Physics of Gas–Liquid Flows

Presenting tools for understanding the behavior of gas-liquid flows based on the ways large-scale behavior relates to small-scale interactions, this text is ideal for engineers seeking to enhance the safety and efficiency of natural gas pipelines, water-cooled nuclear reactors, absorbers, distillation columns, and gas lift pumps. The review of advanced concepts in fluid mechanics enables both graduate students and practicing engineers to tackle the scientific literature and engage in advanced research.

The text focuses on gas-liquid flow in pipes as a simple system with meaningful experimental data. This unified theory develops design equations for predicting drop size, frictional pressure losses, and slug frequency, which can be used to determine flow regimes, the effects of pipe diameter, liquid viscosity, and gas density. It describes the effect of wavy boundaries and temporal oscillations on turbulent flows, and explains transition between flow regimes, which is key to understanding the behavior of gas-liquid flows.

Thomas J. Hanratty is Professor Emeritus at the University of Illinois at Urbana-Champaign, and was a leader in establishing industrially important multiphase flow as a new academic discipline, by relating macroscopic behavior to small-scale interactions. His research has been recognized by nine awards from the American Institute of Chemical Engineers (AIChE), the American Society for Engineering Education, Ohio State University, Villanova University, and University of Illinois. He was the inaugural winner of the International Multiphase Flow Prize. Hanratty was named as one of the influential chemical engineers of the modern era at the AIChE centennial celebration in 2008. He has been elected to the National Academy of Engineering, the National Academy of Sciences, and the American Academy of Arts and Sciences.

> "This authoritative and impressive monograph, written by a widely acclaimed pioneer in the field, is an excellent resource for new students as well as seasoned practitioner. It develops the concepts systematically and packages many decades worth of literature in this field lucidly, giving the readers a chance to understand appreciate the evolution of this field."

Sankaran Sundaresan, Princeton University

"Physics of gas-liquid flows" is a must read for graduate students, researchers and engineers seeking a solid basis or wanting to update their knowledge in the dynamics of gas-liquid systems. The book is an authoritative reference, mainly built around the results of the author, a leading expert in the field during several decades. It presents our current experimental and theoretical understanding at both the local and global scales with an original contribution to wave phenomena as they appear in film stratified and annular flows that may be a source of inspiration for researchers and teachers in the years to come."

Jean Fabre, Institut National Polytechnique, Toulouse

"A lifetime of probing research and deep thinking about gas-liquid flows is enclosed between the covers of this book. Starting from simple analyses – the style of which will be familiar to many undergraduates – the author moves gradually to more advanced topics building a succinct yet exhaustive picture of the present understanding of these important flows. Practicing engineers and researchers alike will find many gems in this book."

Andrea Prosperetti, Johns Hopkins University

Physics of Gas–Liquid Flows

THOMAS J. HANRATTY

University of Illinois at Urbana-Champaign

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107041202

© Thomas J. Hanratty 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2013

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data
Hanratty, Thomas J.
Physics of gas–liquid flows / Thomas J. Hanratty, University of Illinois at Urbana-Champaign. pages cm
ISBN 978-1-107-04120-2 (hardback)
1. Multiphase flow. 2. Gas–liquid interfaces. I. Title.
TA357.5.M84H36 2013
532'.56–dc23

2013013373

ISBN 978-1-107-04120-2 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Pref	<i>ace</i>	page xiii	
	List	of symbols	XV	
Chapter 1	One-	-dimensional analysis	1	
	1.1	Introduction	1	
	1.2	Single-phase flow	2	
		1.2.1 Flow variables	2	
		1.2.2 Momentum and energy theorem	2	
		1.2.3 Steady flow in a duct of constant area	3	
		1.2.4 Choking	5	
		1.2.5 Flow of an ideal gas in a pipe of constant area	6	
		1.2.6 Mechanical energy balance	8	
	1.3	The homogeneous model for gas-liquid or vapor-liquid flow	9	
		1.3.1 Basic equations	9	
		1.3.2 Choking	10	
		1.3.3 Calculation of wall shear stress	12	
		1.3.4 Comments about the reliability of the homogeneous model	12	
	1.4	Separated flow model for gas-liquid flow	12	
		1.4.1 Basic equations	12	
		1.4.2 Choking	14	
	1.5	The Lockhart–Martinelli analysis	15	
		1.5.1 Evaluation of homogeneous and separated flow models	15	
		1.5.2 Frictional pressure gradient	15	
		1.5.3 Rationale for the Lockhart–Martinelli plots	16	
		1.5.4 Lockhart–Martinelli correlation	18	
	1.6	Steady flow in a nozzle	19	
		1.6.1 Preliminary comments	19	
		1.6.2 Single-phase flow	19	
		1.6.3 Two-phase flow in a nozzle	22	
		1.6.4 One-dimensional two-fluid model	24	
Chapter 2	Flow regimes			
	2.1	Need for a phenomenological understanding	27	
	2.2	Flow regimes in horizontal pipes	28	
		2.2.1 Flow regimes for air and a low-viscosity liquid	28	
		2.2.2 Wavy stratified flow in air–water systems	28	

