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1 One-dimensional analysis

1.1 Introduction

The “simplest” models for gas–liquid ûow systems are ones for which the velocity is

uniform over a cross-section and unidirectional. This includes ûows in a long straight

pipe and steady ûows in a nozzle.

A treatment of pipe ûow with a constant cross-section is initiated by reviewing

analyses of incompressible and compressible single-phase ûows. A simple way to use

these results is to describe gas–liquid ûows with a homogeneous model that assumes

the phases are uniformly distributed, that there is no slip between the phases and

that the phases are in thermodynamic equilibrium. The volume fraction of the gas, α,

is then directly related to the relative mass ûows of the phases. However, the assumption

of no slip, S = 1, can introduce considerable error. This has prompted a consideration

of a separated ûow model, where uniform ûows of gas and liquid are pictured as

moving parallel to one another with different velocities and to be in thermodynamic

equilibrium.

The two-ûuid model develops equations for the interaction of two interpenetrating

streams. It does not require the speciûcation of S or the assumption of equilibrium

between the phases. However, it introduces several new variables.

An interesting feature of the single-phase analysis of a compressible ûuid is the

existence of the choking phenomenon whereby there is a maximum ûow which can be

realized for a system in which the pressure at the pipe inlet and the pressure in the receiver

are controlled. The homogeneous model predicts much smaller choking velocities for

gas–liquid ûows than would exist for gas ûowing alone.

The separated ûow model requires equations for the stress at the wall, τW, and α

(or the slip ratio). The homogeneous model requires only an equation for τW. The

speciûcation of these quantities is a continuing interest and is a focus in future chapters.

A starting point for this pursuit is the widely used Lockhart–Martinelli analysis

discussed in this chapter.

Steady ûow in a nozzle is different from ûow in a straight pipe in that changes in inertia

override the importance of wall resistance and of gravity. Equations that use the separated

ûow model are developed in this chapter for gas–liquid ûows in a nozzle.

The materials in Section 1.6 on ûow in a nozzle and on the two-ûuid model can

be ignored in a ûrst reading since they are not needed to follow the main narrative of

this book.
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1.2 Single-phase flow

1.2.1 Flow variables

When a single phase is ûowing, the ûeld is described by the variables pressure, p,

velocity, u!, density, ρ and temperature, T. Four equations are needed: conservation of

momentum, conservation of energy, conservation of mass, and a relation among state

variables. Examples of the last are the perfect gas law and tables of thermodynamic

properties.

1.2.2 Momentum and energy theorem

For ûow systems, it is convenient to formulate Newton’s second law of motion as a

momentum theorem, which focuses on a ûxed volume in space rather than on particles

moving through a ûeld. A sketch of an arbitrary volume is shown in Figure 1.1. Note that,

on the boundary, the velocity vector, u!, can be represented by components perpendicular,

un, and tangent, ut, to the boundary. The theorem is stated as follows: “The time rate of

change of momentum in a ûxed volume in space plus the net ûow ofmomentum out of the

volume equals the net force acting on the volume.”

ð
∂ðρu!Þ

∂t
dV þ

ð

ρunu
! dA ¼ F

�!
ð1:1Þ

Thermodynamic variables are deûned for systems which are at equilibrium. The appli-

cation of conservation of energy and the equation of state to a ûowing system, therefore,

usually involves the assumption that the adjustment of molecular properties to a change

of the environment occurs much more rapidly than the change of the ûow ûeld.

(Examples where this assumption might not be valid are ûow through a shock wave or

the stagnation of ûow at a very small impact tube.) The energy of a ûowing ûuid is

deûned as

e ¼ iþ
juj2

2
ð1:2Þ

un

ut

u

Figure 1.1 An arbitrary volume in space.
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where i is the internal energy per unit mass and |u|2/2 is the kinetic energy per unit mass.

The ûrst law of thermodynamics is formulated for a ûow system as the energy

theorem: “The time rate of change of energy in a ûxed volume in space plus the net

ûow of energy out of that volume equals the rate at which heat is added, q_, minus the rate

at which the ûuid in the volume is doing work on the surroundings, w_.”

ð
∂ðρeÞ

∂t
dV þ

ð

ρune dA ¼ q_ � w_ ð1:3Þ

where ρe is the energy per unit volume.

