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Presenting tools for understanding the behavior of gas–liquid ûows based on the ways

large-scale behavior relates to small-scale interactions, this text is ideal for engineers

seeking to enhance the safety and efûciency of natural gas pipelines, water-cooled

nuclear reactors, absorbers, distillation columns, and gas lift pumps. The review of

advanced concepts in ûuid mechanics enables both graduate students and practicing

engineers to tackle the scientiûc literature and engage in advanced research.

The text focuses on gas–liquid ûow in pipes as a simple system with meaningful

experimental data. This uniûed theory develops design equations for predicting drop

size, frictional pressure losses, and slug frequency, which can be used to determine ûow

regimes, the effects of pipe diameter, liquid viscosity, and gas density. It describes the

effect of wavy boundaries and temporal oscillations on turbulent ûows, and explains

transition between ûow regimes, which is key to understanding the behavior of gas–

liquid ûows.

Thomas J. Hanratty is Professor Emeritus at the University of Illinois at Urbana-

Champaign, and was a leader in establishing industrially important multiphase ûow as

a new academic discipline, by relating macroscopic behavior to small-scale interactions.

His research has been recognized by nine awards from the American Institute of

Chemical Engineers (AIChE), the American Society for Engineering Education, Ohio

State University, Villanova University, and University of Illinois. He was the inaugural

winner of the International Multiphase Flow Prize. Hanratty was named as one of the

inûuential chemical engineers of the modern era at the AIChE centennial celebration

in 2008. He has been elected to the National Academy of Engineering, the National

Academy of Sciences, and the American Academy of Arts and Sciences.
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“This authoritative and impressive monograph, written by a widely acclaimed pioneer in

the ûeld, is an excellent resource for new students as well as seasoned practitioner. It

develops the concepts systematically and packages many decades worth of literature in

this ûeld lucidly, giving the readers a chance to understand appreciate the evolution of

this ûeld.”

Sankaran Sundaresan, Princeton University

“Physics of gas-liquid ûows” is a must read for graduate students, researchers and

engineers seeking a solid basis or wanting to update their knowledge in the dynamics

of gas-liquid systems. The book is an authoritative reference, mainly built around the

results of the author, a leading expert in the ûeld during several decades. It presents our

current experimental and theoretical understanding at both the local and global scales

with an original contribution to wave phenomena as they appear in ûlm stratiûed and

annular ûows that may be a source of inspiration for researchers and teachers in the years

to come.”

Jean Fabre, Institut National Polytechnique, Toulouse

“A lifetime of probing research and deep thinking about gas-liquid ûows is enclosed

between the covers of this book. Starting from simple analyses – the style of which will

be familiar to many undergraduates – the author moves gradually to more advanced

topics building a succinct yet exhaustive picture of the present understanding of these

important ûows. Practicing engineers and researchers alike will ûnd many gems in this

book.”

Andrea Prosperetti, Johns Hopkins University
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Preface

Gas–liquid ûows are ubiquitous in industrial and environmental processes. Examples are

the transportation of petroleum products, the cooling of nuclear reactors, the operation of

absorbers, distillation columns, gas lift pumps. Quite often corrosion and process safety

depend on the conûguration of the phases. Thus, the interest in this area should not be

surprising.

The goal of this book is to give an account of scientiûc tools needed to understand the

behavior of gas–liquid systems and to read the scientiûc literature. Particular emphasis is

given to ûow in pipelines.

The following brief historical account is taken from a plenary lecture by the author at

the Third International Conference on Multiphase Flow, Lyon, France, June 8–12, 1998.

(Int. J. Multiphase Flow 26, 169–190, 2000):

A symposium held at Exeter (P. M. C. Lacey) in 1965 brought together 160 people with a wide range

of interests. Discussions at the 42 presentations indicated, to me, that something special was

happening and that future directions of work on multiphase ûow were being deûned. This thrust

was continued in conferences at Waterloo, Canada, in 1968 (E. Rhodes, D. S. Scott) and at Haifa,

in 1971 (G. Hetsroni). Intellectual activity in ensuing years is exempliûed by more focused

conferences on Annular and Dispersed Flows held at Pisa, 1984 (S. Zanelli, P. Andreussi, T. J.

Hanratty) and in Oxford, England, in 1987 (G. F. Hewitt, P. Whalley, B. Azzopardi), the Symposium

on Measuring Techniques at Nancy (J.M. Delhaye, 1983) and the Conference on Gas Transfer at

Heidelberg (Jähne, 1995). However, the 350 papers presented at the Second International

Conference on Multiphase Flow in 1995 (A. Serizawa, Y. Tsuji) manifested a new level of activity.