vi	Conte	ents	
		2.2.3 Annular flow	2
		2.2.4 Plug and slug flow	3
		2.2.5 Stability of a slug	3
		2.2.6 Transition to slug/plug flow	3
		2.2.7 Pseudo-slugs	3
		2.2.8 Bubble/foam regime	3
		2.2.9 Flow at large gas and liquid velocities	3-
		2.2.10 Effect of pipe diameter on flow regimes	3
	2.3	Large-wavelength Kelvin-Helmholtz waves / viscous large-wavelength	
		instability	3:
	2.4	Effect of liquid viscosity on flow regimes in a horizontal pipe	3'
	2.5	Effect of gas density on flow regimes in a horizontal pipe	40
	2.6	Effect of drag-reducing polymers	4
	2.7	Vertical upflows	42
		2.7.1 Flow patterns	42
		2.7.2 Mechanisms for the breakdown of the bubbly flow pattern	44
		2.7.3 Mechanism for the slug flow to churn flow transition	43
		2.7.4 Mechanism for the churn/annular transition	4
		2.7.5 Mechanism for the transition to dispersed bubbly flow	4
	2.8	Vapor patterns in evaporating and condensing flows / critical heat flux	4′
	2.9	Downflows in vertical pipes	49
	2.10	Microgravity flows	50
		2.10.1 General comments	5(
		2.10.2 Flow regimes	5(
		2.10.3 Comparison of flow regimes for microgravity and 1g flows	52
	2.11	Capillaries and microchannels	52
		2.11.1 Capillary tubes	52
		2.11.2 Microchannels	53
Chapter 3	Film	flows	58
	3.1	Free-falling laver	5
	5.1	3.1.1. Laminar flow	5
		3.1.2 Turbulent flow	5
		3.1.3 Interpolation formula	61
	32	Gas_liquid flows	61
	5.2	3.2.1 Horizontal flow in a channel	61
		3.2.2 Film flow in a vertical nine	6
		3.2.2 Flow reversal and flooding	64
		Interfacial stress for vertical flows	64
	22	THIS THIS TO A THIS AND THE VERTICAL THE VER	U.
	3.3	3 3 1 Wayes in annular flows	6
	3.3	3.3.1 Waves in annular flows	6:
	3.3	 3.3.1 Waves in annular flows 3.3.2 Scaling 3.3.3 Correlation for fluxing d/2 as a scaling factor. 	6: 60

		Contents	V	
			_	
Chapter 4	Invis	scid waves	7	
	4.1	Inviscid, incompressible, irrotational flow	7	
	4.2	Propagation of small-amplitude two-dimensional waves	74	
	4.3	Dispersion relation for propagating waves	7	
	4.4	Propagation of waves at the interface of stationary fluids	79	
	4.5	Kelvin–Helmholtz instability	8	
		4.5.1 General conditions for a KH instability	8	
		4.5.2 Gas–liquid flows with deep gas and liquid layers	82	
		4.5.3 Effect of $h_{\rm G}$	8.	
	4.6	Experimental verification of the KH instability	84	
	4.7	Group velocity	8:	
		4.7.1 Physical interpretation of group velocity	83	
		4.7.2 Wave resistance	88	
		4.7.3 Waves which decay in space, rather than time	89	
	4.8	Uses of the notion of a KH instability	90	
		4.8.1 Initiation of slugging	90	
		4.8.2 Rate of atomization	90	
		4.8.3 Interfacial stress in horizontal stratified flows	92	
Chapter 5	Stra	tified flow	94	
	5.1	Scope	94	
	5.2	Stratified flow in a rectangular channel	94	
	5.3	Stratified flow of gas and liquid in a pipe	9:	
		5.3.1 Geometric relations	9:	
		5.3.2 Laminar flow	90	
		5.3.3 Laminar liquid-turbulent gas flow in a pipe	90	
		5.3.4 Model of Taitel & Dukler	91	
	5.4	Determination of the interfacial friction factor	100	
		5.4.1 Measurements of f_i/f_S	100	
		5.4.2 Equations for interfacial friction factor and wave steepness	102	
		5.4.3 Design relations for a horizontal pipe	10.	
	5.5	Inclined pipes	104	
		5.5.1 General comments about the effect of inclination	104	
		5.5.2 Upflows	10:	
		5.5.3 Downward inclinations	10	
Chapter 6	Influence of viscosity on large Reynolds number interfacial waves; effect			
	of sp	patially and temporally induced oscillations on a turbulent flow	11	
	6.1	Introductory comments	11	
	6.2	Equation for small disturbances in a viscous fluid	112	
	6.3	Boundary conditions	114	
	6.4	Solution of the Orr-Sommerfeld equation	116	

viii	Cont	ents	
		6.4.1 General solution	11
		6.4.2 Dispersion relation	11
	6.5	Special solutions for constant liquid velocity	11
		6.5.1 Solution of (6.19) for constant liquid velocity	11
		6.5.2 Free-surface waves	11
	6.6	Wave generation by a gas flow	12
		6.6.1 Dispersion relation for large Reynolds numbers	12
		6.6.2 Influence of P and T	12
		6.6.3 Prediction of \hat{P} and \hat{T} using the quasi-laminar assumption	12
		6.6.4 Changes in the quasi-laminar theory to include wave-induced	
		turbulence	12
	6.7	Flow over solid wavy surfaces	12
		6.7.1 Measurements of shear stress along a solid wavy surface	12
		6.7.2 Equations for flow over solid waves, in boundary-layer coordinates	12
		6.7.3 Evaluation of \hat{r}_{ij} using a modified van Driest model	13
		6.7.4 Testing turbulence models against wall shear stress measurements	13
	6.8	Response of turbulence to imposed temporal oscillations	13
		6.8.1 Motivation	13
		6.8.2 Measurements	13
		6.8.3 Comparison with the quasi-steady solution	13
	6.9	Prediction of wave generation	14
	6.10	Dissolution patterns	14
Chapter 7	Larg	e-wavelength waves; integral equations	14
	7.1	Prologue	14
	7.2	Integral equation used to analyze the behavior of liquid layers	14
		7.2.1 Approach	14
		7.2.2 Dispersion relation	14
		7.2.3 Relation between the wall shear stress and u_a	15
	7.3	Laminar free flow	15
	7.4	Kinematic waves	15
	7.5	Roll waves	15
		7.5.1 Outline	15
		7.5.2 Free turbulent flows on an inclined plane	15
		7.5.3 Generation of roll waves by a gas flow	16
	7.6	Model for a fully developed roll wave	16
	7.7	Ripples generated on a liquid film at high gas velocities	16
	7.8	Roll waves in pipelines	17
Chapter 8	Bubl	ble dynamics	17
	8.1	Prologue	17
	8.2	Free-fall velocity of a solid sphere	17
	8.3	Stokes law for a solid sphere	174
		-	