1.2.3 Steady flow in a duct of constant area

The equations deûning the steady ûow in a pipe of constant area, A, can be derived by

considering the ûxed control volume shown in Figure 1.2. The pipe is inclined at an angle

θg to the direction of the gravitational vector. The ûuid is ûowing in the z-direction with

an average velocity, u. Equations are to be developed describing the changes of u, p, ρ,

and Twith z.

Under steady ûow conditions, the mass ûow, ρuA, does not vary along the pipe. The

equation for conservation of mass is

AG ¼ uρA ¼ constant ð1:4Þ

where term G is called the mass velocity.

The ûux of momentum along the pipe is given as GAu. Since the ûow is steady, the

time rate change in the control volume, indicated by the dashed lines in Figure 1.2, is zero

so the momentum theorem states that the net ûow of momentum out of a ûxed volume

equals the net force. The ûows of momentum into and out of the control volume are given

by ρu2A and ρu2A + d(ρu2A), so the net ûow of momentum out is d(ρu2A).

The forces due to pressure acting on the front and back faces are pA and –(p + dp)A, so

the net force is –(dp)A. The force of gravity is − ρg cos θg Adz. The wall resists the ûow

with a stress, τW, acting on the side walls of the control volume and the net force due to

this stress is −τWPdz where P is the perimeter of the duct. The momentum theorem gives

d AGuð Þ ¼ � dpð ÞA� τWPdz� ρAg cos θgdz ð1:5Þ

dz

p + dp

p

z

Flow

τW

τW

g

θg

Figure 1.2 Control volume in a pipe.
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The wall shear stress is usually represented as

τW ¼
1

2
ρu2f ð1:6Þ

where the Fanning friction factor, f, needs to be determined empirically for turbulent

ûows. Conservation of mass indicates that d(GA) = 0. If this is used in (1.5), the following

is obtained after substituting (1.6).

Gdu ¼ �dp�
f PG2

2Aρ
dz� ρg cos θgdz ð1:7Þ

From conservation of mass, if A is constant, du = G d(1=ρ) so that

G2dð1=ρÞ ¼ �dp�
f PG2

2Aρ
dz� ρgcosθg dz ð1:8Þ

This shows that pressure changes result from balancing the frictional drag, the gravita-

tional force and the acceleration of the ûuid.

Equation (1.8) can be solved directly for p if ρ is constant, that is, if there is no

change in velocity in the direction of ûow. If ρ is not constant the relation ρ (p) is

needed. This can be obtained from the energy theorem and the equation of state. The

rate of energy addition to the control volume can be calculated from the rate of heat

addition at the wall per unit area as qWP dz. The rate at which the ûuid in the control

volume does work on the surroundings consists of two terms. The rate at which

the ûuid at z works to get into the control volume is puA. The rate at which the ûuid

at z + dz does work to get out of the control volume is (puA + d(puA)). The net rate of

work on the surroundings due to these effects is d(pua). The ûuid in the control volume

works against gravity to lift the ûuid through a distance cos θg dz. This contributes a

rate of work of GAg cos θg dz.

Thus, for the steady ûow depicted in Figure 1.2, the energy theorem gives

AGdiþ AGd
ju2j

2
¼ qWP dz� dðpAuÞ � GAg cosθg dz ð1:9Þ

The enthalpy per unit mass is given as

h ¼ iþ
p

ρ
ð1:10Þ

where 1/ρ is the volume per unit mass. The kinetic energy per unit mass is ju2j=2. If (1.10)

and u = G/ρ are substituted into (1.9) and A is constant,

dh ¼
1

2
G2d

1

ρ2

� �

þ g cos θgdz ¼
qWP

AG
dz ð1:11Þ

Equation (1.11) deûnes the change of enthalpy. For a given ûuid, the thermodynamic

state is deûned by any three state variables, so

h ¼ f p; ρð Þ ð1:12Þ

4 One-dimensional analysis
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Therefore, a table or a diagram representing the thermodynamic variables provides

a relationship between ρ and p if h(z) is known. Equation (1.11) gives a relation

between p and p along the z-axis. This can be used in (1.8) to eliminate either p(z)

or ρ(z).