A fair question is what happened between 1965 and 1995. My own assessment is that

major successes came about, mainly through efforts that relate macroscopic properties of

multiphase systems to small-scale behavior. An outcome of this approach is the possible

emergence of a new ûeld. This is evidenced in many ways, of which the establishment

of the International Journal of Multiphase Flow (Gad Hetsroni, 1973) and the Japan

Society ofMultiphase Flow (A. Akagawa, T. Fukano, 1987) are examples. The following

excerpt from a talk by R. T. Lahey at the inauguration of the Japan Society would indicate

that my observations are not original: “I believe that this new ûeld will become as widely

accepted in the future as other emerging ûelds . . .”.

Physics of Gas–Liquid Flows addresses both graduate students and practitioners.

The treatment is based on a course, taught at the University of Illinois, which required

only that the students had taken one undergraduate course in ûuid dynamics. As a

consequence, attention is given to topics that are usually bulwarks in graduate courses
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in ûuid dynamics, such as ideal ûow theory, the Navier–Stokes equations and interfacial

waves.

In reporting the results from published research I have retained the units (metric or

imperial) as used in the original work.

This work has a kinship to One Dimensional Two-Phase Flow by Graham Wallis,

published byMcGraw-Hill in 1969. One should recognize that much has happened since

the publication of this book and that my way of presenting the material could be different

from that of that of Dr. Wallis.

Physics of Gas–Liquid Flows leans heavily on contributions by researchers in my

laboratory. Averbal summary of these works is contained in an account of the Research

of Thomas J. Hanratty which was deposited with the University of Illinois in the Illinois

Digital Environment for Access to Learning and Scholarship (IDEALS). It can be

visited at http://hdl.handle.net/2142/9132. The illustrations were prepared by Dorothy

Loudermilk. Taras V. Pogorelov provided a helping hand in transmitting the manu-

scripts to Cambridge University Press.

Cover

The photograph featured in the cover was obtained in the laboratory of Thomas J.

Hanratty by James B. Young. It captures the trajectories of particles in a turbulent liquid

ûowing down a vertical pipe. Cross-sections at several locations were illuminated by thin

sheets having different colors. Axial viewing photography was used to capture the paths

of the particles. The color of a particle gives its axial location.

xiv Preface
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Symbols

A Area

A Measure of the thickness of the viscous wall layer, used by van Driest

AG Area of the gas space

AL Area of the liquid space

ALS Area of the liquid in a slug

AL1 Area of the liquid layer in front of a slug

APi Acceleration of a particle in the i-direction

AL0 Critical area for a liquid layer to sustain a stable or growing slug

At Area of a tube or pipe

a Amplitude of a wave

av Interfacial area per unit volume

B Height of a rectangular channel, or the height of the gas space

C Concentration

C0 Concentration at y = 0

CB Bulk concentration

CD Drag coefûcient

CL Lift coefûcient

CP Heat capacity at constant pressure

CV Heat capacity at constant volume

CW Concentration at the wall

c Velocity of sound; molecular velocity

c Complex wave velocity = cR+icI
c0 Wave velocity for stagnant ûuids

cF Velocity of the liquid at the front of a slug

cB Velocity of the bubble behind a slug

cg Group velocity, the speed at which wave energy is transmitted

cG Sound velocity in the gas phase of a gas–liquid ûow

cKW Kinematic wave velocity, deûned by (7.51)

cL Sound velocity in the liquid phase of a gas–liquid ûow

ct Turbulent concentration ûuctuation

D Molecular diffusion coefûcient

dm Maximum drop diameter

dt Pipe diameter
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dh Hydraulic diameter = 4A/wetted perimeter dv¿

dv¿ Volume median diameter

dqm Drop diameter deûned by Mugele & Evans

d10 Number mean diameter

dP Diameter of a bubble or a drop

d32 Sauter mean diameter

E Entrainment

E Energy associated with one wavelength = P + T

EM Maximum possible entrainment

E(n) Spectral density function

e Energy per unit mass

ec Capture efûciency

F
!