	Contents	ix
	8.4 Rise velocity of bubbles at low Re _P	178
	8.5 Measurements of $C_{\rm D}$	178
	8.5.1 Solid spheres	178
	8.5.2 Gas bubbles	179
	8.6 Gaseous volume fraction for bubbly flow	180
	8.7 Cap bubbles	181
	8.8 Taylor bubbles / vertical slug flow	183
	8.9 Benjamin bubble	184
	8.10 Oas int pumps 8.11 Bubble columns	180
	8.11 Dubble columns	189
	8.11.1 Volume fraction of gas in bubble column	109
	8 11 3 Analysis of a bubble column	194
	8.12 Bubbly gas-liquid flow in vertical pipes, distribution of bubbles	194
	8.13 Performance of downcomers in tray columns	195
	8.14 Sedimentation and fluidization	197
	8.14.1 Focus	197
	8.14.2 Sedimentation	197
	8.14.3 Fluidization	199
9	Horizontal slug flow	202
	9.1 Prologue	202
	9.2 Slug stability	202
	9.2.1 Necessary conditions for the existence of slugs	202
	9.2.2 Transition to plug flow	206
	9.2.3 Measurements of the shedding rate	207
	9.2.4 Equations for the bubble velocity and the shedding rate	208
	9.2.5 Calculations of the stability of a slug	211
	9.3 Modeling of slug flow in a horizontal pipe	212
	9.4 Frequency of slugging	216
	9.4.1 Shallow liquid inviscid theory	216
	9.4.2 Regular slugging	21/
	9.4.3 Stochastic stugging	221
	9.4.4 Stochastic models	228
	9.5 mggering of stug formation	229
10	Particle dispersion and deposition	232
	10.1 Prologue	232
	10.2 Dispersion of fluid particles in homogeneous isotropic turbulence	232
	10.3 Equation of motion of a particle or a bubble	235
	10.4 Lift forces and lateral drift	237
	10.4.1 Inviscid lift forces	237
	10.4.2 Sattman viscous lift force	237

х	Contents			
	10.5	Characterization of fluid turbulence	238	
	10.6	Relation of particle turbulence to fluid turbulence	240	
	10.7	Dispersion of particles in a turbulent gas which is homogeneous and		
		isotropic	243	
		10.7.1 No effect of gravity	243	
	10.9	10.7.2 Effect of gravity; heavy particles	244	
	10.8	10.8.1. The superiments of Lee et al.	245	
		10.8.1 The experiments of Young & Hanratty	243	
	10.9	Turbonhoresis	240 240	
	10.9	10.9.1 The concent of turbonhoresis	249	
		10.9.2 Formulation in cylindrical polar coordinates	250	
		10.9.3 Formulation in Cartesian coordinates	252	
		10.9.4 Physical interpretation of turbophoresis: effect on concentration		
		profiles	252	
	10.10	Deposition of particles	253	
	10.11	Stochastic representation of fluid turbulence	257	
		10.11.1 Prologue	257	
		10.11.2 The use of a modified Langevin equation in channel flow	257	
		10.11.3 Identification of mechanisms for deposition	259	
		10.11.4 Concentration profiles	263	
11	Vertic	cal annular flow	268	
	11.1	Prologue	268	
	11.2	Distribution function for drop size	269	
	11.3	Drop size	272	
	11.4	Rate of deposition	279	
	11.5	Experiments in turbulence generated by a DNS	281	
	11.6	Rate of atomization	285	
	11.7	Entrainment in vertical flows	286	
12	Horizo	ontal annular flow	292	
	12.1	Prologue	292	
	12.2	Drop distribution and local gas velocity	293	
		12.2.1 Measurements	293	
		12.2.2 Maps of gas velocity and droplet flux	293	
		12.2.3 Stochastic calculations for a 2-D rectangular channel	297	
		12.2.4 Formulation of the diffusion equation for particles in a pipe	301	
		12.2.5 Concentration distributions measured in a pipe	302	
	12.3	Distribution of liquid in the wall layer of a horizontal pipe	304	
		12.3.1 Description of the wall film	304	
		12.3.2 Asymmetric wall layer model	305	
		12.3.3 Distribution of the liquid in an asymmetric wall layer	310	

		Contents	xi
12.4	Entrainment in horizontal pipes		315
	12.4.1 Entrainment theory		315
	12.4.2 Entrainment measurements		317
	12.4.3 Calculations for a natural gas pipeline		320
12.5	Pool model		322
12.6	Transition to the annular regime		324
	12.6.1 Air–water flow		324
	12.6.2 Natural gas pipelines		327
Index	,		331

Preface

Gas-liquid flows are ubiquitous in industrial and environmental processes. Examples are the transportation of petroleum products, the cooling of nuclear reactors, the operation of absorbers, distillation columns, gas lift pumps. Quite often corrosion and process safety depend on the configuration of the phases. Thus, the interest in this area should not be surprising.

