Moving Fluid Particle and Surface 474
 6.11.1 Fluid Flow Regimes 474
 6.11.2 Knudsen-Flow-Regime Surface Accommodation and Slip Coefficients 476
 6.11.3 Slip Coefficients in Transitional-Flow Regime 480
 6.11.4 Solid Particle Thermophoresis in Gases 481
 6.11.5 Physical Adsorption and Desorption 482
 6.11.6 Disjoining Pressure in Ultrathin-Liquid Films 486

6.12 Turbulent-Flow Structure and Boundary-Layer Transport 487
 6.12.1 Turbulent Kinetic Energy Spectrum for Homogeneous Turbulence 489
 6.12.2 Boundary-Layer Turbulent Heat Flux 491
 6.12.3 Turbulent Mixing Length and Turbulent Thermal Conductivity 492
 6.12.4 Spatial Variation of Boundary-Layer Turbulent Mixing Length 493
 6.12.5 Turbulent Mixing Using Lagrangian Langevin Equation 494
Contents

6.13 Thermal Plasmas: Plasma Thermal Conductivity 494
6.13.1 Free Electron Density and Plasma Thermal Conductivity 496
6.13.2 Thermal Nonequilibrium Plasma Energy Equation 500
6.13.3 Species Concentrations for Two-Temperature Plasmas 501
6.13.4 Kinetics of Energy Exchange Between Electrons and Heavier Species 501
6.14 Size Effects 502
6.14.1 Effective Thermal Conductivity in Gas-Filled Narrow Gaps 502
6.14.2 Thermal Creep (Slip) Flow in Narrow Gaps 508
6.15 Problems 511

7 Photon Energy Storage, Transport, and Transformation Kinetics . . . 519
7.1 Quantum-Particle Treatment: Photon Gas and Blackbody Emission 523
7.2 Lasers and Near-Field (EM Wave) Thermal Emission 527
7.2.1 Lasers and Narrow-Band Emissions 527
7.2.2 Classical EM Wave Near-Field Thermal Emission 528
7.3 Quantum and Semiclassical Treatments of Photon–Matter Interaction 529
7.3.1 Hamiltonians of Radiation Field 530
7.3.2 Photon-Matter Interactions 533
7.4 Photon Absorption and Emission in Two-Level Electronic Systems 534
7.4.1 Einstein Excited-State Population Rate Equation 535
7.4.2 Einstein Coefficients for Equilibrium Electronic Population 537
7.4.3 Spontaneous Versus Stimulated Emissions in Equilibrium Thermal Cavity \(f_{ph} \) 538
7.4.4 Spectral Absorption Coefficient and Cross-Section Area 539
7.5 Particle Treatment: Photon BTE with Absorption, Emission, and Scattering 541
7.5.1 Combining Absorption and Emission 543
7.5.2 Photon–Free Electron Elastic Scattering Rate and Cross-Section Area 544
7.6 Photon Intensity: Equation of Radiative Transfer 547
7.6.1 General Form of ERT 547
7.6.2 Optically Thick Limit, Mean Free Path, and Radiant Conductivity 549
7.7 Wave Treatment: Field Enhancement and Photon Localization 552
7.7.1 Photon Localization in One-Dimensional Multilayer 552
7.7.2 Coherence and Electric Field Enhancement 556
7.7.3 Comparison with Particle Treatment (ERT) 558
7.8 Continuous and Band Photon Absorption 562
7.8.1 Photon Absorption Coefficient for Solids 562
7.8.2 Photon Absorption Coefficient for Gases 567
7.9 Continuous and Band Photon Emission 571
7.9.1 Emission Mechanisms 571
7.9.2 Absorption and Emission Reciprocity (Kirchhoff Law) 572
7.10 Spectral Surface Emissivity 574
7.11 Radiative and Nonradiative Decays and Quantum Efficiency 577
7.12 Anti-Stokes Fluorescence: Photon–Electron–Phonon Couplings 582
7.12.1 Anti-Stokes Laser Cooling (Phonon Absorption) of Ion-Doped Solids 582
7.12.2 Laser Cooling Efficiency 584
7.12.3 Photon–Electron–Phonon Transition Rate Using Weak Coupling Approximation 587
7.12.4 Time Scales for Laser Cooling of Solids (Weak Couplings) 592
7.12.5 Optimal Host Material 596
7.12.6 Photon–Electron and Electron–Phonon Transition Rates Using Strong Couplings (Ab Initio Computation) 598
7.13 Gas Lasers and Laser Cooling of Gases 608
7.13.1 Molecular-Gas Lasers 608
7.13.2 Laser Doppler Cooling of Atomic Gases and Doppler Temperature 627
7.14 Photovoltaic Solar Cell: Reducing Phonon Emission 631
7.14.1 Single-Bandgap Ideal Solar PV Efficiency 634
7.14.2 Multiple-Bandgap Ideal Solar PV Efficiency 636
7.14.3 Semiempirical Solar PV Efficiency 639
7.15 Size Effects 642
7.15.1 Enhanced Near-Field Radiative Heat Transfer 642
7.15.2 Photon Energy Confinement by Near-Field Optical Microscopy 645
7.15.3 Hot Phonon Recycling in Photonics 646
7.16 Problems 650