Force

F Mechanical energy lost per unit mass of ûuid due to friction

F Flux of particles

FD Resisting force on a particle due to ûuid drag

FD Flux due to diffusion

FB Buoyancy force

F
!
L Lift force

f Fanning friction factor

f Factor that accounts for the volume of ûuid dragged along by a particle

fn(dP) Number distribution function

fv(dP) Volume distribution function

fS Friction factor for a smooth surface

fS Frequency of slugging

fi Friction factor for gas ûow over a gas–liquid interface

fPi Force of the ûuid on a particle

G Mass velocity deûned by (1.4)

GC Mass velocity at the choking condition

GL Mass velocity of the liquid

GG Mass velocity of the gas

GLE Mass velocity of drops entrained in the gas

g! Acceleration of gravity

g� Deûned by (3.20) and (3.21)

g+ Equal to g�=v�

H Submergence of injector in a gas-lift pump

h Enthalpy

h Height above a datum plane

hH Enthalpy of a gas–liquid mixture

hL Enthalpy of the liquid

hG Enthalpy of the gas

hL Height of liquid layer in a channel

hL1 Height of the liquid layer in front of a slug

xvi Symbols
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hL In a pipe, the length of the bisector of the liquid layer

hþL Dimensionless height of the liquid layer ¼ hLv
�=�

hG Height of the gas layer in a channel

hL0 Critical height of the liquid layer needed for slugs to appear

hcL Location of the centroid of an area

hLB Height of the liquid at the bottom of a horizontal pipe

hW Distance of the top of the waves from the wall

hLS Height of the liquid layer if the ûow is steady

�h Wave height

I Intermittency, fraction of the time that disturbance waves are present

I1 Integral deûned by (12.63)

I2 Integral deûned by (12.64)

i Internal energy per unit mass

k Wave number

kM Wave number at which wave growth is a maximum

kS Sand roughness

kD Deposition coefûcient

L Length of pipe or channel

L Length through which liquid is lifted in a gas lift pup

LD Pipe length needed for slugs to develop

LS Slug length

LU Length of a region of unstable stratiûed ûow

l Length in the ûow direction

3 Mixing length; characteristic viscous length

M Molecular weight

MLG Mass transfer rate per unit area from the liquid to the gas

MGL Mass transfer rate per unit area from the gas to the liquid

m Average height of the liquid layer around the circumference

mP Mass of a particle

m+ Dimensionless height based on the friction velocity and the viscosity

mþ
G Ratio of the ûlm height to a gas-phase length scale

mþ
c Dimensionless ûlm height, based on v�c and the viscosity of the liquid

N Local rate of mass transfer

n Frequency, cycles per second

P Perimeter

P Potential energy associated with one wavelength

PG Length of the pipe perimeter in contact with the gas

PL Length of the pipe perimeter in contact with the liquid

PS Pressure imposed on a solid or liquid surface by a ûowing ûuid
~P Pressure made dimensionless with ÃLgdt
p Pressure

pa Ambient pressure

pG Pressure along a sinusoidal wavy interface = pGR+ipGi
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pGR Pressure component which has a minimum at the wave crest

pGI Pressure component which is in phase with the wave slope

pGi Gas pressure at the interface

pLi Liquid pressure at the interface

QA Volumetric rate at which a liquid layer is atomizing

QG Volumetric ûow of gas

QL Volumetric ûow of the liquid

Qsh Volumetric ûow at which slugs shed liquid

q Velocity of the fastest-moving particle on the interface of a wave

q Magnitude of the velocity

q Volumetric ûow per unit breadth ≈ hua

q2 Equal to u2x þ u2y þ u2z
q_ Time rate at which heat is added to a control volume

qW Rate of heat addition at a wall per unit area

q_rev Heat transfer rate if changes are occurring reversibly

qWL Heat transfer rate per unit area from a wall to a liquid

qWG Heat transfer rate per unit area from a wall to a gas

qGL Heat transfer per unit area from a gas to a liquid

qLG Heat transfer per unit area from a liquid to a gas

R Wave resistance deûned by (4.116) and (4.117)

R Molar gas constant

R Radius of curvature of a surface

RD Mass rate of deposition of particles per unit area

RA Mass rate of atomization of the wall layer per unit area

R1,2 Principal radii of curvature of a surface

Rij The Reynolds stress divided by the density

R
path
i Correlation coefûcient of ûuid velocity ûuctuations seen by a particle as it moves

around in a turbulent ûeld

RL
i Lagrangian correlation coefûcient for turbulent ûuid particles

RL
Pi Lagrangian correlation coefûcient for particles in a turbulent ûeld

RE Eulerian correlation coefûcient

rt Radius of a tube or a pipe

rP Particle or bubble radius

rij Wave-induced variation of the Rij

S Slip ratio, equal to gas velocity divided by the liquid velocity

S Projected area of a particle

Si Length of the interface in an idealized stratiûed ûow

s Entropy

s Sheltering coefûcient, deûned by Jeffreys

T Temperature

T Kinetic energy in one wavelength

TS Tangential stress imposed on the interface by a ûowing ûuid

t Time
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tC Time constant reûecting the rate of growth of waves

UP Particle velocity

UA Velocity of atomizing drops in the ûow direction

UD Velocity of depositing drops in the ûow direction

UB Velocity of a bubble in a stationary liquid; bulk velocity

US∞ Rise velocity of a bubble in an inûnite stagnant liquid

U1 Convection velocity of a homogeneous, isotropic ûeld

UC Settling velocity of a suspension of particles

U
!