The goal of this book is to give an account of scientific tools needed to understand the behavior of gas–liquid systems and to read the scientific literature. Particular emphasis is given to flow in pipelines.

The following brief historical account is taken from a plenary lecture by the author at the Third International Conference on Multiphase Flow, Lyon, France, June 8–12, 1998. (*Int. J. Multiphase Flow* 26, 169–190, 2000):

A symposium held at Exeter (P. M. C. Lacey) in 1965 brought together 160 people with a wide range of interests. Discussions at the 42 presentations indicated, to me, that something special was happening and that future directions of work on multiphase flow were being defined. This thrust was continued in conferences at Waterloo, Canada, in 1968 (E. Rhodes, D. S. Scott) and at Haifa, in 1971 (G. Hetsroni). Intellectual activity in ensuing years is exemplified by more focused conferences on Annular and Dispersed Flows held at Pisa, 1984 (S. Zanelli, P. Andreussi, T. J. Hanratty) and in Oxford, England, in 1987 (G. F. Hewitt, P. Whalley, B. Azzopardi), the Symposium on Measuring Techniques at Nancy (J. M. Delhaye, 1983) and the Conference on Gas Transfer at Heidelberg (Jähne, 1995). However, the 350 papers presented at the Second International Conference on Multiphase Flow in 1995 (A. Serizawa, Y. Tsuji) manifested a new level of activity.

A fair question is what happened between 1965 and 1995. My own assessment is that major successes came about, mainly through efforts that relate macroscopic properties of multiphase systems to small-scale behavior. An outcome of this approach is the possible emergence of a new field. This is evidenced in many ways, of which the establishment of the *International Journal of Multiphase Flow* (Gad Hetsroni, 1973) and the Japan Society of Multiphase Flow (A. Akagawa, T. Fukano, 1987) are examples. The following excerpt from a talk by R. T. Lahey at the inauguration of the Japan Society would indicate that my observations are not original: "I believe that this new field will become as widely accepted in the future as other emerging fields . . .".

Physics of Gas–Liquid Flows addresses both graduate students and practitioners. The treatment is based on a course, taught at the University of Illinois, which required only that the students had taken one undergraduate course in fluid dynamics. As a consequence, attention is given to topics that are usually bulwarks in graduate courses

xiv Preface

in fluid dynamics, such as ideal flow theory, the Navier–Stokes equations and interfacial waves.

In reporting the results from published research I have retained the units (metric or imperial) as used in the original work.

This work has a kinship to *One Dimensional Two-Phase Flow* by Graham Wallis, published by McGraw-Hill in 1969. One should recognize that much has happened since the publication of this book and that my way of presenting the material could be different from that of that of Dr. Wallis.

Physics of Gas–Liquid Flows leans heavily on contributions by researchers in my laboratory. A verbal summary of these works is contained in an account of the Research of Thomas J. Hanratty which was deposited with the University of Illinois in the Illinois Digital Environment for Access to Learning and Scholarship (IDEALS). It can be visited at http://hdl.handle.net/2142/9132. The illustrations were prepared by Dorothy Loudermilk. Taras V. Pogorelov provided a helping hand in transmitting the manuscripts to Cambridge University Press.

Cover

The photograph featured in the cover was obtained in the laboratory of Thomas J. Hanratty by James B. Young. It captures the trajectories of particles in a turbulent liquid flowing down a vertical pipe. Cross-sections at several locations were illuminated by thin sheets having different colors. Axial viewing photography was used to capture the paths of the particles. The color of a particle gives its axial location.

Symbols

A	Area
A	Measure of the thickness of the viscous wall layer, used by van Driest
$A_{\rm G}$	Area of the gas space
$A_{\rm L}$	Area of the liquid space
$A_{\rm LS}$	Area of the liquid in a slug
A_{L1}	Area of the liquid layer in front of a slug
$A_{\mathrm{P}i}$	Acceleration of a particle in the <i>i</i> -direction
$A_{\rm L0}$	Critical area for a liquid layer to sustain a stable or growing slug
$A_{\rm t}$	Area of a tube or pipe
a	Amplitude of a wave
$a_{\rm v}$	Interfacial area per unit volume
В	Height of a rectangular channel, or the height of the gas space
С	Concentration
C_0	Concentration at $y = 0$
$C_{\rm B}$	Bulk concentration
$C_{\rm D}$	Drag coefficient
$C_{\rm L}$	Lift coefficient
C_{P}	Heat capacity at constant pressure
$C_{\rm V}$	Heat capacity at constant volume
C_{W}	Concentration at the wall
С	Velocity of sound; molecular velocity
с	Complex wave velocity = $c_{\rm R} + ic_{\rm I}$
c_0	Wave velocity for stagnant fluids
$c_{\rm F}$	Velocity of the liquid at the front of a slug
$c_{\rm B}$	Velocity of the bubble behind a slug
$c_{\rm g}$	Group velocity, the speed at which wave energy is transmitted
$c_{\rm G}$	Sound velocity in the gas phase of a gas-liquid flow
$c_{\rm KW}$	Kinematic wave velocity, defined by (7.51)
$c_{\rm L}$	Sound velocity in the liquid phase of a gas-liquid flow
c^{t}	Turbulent concentration fluctuation
D	Molecular diffusion coefficient
$d_{\rm m}$	Maximum drop diameter
$d_{\rm t}$	Pipe diameter