APPENDIX A: Tables of Properties and Universal Constants 661
APPENDIX B: Derivation of Green–Kubo Relation 668
APPENDIX C: Derivation of Minimum Phonon Conductivity Relations . . . 676
APPENDIX D: Derivation of Phonon Boundary Resistance 683
xvi

Contents

APPENDIX E: Derivation of Fermi Golden Rule 689
APPENDIX F: Derivation of Equilibrium, Particle Probability
 Distribution Functions .. 696
APPENDIX G: Phonon Contributions to the Seebeck Coefficient 701
APPENDIX H: Monte Carlo Method for Carrier Transport 709
APPENDIX I: Ladder Operators .. 713

Nomenclature 719
Abbreviations 725
Glossary 727
Bibliography 741
Index 765
Preface

Heat is atomic motion of matter, and temperature indicates the equilibrium distribution of this motion. Nonequilibrium atomic motions, created for example by a temperature gradient, result in heat transfer. Heat transfer physics describes the thermodynamics and kinetics (mechanisms and rates) of energy storage, transport, and transformation by means of principal energy carriers. Heat is energy that is stored in the temperature-dependent motion and within the various particles that make up all matter in all of its phases, including electrons, atomic nuclei, individual atoms, and molecules. Heat can be transferred to and from matter by one or more of the principal energy carriers: electrons\(^1\) (either as classical or quantum entities), fluid particles (classical particles or quantum particles), phonons (lattice-vibration quantum waves, i.e., quasi-particles), and photons\(^2\) (quantum particles). The state of the energy stored within matter or transported by the carriers can be described by a combination of classical and quantum statistical mechanics. The energy is also transformed (converted) between the various carriers. All processes that act on this energy are ultimately governed by the rates at which various physical phenomena occur, such as the rate of particle collisions in classical mechanics. It is the combination of these various processes (and their governing rates) within a particular system that determines the overall system behavior, such as the net rate of energy storage or transport. Controlling every process, from the atomic level (studied here) to the macroscale (covered in an introductory heat transfer course), are the laws of thermodynamics, including conservation of energy.

The focus of this text is on the heat transfer behavior (the storage, transport, and transformation of thermal energy) of the aforementioned principal energy carriers at the atomic scale. The specific mechanisms are described in detail, including elastic/inelastic collisions/scattering among particles, quasi-particles, and waves. Particular attention is given to the time scales over which energy transport or

\(^1\) For semiconductors, the holes are included as energy carriers. For electrolytes, ion transport is treated similarly.