S Relative velocity between a particle (or a bubble) and a ûuid

u One-dimensional velocity

u! Fluid velocity vector

uc Fluid velocity at the center of a pipe or channel

utt Turbulent velocity component

u+ Velocity made dimensionless using the friction velocity

un Component of the velocity normal to a surface

ut Component of the velocity tangent to a surface

uH Velocity of a homogeneous mixture, deûned by (1.48)

uL Velocity of the liquid

uL1 Velocity of the stratiûed layer in front of a slug

uL3 Velocity of the liquid in the body of a slug

uslug Velocity of a slug

uG Gas velocity

uGc Critical gas velocity for the initiation of atomization

uGM Maximum value of uG
um Mixture velocity = uGS+ uLS
ua Spatially averaged liquid velocity

uS Liquid velocity at the interface

uga Spatially averaged gas velocity

uGSt Critical superûcial gas velocity at which Kelvin–Helmholtz waves appear

uGS Superûcial gas velocity = volumetric ûow of gas divided by A

uLS Superûcial liquid velocity = volumetric ûow of liquid divided by A

uo Rise velocity of bubbles

uG∞ Rise velocity of single bubbles in inûnite media

V Volume

VD Mean velocity of particles striking a wall

VDL Drift velocity associated with a lift force

VDrift Drift velocity, deûned by (8.29)

VD Mean velocity with which particles are depositing

VW Average velocity with which particles strike a boundary

VP Volume of a particle or a bubble

VT Terminal free-fall velocity

VR Average velocity of entrained particle in the radial direction

V 0
i Velocity with which particles enter the ûeld
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Vtp Turbophoretic velocity

V �
GS Dimensionless group deûning the initiation of annular ûow (11.1)

v Speciûc volume

vG Speciûc volume of a gas

vL Speciûc volume of a liquid

v* Friction velocity, using the shear stress at the wall or the interface

v�c Critical frictional velocity

v�G Friction velocity based on gas density and stress at the interface

v�L Friction velocity based on the liquid density and the stress at the wall

v�c Friction velocity based on liquid density and the characteristic stress

v! Velocity of a ûuid particle

v!P Velocity of an entrained particle or bubble

vtPi Turbulent velocity ûuctuation

W Weight rate of ûow

WL Weight ûow rate of liquid

WLP Mass ûow of liquid in the “pool” at the bottom of the pipe

WG Weight ûow rate of gas

WW Mass ûow of liquid on the wall

WLE Mass ûow of entrained drops

WLF Mass ûow rate in the wall layer

WLFC Critical ûow below which atomization does not occur

w_ Rate at which ûuid in a volume is doing work on surroundings

w Width of a control volume

X 2
P Mean square displacement of particles in a turbulent ûeld

x Mixture quality, mass fraction that is a gas or vapor

x Coordinate in the ûow direction in a Cartesian coordinate system

y Coordinate that is perpendicular to a wall

yû Location at which particles start a free-ûight to the wall

y+ Distance from the wall made dimensionless with the friction velocity

y0 Average location of the interface

z Coordinate in the direction of ûow in a pipe ûow

z Distance from reference plane

Greek symbols

³ Volume fraction of gas in a ûowing mixture

³ Ratio of the fastest moving particle at the interface to wave velocity

³W Ratio of wave height to what would be observed on a deep liquid

³ Parameter representing shape of velocity proûle

³ Equals τ
path
i

� ��1

³P Volume fraction of particles or bubbles

³m+ Dimensionless quantity deûned by (3.28)

´ Reciprocal of the inertial time constant of an entrained particle
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~β Reciprocal time constant for a particle in a liquid (10.50)

� Gamma function

� Volumetric ûow per unit length in the spanwise direction

�c Critical ûlm ûow below which atomization does not occur

��
c Modiûed critical ûlm ûow (12.74)

�S A shape factor for the velocity proûle (7.6)