xvi	Symbols			
	$d_{ m h}$	Hydraulic diameter = $4A$ /wetted perimeter $d_{v\mu}$		
	$d_{ m v\mu}$	Volume median diameter		
	$d_{\rm qm}$	Drop diameter defined by Mugele & Evans		
	d_{10}	Number mean diameter		
	$d_{ m P}$	Diameter of a bubble or a drop		
	d_{32}	Sauter mean diameter		
	E	Entrainment		
	E	Energy associated with one wavelength = $P + T$		
	$E_{\mathbf{M}}$	Maximum possible entrainment		
	E(n)	Spectral density function		
	е	Energy per unit mass		
	$\stackrel{e^{c}}{\rightarrow}$	Capture efficiency		
	F	Force		
	F	Mechanical energy lost per unit mass of fluid due to friction		
	F	Flux of particles		
	$F_{\rm D}$	Resisting force on a particle due to fluid drag		
	$F_{\rm D}$	Flux due to diffusion		
	$F_{\mathbf{B}}$	Buoyancy force		
	$F_{ m L}$	Lift force		
	f_{-}	Fanning friction factor		
	f	Factor that accounts for the volume of fluid dragged along by a particle		
	$f_{\rm n}(d_{\rm P})$	Number distribution function		
	$f_{\rm v}(d_{\rm P})$	Volume distribution function		
	$f_{\rm S}$	Friction factor for a smooth surface		
	$f_{\rm S}$	Frequency of slugging		
	$f_{\rm i}$	Friction factor for gas flow over a gas-liquid interface		
	f _{Pi}	Force of the fluid on a particle		
	G	Mass velocity defined by (1.4)		
	$G_{\rm C}$	Mass velocity at the choking condition		
	$G_{\rm L}$	Mass velocity of the liquid		
	$G_{\rm G}$	Mass velocity of the gas		
	$G_{\text{LE}} \rightarrow$	Mass velocity of drops entrained in the gas		
	g	Acceleration of gravity		
	g_+	Defined by (3.20) and (3.21)		
	g	Equal to gv/v^*		
	H	Submergence of injector in a gas-lift pump		
	h	Enthalpy		
	h	Height above a datum plane		
	$h_{\rm H}$	Enthalpy of a gas-liquid mixture		
	h ² 1 G	Enthalpy of the liquid		
	h ^S	Enthalpy of the gas		
	$h_{\rm L}$	Height of liquid layer in a channel		
	$h_{\rm L1}$	Height of the liquid layer in front of a slug		

Cambridge University Press & Assessment 978-1-107-04120-2 — Physics of Gas-Liquid Flows Thomas J. Hanratty Frontmatter More Information

Symbols	
---------	--

xvii

$h_{ m L}$	In a pipe,	the length	of the bisector	of the liquid layer

- $h_{\rm L}^+$ Dimensionless height of the liquid layer = $h_{\rm L}v^*/v$
- $h_{\rm G}$ Height of the gas layer in a channel
- $h_{\rm L0}$ Critical height of the liquid layer needed for slugs to appear
- $h_{\rm L}^{\rm c}$ Location of the centroid of an area
- $h_{\rm LB}$ Height of the liquid at the bottom of a horizontal pipe
- $h_{\rm W}$ Distance of the top of the waves from the wall
- $h_{\rm LS}$ Height of the liquid layer if the flow is steady
- Δh Wave height

I Intermittency, fraction of the time that disturbance waves are present

- I_1 Integral defined by (12.63)
- I_2 Integral defined by (12.64)
- *i* Internal energy per unit mass
- *k* Wave number
- $k_{\rm M}$ Wave number at which wave growth is a maximum
- k_S Sand roughness
- $k_{\rm D}$ Deposition coefficient
- *L* Length of pipe or channel
- *L* Length through which liquid is lifted in a gas lift pup
- $L_{\rm D}$ Pipe length needed for slugs to develop
- $L_{\rm S}$ Slug length
- $L_{\rm U}$ Length of a region of unstable stratified flow
- *l* Length in the flow direction
- ℓ Mixing length; characteristic viscous length
- M Molecular weight
- $M_{\rm LG}$ Mass transfer rate per unit area from the liquid to the gas
- $M_{\rm GL}$ Mass transfer rate per unit area from the gas to the liquid
- *m* Average height of the liquid layer around the circumference
- $m_{\rm P}$ Mass of a particle
- m^+ Dimensionless height based on the friction velocity and the viscosity
- $m_{\rm G}^+$ Ratio of the film height to a gas-phase length scale
- m_c^+ Dimensionless film height, based on v_c^* and the viscosity of the liquid
- N Local rate of mass transfer
- *n* Frequency, cycles per second
- P Perimeter
- *P* Potential energy associated with one wavelength
- $P_{\rm G}$ Length of the pipe perimeter in contact with the gas
- $P_{\rm L}$ Length of the pipe perimeter in contact with the liquid
- $P_{\rm S}$ Pressure imposed on a solid or liquid surface by a flowing fluid
- \tilde{P} Pressure made dimensionless with $\rho_{\rm L}gd_{\rm t}$
- *p* Pressure
- $p_{\rm a}$ Ambient pressure
- $p_{\rm G}$ Pressure along a sinusoidal wavy interface = $p_{\rm GR}$ + $ip_{\rm Gi}$