\(^2\) Here, photon refers to both the classical (Maxwell) and the quantum (quasi-particle, Schrödinger) descriptions of the electromagnetic waves.
transformation processes occur, so that the reader gains some sense of how they compare with one another, as well as how they combine to produce overall system energy storage–transport–transformation rates. The approach taken here begins with a survey of fundamental concepts of atomic-level physics. This survey includes a look at the energy within the electronic states of atoms, as well as interatomic forces and potentials. Various theories of molecular dynamics and transport are also described. After this overview, in-depth, quantitative analyses are performed for each of the principal energy carriers, including analysis of how they interact with each other. This combination should allow for the teaching of a thorough introduction of heat transfer physics within one semester, without prolonged preparation or significant prerequisites. In general, several areas of physics are relevant to the study of heat transfer: (a) atomic–molecular dynamics, (b) solid state (condensed matter), (c) electromagnetism, and (d) quantum optics. No prior knowledge of these areas is necessary to appreciate the material of this text (a knowledge of introductory heat transfer is assumed).

Crystalline solids and their vibrational and electronic energies are treated first. This discussion is followed by an examination of energies of fluid particles and their interactions with solid surfaces. Then the interactions of photons with matter are posed with photons as EM waves, as particles, or as quasi-particles.

The text is divided into seven chapters, starting with the introduction and preliminaries of Chapter 1, in which the microscale carriers are introduced and the scope of the heat transfer physics is defined. Chapter 2 is on molecular electronic orbitals, interatomic and intermolecular potentials, molecular dynamics, and an introduction to quantum energy states. Chapter 3 is on microscale energy transport and transition kinetics theories, including the Boltzmann transport equation, the Maxwell equations, the Langevin stochastic transport equation, the Onsager coupled transport relation, and the Green–Kubo fluctuation–dissipation transport coefficients and relations. Chapters 4, 5, 6, and 7 cover the transport and interactions of phonons, electrons, fluid particles, and photons, respectively.

The size effects (where the system size affects the atomic-level behavior) on transport and energy conversion, for each principal carrier, are considered at the ends of Chapters 4 to 7. This allows for reference to applications in nanostructured and microstructured systems.

Some of the essential derivations are given as appendices. Appendix B gives the Green–Kubo relation, Appendix C gives the minimum phonon conductivity relations, Appendix D gives the phonon boundary resistance, Appendix E gives the Fermi Golden Rule, and Appendix F gives the particle energy distribution (occupancy) functions for bosons (phonons and photons), fermions (electrons), and Maxwell–Boltzmann (fluid) particles. Appendix G is on contributions to the Seebeck coefficient from various charge-carrier interactions, including with phonons. Appendix H is on the Monte Carlo method used for the simulation of energy carrier transport. Appendix I is on the ladder operators used for the carrier state transition by creation (raising) and annihilation (lowering).
Some end-of-chapter problems are provided to enhance understanding and familiarity and to allow for specific calculations. When needed, computer programs are also used. A full, digital solutions manual is available.

In general, vectors (lowercase) and tensors (uppercase) are in bold type. A nomenclature, an abbreviations list, and a glossary of relevant terms are given at the end of the text. Numbers in parenthesis indicate equation numbers. The periodic table of elements, with the macroscopic (bulk) and atomic properties, is given in Appendix A (in Tables A.1 and A.2), along with the tables of the universal and derived constants and unit prefixes.

It is hoped that this treatment provides an idea of the scope and some of the fundamentals of heat transfer physics, along with some of the most recent findings in the field.

Massoud Kaviany
Ann Arbor
kaviany@umich.edu
Acknowledgments

Many doctoral students and postdoctoral Fellows working with me have contributed to this book. Among them are Jae Dong Chung, Luciana da Silva, Baoling Huang, Gi Suk Hwang, Dan Johnson, Ankur Kapoor, Hyoungchul Kim, Jedo Kim, Scott Gayton Liter, Alan McGaughey, Corey Melnick, Da Hye Min, Brendan O’Connor, Xiulin Ruan, Seungha Shin, and Xiangchun Zhang. Alan, Baoling, Corey, Gayton, Gi Suk, Hyoungchul, Seungha, and Xiulin have provided many ideas and have been constant sources of inspiration. I am indebted to all of them; without them this task could not have been completed. I would also like to thank the National Science Foundation (Thermal Transport and Processes) and the Department of Energy (Basic Energy Sciences) for sponsoring the research leading to some of the materials presented here.