³ Ratio of the heat capacities at constant pressure and constant volume

´ Thickness of a viscous boundary layer

´ij Delta function

µ Rate of dissipation of mechanical energy per unit volume

µ Lagrangian turbulent diffusivity of ûuid particles

µ Ratio of the fastest-moving particle in the interface to the wave velocity

µh Diffusivity representing turbulent mixing in the wall layer

µL Liquid holdup = (1 − ³)

µP Lagrangian turbulent diffusivity of entrained particles

εEP Eulerian diffusivity of entrained particles

· Displacement of the interface from its average location

¸ Inclination angle to the horizontal

¸ Phase for an oscillating quantity

¸ Angular location on the wall of a pipe, where ¸ = 0 can be the top or bottom

of the pipe

¸g Orientation angle of ûow to the gravitational vector (Figure 1.2)

� Lagrangian length scale

» Wavelength

»m Wavelength which is growing the fastest

»T Lagrangian micro-time-scale

¼ Viscosity

¼G Gas viscosity

¼L Liquid viscosity

¼P Viscosity of the ûuid inside a drop or bubble

¼t Turbulent viscosity

Ã Density

ÃL Liquid density

ÃG Gas density

ÃP Particle density

Ãf Fluid density

ÃS Density of a dissolving solid surface

ÃH Density of a homogeneous mixture

ρ�G ρG coth khGð Þ

ρ�L ρL coth khLð Þ

Ã Surface tension

ÃP Root-mean-square of the turbulent velocity ûuctuations of particles

Ã Root-mean square of a ûuctuating quantity
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Ä Magnitude of a shear stress

Äc Time constant characterizing the rate of growth of waves

Äc Characteristic stress in a liquid layer = (2/3)ÄW + (1/3)Äi
ÄP Inertial time constant of a particle

ÄP Effective stress due to atomization and deposition

τ
path
i Time constant characterizing R

path
i

ÄL Lagrangian time constant

ÄE Eulerian time-scale

ÄPB Volume-average inertial time constant

ÄPS Time constant for a particle obeying Stokes law

ÄW Shear stress at a wall

ÄWG Resisting stress at the wall on a gas

ÄWL Resisting stress at the wall on a liquid

Äi Shear stress at an interface

Äij Component of a stress tensor

τtij Component of a turbulent stress tensor

ÄDA Net momentum ûux due to atomization and deposition

� Kinematic viscosity

�L Kinematic viscosity of the liquid

�G Kinematic viscosity of the gas

�t Turbulent kinematic viscosity

× Potential function describes velocity for an irrotational ûeld

×2G Dimensionless frictional pressure gradient deûned by (1.100)

×2L Dimensionless frictional pressure gradient deûned by (1.101)

Ë Circular frequency = kc

ω!P Angular rotation of a particle or bubble

Ë Stream function deûned by (6.20)

Dimensionless groups

~β ¼ 3CDρf j u
!� v!Pj=4rP 2ρP þ ρfð Þ

Bo Bond number =
dh

σ= ρL � ρGð Þg½ �1=2

F ¼
³ ReLFð Þ

Re0:9G

�L
�G

ûûûûû

ρL
ρG

r

is a parameter in (3.41)

FH F for a horizontal pipe (12.48)

Fr Froude number = uGS= gdtð Þ1=2

Ma Mach number = ratio of the ûuid velocity to the velocity of sound

Re Reynolds number

ReG Gas-phase Reynolds number = dtWG/Ar¼G for a pipe

ReLF Film Reynolds number = 4G=�L
ReL0 Liquid Reynolds number based on the velocity at the interface
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ReP Particle Reynolds number = dPρUS=¼

Sc Schmidt number

θ Number reûecting the effect of viscosity on wave growth

We Weber number

X Martinelli parameter

Other symbols

h i Spatial average, ensemble average or phase average

( )i Quantity evaluated at the interface

j j Signiûes an absolute value

D

Dt
Substantial derivative. Time change seen in a framework of a moving ûuid

particle (deûned by equation (4.13))

N Overbar indicates a time-average

N 0 Prime indicates a ûuctuating quantity

N t A turbulent ûuctuation

N̂ Indicates complex amplitude of a ûuctuating quantity induced by sinusoidal

waves
~N Tilde indicates N̂ divided by the wave amplitude, a
~~N Difference between the phase-average and the time-average

N� Deûned by (3.20), (3.21)
dP

dz

� �

F

Frictional contribution to the pressure gradient

dP

dz

� �

GS

Frictional pressure gradient for gas ûowing along a pipe

dP

dz

� �

LS

Frictional pressure gradient for liquid ûowing along a pipe
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