Cambridge University Press & Assessment 978-1-107-04120-2 — Physics of Gas-Liquid Flows Thomas J. Hanratty Frontmatter <u>More Information</u>

xviii	Symbols			
	$p_{ m GR}$	Pressure component which has a minimum at the wave crest		
	p_{GI}	Pressure component which is in phase with the wave slope		
	$p_{ m Gi}$	Gas pressure at the interface		
	p_{Li}	Liquid pressure at the interface		
	$Q_{\rm A}$	Volumetric rate at which a liquid layer is atomizing		
	$Q_{ m G}$	Volumetric flow of gas		
	$Q_{ m L}$	Volumetric flow of the liquid		
	$Q_{ m sh}$	Volumetric flow at which slugs shed liquid		
	q	Velocity of the fastest-moving particle on the interface of a wave		
	q	Magnitude of the velocity		
	\overline{q}	Volumetric flow per unit breadth $\approx hu_a$		
	q^2	Equal to $u_r^2 + u_v^2 + u_z^2$		
	ġ	Time rate at which heat is added to a control volume		
	$q_{ m W}$	Rate of heat addition at a wall per unit area		
	$\dot{q}_{\rm rev}$	Heat transfer rate if changes are occurring reversibly		
	$q_{\rm WL}$	Heat transfer rate per unit area from a wall to a liquid		
	$q_{\rm WG}$	Heat transfer rate per unit area from a wall to a gas		
	$q_{\rm GL}$	Heat transfer per unit area from a gas to a liquid		
	$q_{\rm LG}$	Heat transfer per unit area from a liquid to a gas		
	R	Wave resistance defined by (4.116) and (4.117)		
	R	Molar gas constant		
	R	Radius of curvature of a surface		
	$R_{\rm D}$	Mass rate of deposition of particles per unit area		
	R_{A}	Mass rate of atomization of the wall layer per unit area		
	$R_{1,2}$	Principal radii of curvature of a surface		
	R_{ii}	The Reynolds stress divided by the density		
	R_i^{path}	Correlation coefficient of fluid velocity fluctuations seen by a particle as it moves around in a turbulent field		
	$R_i^{\rm L}$	Lagrangian correlation coefficient for turbulent fluid particles		
	$R_{\mathrm{P}i}^{\mathrm{L}}$	Lagrangian correlation coefficient for particles in a turbulent field		
	$R^{\tilde{E}}$	Eulerian correlation coefficient		
	$r_{\rm t}$	Radius of a tube or a pipe		
	r _P	Particle or bubble radius		
	r _{ii}	Wave-induced variation of the R_{ii}		
	Š	Slip ratio, equal to gas velocity divided by the liquid velocity		
	S	Projected area of a particle		
	S_{i}	Length of the interface in an idealized stratified flow		
	S	Entropy		
	S	Sheltering coefficient, defined by Jeffrevs		
	Т	Temperature		
	Т	Kinetic energy in one wavelength		
	T_{c}	Tangential stress imposed on the interface by a flowing fluid		
	- S	The second second of the interface of a nowing flata		

t Time

Cambridge University Press & Assessment 978-1-107-04120-2 — Physics of Gas-Liquid Flows Thomas J. Hanratty Frontmatter <u>More Information</u>

Symbols	
Symbols	

xix

$t_{\rm C}$	Time constant reflecting the rate of growth of waves
$U_{\mathbf{P}}$	Particle velocity
U_{A}	Velocity of atomizing drops in the flow direction
$U_{\rm D}$	Velocity of depositing drops in the flow direction
$U_{\rm B}$	Velocity of a bubble in a stationary liquid; bulk velocity
$U_{\mathbf{S}^{\infty}}$	Rise velocity of a bubble in an infinite stagnant liquid
U_1	Convection velocity of a homogeneous, isotropic field
$U_{\rm C}$	Settling velocity of a suspension of particles
\overline{U}_{S}	Relative velocity between a particle (or a bubble) and a fluid
и	One-dimensional velocity
\overrightarrow{u}	Fluid velocity vector
$u_{\rm c}$	Fluid velocity at the center of a pipe or channel
u_{t}^{t}	Turbulent velocity component
u^+	Velocity made dimensionless using the friction velocity
u _n	Component of the velocity normal to a surface
$u_{\rm t}$	Component of the velocity tangent to a surface
$u_{\rm H}$	Velocity of a homogeneous mixture, defined by (1.48)
$u_{\rm L}$	Velocity of the liquid
u_{L1}	Velocity of the stratified layer in front of a slug
u_{L3}	Velocity of the liquid in the body of a slug
$u_{\rm slug}$	Velocity of a slug
$u_{\rm G}$	Gas velocity
$u_{\rm Gc}$	Critical gas velocity for the initiation of atomization
$u_{\rm GM}$	Maximum value of $u_{\rm G}$
<i>u</i> _m	Mixture velocity = $u_{\rm GS} + u_{\rm LS}$
<i>u</i> _a	Spatially averaged liquid velocity
$u_{\rm S}$	Liquid velocity at the interface
$u_{\rm ga}$	Spatially averaged gas velocity
$u_{\rm GSt}$	Critical superficial gas velocity at which Kelvin-Helmholtz waves appear
$u_{\rm GS}$	Superficial gas velocity = volumetric flow of gas divided by A
$u_{\rm LS}$	Superficial liquid velocity = volumetric flow of liquid divided by A
uo	Rise velocity of bubbles
$u_{G\infty}$	Rise velocity of single bubbles in infinite media
V	Volume
$V_{\rm D}$	Mean velocity of particles striking a wall
$V_{\rm DL}$	Drift velocity associated with a lift force
$V_{\rm Drift}$	Drift velocity, defined by (8.29)
$V_{\rm D}$	Mean velocity with which particles are depositing
$V_{\rm W}$	Average velocity with which particles strike a boundary
$V_{\rm P}$	Volume of a particle or a bubble
$V_{\rm T}$	Terminal free-fall velocity
$V_{\rm R}$	Average velocity of entrained particle in the radial direction
V_i^0	Velocity with which particles enter the field

Cambridge University Press & Assessment 978-1-107-04120-2 — Physics of Gas-Liquid Flows Thomas J. Hanratty Frontmatter <u>More Information</u>

Symbo	ds
V _{tp}	Turbophoretic velocity
$V_{\rm GS}^*$	Dimensionless group defining the initiation of annular flow (11.1)
v	Specific volume
$v_{\rm G}$	Specific volume of a gas
$v_{\rm L}$	Specific volume of a liquid
v^*	Friction velocity, using the shear stress at the wall or the interface
$v_{\rm c}^*$	Critical frictional velocity
$v_{ m G}^{*}$	Friction velocity based on gas density and stress at the interface
$v_{ m L}^*$	Friction velocity based on the liquid density and the stress at the wall
v_c^*	Friction velocity based on liquid density and the characteristic stress
\overrightarrow{v}	Velocity of a fluid particle
\overrightarrow{v}_{P}	Velocity of an entrained particle or bubble
$v_{\mathrm{P}i}^{\mathrm{t}}$	Turbulent velocity fluctuation
W	Weight rate of flow
$W_{\rm L}$	Weight flow rate of liquid
$W_{\rm LP}$	Mass flow of liquid in the "pool" at the bottom of the pipe
$W_{\rm G}$	Weight flow rate of gas
$W_{ m W}$	Mass flow of liquid on the wall
$W_{\rm LE}$	Mass flow of entrained drops
$W_{\rm LF}$	Mass flow rate in the wall layer
$W_{\rm LFC}$	Critical flow below which atomization does not occur
ŵ	Rate at which fluid in a volume is doing work on surroundings
w	Width of a control volume
$\overline{X_{P}^{2}}$	Mean square displacement of particles in a turbulent field
x	Mixture quality, mass fraction that is a gas or vapor
x	Coordinate in the flow direction in a Cartesian coordinate system
v	Coordinate that is perpendicular to a wall
y Ve	Location at which particles start a free-flight to the wall
v^+	Distance from the wall made dimensionless with the friction velocity
vo	Average location of the interface
50 Z	Coordinate in the direction of flow in a pine flow
Z	Distance from reference plane
Greel	k symbols
a	Volume fraction of gas in a flowing mixture
a	Ratio of the fastest moving particle at the interface to wave velocity
<i>a</i>	Ratio of wave height to what would be observed on a deen liquid
aw	Parameter representing shape of valocity profile
α	$r_{\text{arances representing shape of velocity profile}}$
a	Hanala I ar an I

 α Equals $\left(\tau_{i}^{\text{pain}}\right)$

 $\alpha_{\rm P}$ Volume fraction of particles or bubbles

- αm^+ Dimensionless quantity defined by (3.28)
- β Reciprocal of the inertial time constant of an entrained particle

	Symbols	xxi
\tilde{eta}	Reciprocal time constant for a particle in a liquid (10.50)	
Γ	Gamma function	
Г	Volumetric flow per unit length in the spanwise direction	
$\Gamma_{\rm c}$	Critical film flow below which atomization does not occur	
$\Gamma_{\rm c}^*$	Modified critical film flow (12.74)	
$\Gamma_{\rm S}$	A shape factor for the velocity profile (7.6)	
γ	Ratio of the heat capacities at constant pressure and constant volume	
δ	Thickness of a viscous boundary layer	
δ_{ij}	Delta function	
3	Rate of dissipation of mechanical energy per unit volume	
3	Lagrangian turbulent diffusivity of fluid particles	
3	Ratio of the fastest-moving particle in the interface to the wave velocity	
$\varepsilon_{\rm h}$	Diffusivity representing turbulent mixing in the wall layer L is used by Lemma (1).	
EL O	Liquid noidup = $(1 - \alpha)$	
ср сЕ	Eularian diffusivity of entrained particles	
с _Р	Displacement of the interface from its average location	
η Α	Inclination angle to the horizontal	
θ	Phase for an oscillating quantity	
θ	Angular location on the wall of a nine, where $\theta = 0$ can be the top or bottom	
0	of the nine	
θ_{a}	Orientation angle of flow to the gravitational vector (Figure 1.2)	
Λ^{g}	Lagrangian length scale	
λ	Wavelength	
λ_{m}	Wavelength which is growing the fastest	
λ^{T}	Lagrangian micro-time-scale	
μ	Viscosity	
$\mu_{ m G}$	Gas viscosity	
$\mu_{ m L}$	Liquid viscosity	
μ_{P}	Viscosity of the fluid inside a drop or bubble	
μ^{t}	Turbulent viscosity	
ρ	Density	
$ ho_{ m L}$	Liquid density	
$ ho_{ m G}$	Gas density	
$ ho_{ m P}$	Particle density	
$ ho_{ m f}$	Fluid density	
$ ho_{ m S}$	Density of a dissolving solid surface	
$ ho_{ m H}$	Density of a nomogeneous mixture a_{μ} as b_{μ}	
$\rho_{\rm G}^*$	$\mu_{\rm G} \operatorname{com}(\kappa n_{\rm G})$	
$\rho_{\rm L}$	$p_{\rm L} \operatorname{com}(m_{\rm L})$	
σ	Root-mean-square of the turbulent velocity fluctuations of particles	
σ	Root-mean square of a fluctuating quantity	
0	reser mean square of a naccounting quantity	

Cambridge University Press & Assessment 978-1-107-04120-2 - Physics of Gas-Liquid Flows Thomas J. Hanratty Frontmatter More Information

xxii	Symbols		
	τ	Magnitude of a shear stress	
	$ au_{ m c}$	Time constant characterizing the rate of growth of waves	
	$ au_{ m c}$	Characteristic stress in a liquid layer = $(2/3)\tau_{\rm W} + (1/3)\tau_{\rm i}$	
	$ au_{ m P}$	Inertial time constant of a particle	
	$ au_{ m P}$	Effective stress due to atomization and deposition	
	$ au_i^{ ext{path}}$	Time constant characterizing R_i^{path}	
	$ au^{ m L}$	Lagrangian time constant	
	$ au^{ m E}$	Eulerian time-scale	
	$ au_{\mathrm{PB}}$	Volume-average inertial time constant	
	$ au_{\mathrm{PS}}$	Time constant for a particle obeying Stokes law	
	$ au_{ m W}$	Shear stress at a wall	
	$ au_{ m WG}$	Resisting stress at the wall on a gas	
	$ au_{ m WL}$	Resisting stress at the wall on a liquid	
	$ au_{ m i}$	Shear stress at an interface	
	$ au_{ii}$	Component of a stress tensor	
	τ_{ii}^{t}	Component of a turbulent stress tensor	
	$ au_{\mathrm{DA}}^{y}$	Net momentum flux due to atomization and deposition	
	v	Kinematic viscosity	
	$v_{ m L}$	Kinematic viscosity of the liquid	
	$v_{\rm G}$	Kinematic viscosity of the gas	
	v^{t}	Turbulent kinematic viscosity	
	ϕ	Potential function describes velocity for an irrotational field	
	ϕ_G^2	Dimensionless frictional pressure gradient defined by (1.100)	
	$\phi_{\rm I}^2$	Dimensionless frictional pressure gradient defined by (1.101)	
	ω	Circular frequency = kc	
	$\overrightarrow{\omega}_{\rm P}$	Angular rotation of a particle or bubble	
	ψ	Stream function defined by (6.20)	
	Dim	ensionless groups	
	$ ilde{eta}$	$= 3C_{\rm D}\rho_{\rm f} \overrightarrow{u} - \overrightarrow{v}_{\rm P} / 4r_{\rm P}(2\rho_{\rm P} + \rho_{\rm f})$	
	Во	Bond number = $\frac{d_{\rm h}}{\left[\sigma/(\rho_{\rm L}-\rho_{\rm G})g\right]^{1/2}}$	
	F	$= \frac{\gamma(\text{Re}_{\text{LF}})}{\text{Re}_{G}^{0.9}} \frac{\nu_{\text{L}}}{\nu_{\text{G}}} \sqrt{\frac{\rho_{\text{L}}}{\rho_{\text{G}}}} \text{ is a parameter in (3.41)}$	

$$-$$
 Re^{0.9}_G $\nu_{\rm G}$

F for a horizontal pipe (12.48) $F_{\rm H}$

Froude number = $u_{\rm GS}/(gd_{\rm t})^{1/2}$ Fr

Mach number = ratio of the fluid velocity to the velocity of sound Ma

- Re Reynolds number
- Gas-phase Reynolds number = $d_t W_G / A_r \mu_G$ for a pipe Re_G
- Film Reynolds number = $4\Gamma/v_L$ Re_{LF}
- Liquid Reynolds number based on the velocity at the interface Re_{L0}

Symbols

xxiii

- Re_P Particle Reynolds number = $d_{\rm P}\rho U_{\rm S}/\mu$
- Sc Schmidt number
- θ Number reflecting the effect of viscosity on wave growth
- We Weber number
- X Martinelli parameter

Other symbols

$\langle \rangle$	Spatial average, ensemble average or phase average
() _i	Quantity evaluated at the interface
	Signifies an absolute value
$\frac{D}{Dt}$	Substantial derivative. Time change seen in a framework of a moving fluid particle (defined by equation (4.13))
\overline{N}	Overbar indicates a time-average
N'	Prime indicates a fluctuating quantity
N^{t}	A turbulent fluctuation
\hat{N}	Indicates complex amplitude of a fluctuating quantity induced by sinusoidal
	waves
\tilde{N}	Tilde indicates \hat{N} divided by the wave amplitude, <i>a</i>
\tilde{N}	Difference between the phase-average and the time-average
\hat{N}	Defined by (3.20), (3.21)
$\left(\frac{dP}{dz}\right)_{\rm F}$	Frictional contribution to the pressure gradient
$\left(\frac{dP}{dz}\right)_{\rm GS}$	Frictional pressure gradient for gas flowing along a pipe
$\left(\frac{dP}{dz}\right)_{\rm LS}$	Frictional pressure gradient for liquid flowing along a pipe