1.2.4 Choking

Consider a length of pipe for which the ûuid enters at a pressure p1 and discharges into a

chamber whose pressure, p2, is changed. Equation (1.8) can be solved to obtain G for a

given p2/p1. The solution shows that G initially increases as p2/p1 decreases. Eventually

it gives a maximum and the impossible result that G decreases with decreasing p2/p1.

The maximum in G represents a choking condition for which further decreases of the

pressure in the discharge chamber have no effect on the mass ûow and the ûow along

the pipe remains unchanged. This can be understood when it is realized that the

equations predict that a decrease in p2 is accompanied by an increase in the velocity

and a decrease in the density. These have opposite effects on the mass velocity since

G = ρu. Thus, for p2/p1 less than the critical value the equations predict that decreases in

ρ offset the increases in u.

At choking, the ûuid velocity equals the velocity with which small disturbances (sound

waves) propagate in a ûuid. Thus, information about the change in the pressure at the

outlet cannot be transmitted upstream and the behavior in the pipeline is not affected by

what is happening in the receiving chamber. The ûuid discharging from the pipeline

expands supersonically and forms shock waves in the receiver.

This interpretation is illustrated, in a direct way, by considering the momentum

balance, equation (1.8). The term on the left side of (1.8) may be written as

G2d
1

ρ

� �

¼ �
G2

ρ2
dρ ¼ �u2

dρ

dp
dp ð1:13Þ

where dp/dρ is the change of pressure with density along the pipe. Substituting (1.13) into

(1.8) gives

dp

dz
1�

u2

c2

� �

¼ �
f G2P

2Aρ
� ρg cos θg ð1:14Þ

where the velocity of sound, c, is given by

c2 ¼
dp

dρ
ð1:15Þ

It is noted that the coefûcient of dp/dz changes sign when the Mach number, Ma = u/c,

assumes values greater than unity. This suggests that the frictional pressure gradient

changes from a negative to a positive value. A positive frictional pressure gradient is an

impossibility so Ma cannot change from a value less than unity to a value greater than

unity in a pipeline of constant area. The ûow chokes when u = c at the outlet.

The entropy of a ûuid can be deûned by the following thermodynamic relation

1.2 Single-phase flow 5
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Tds ¼ dh�
dp

ρ
ð1:16Þ

Thus, the change of entropy along the pipeline can be calculated if h(z), p(z) and ρ(z) are

known. This calculation shows that, for an adiabatic ûow, s increases with z because of

the irreversible effects associated with wall friction. At the choking condition ds = 0 so,

from (1.15), the disturbance velocity is given as

c2 ¼
∂p

∂ρ

� �

s

ð1:17Þ

This is a thermodynamic quantity which is the classical deûnition of the velocity of

sound. When the ûow is not adiabatic, qW ≠ 0, this is not the case. For example, if the

frictional heating is balanced by heat losses, the temperature might be kept approximately

constant so that

c2 ¼
∂p

∂ρ

� �

T

ð1:18Þ

1.2.5 Flow of an ideal gas in a pipe of constant area

An ideal gas is deûned with the equations

p

ρ
¼

R

M
T ð1:19Þ

di ¼ CVdT ð1:20Þ

dh ¼ CPdT ð1:21Þ

where R is the molar gas constant,M is the molecular weight, CV is the heat capacity

at constant volume and CP is the heat capacity at constant pressure. Thus, for an

ideal gas

∂p

∂ρ

� �

s

¼ γ
p

ρ
ð1:22Þ

∂p

∂ρ

� �

T

¼
R

M
T ð1:23Þ

where γ =CP /CV and

R

M
¼ CP � CV ð1:24Þ

The application of the equations developed in Section 1.2.3 will be illustrated by

considering the adiabatic ûow of an ideal gas in a pipe of constant area. Since a gas is

being considered, gravitational effects can be neglected and the momentum balance

equation is written as

6 One-dimensional analysis
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�
ρ

G2
dpþ

dρ

ρ
�
2f

dt
dz ¼ 0 ð1:25Þ

where dt is the pipe diameter. This can be integrated if the dependency of p on ρ is known.

Conservation of energy for qW = 0 gives

dhþ
1

2
Gd

1

ρ2

� �

¼ 0 ð1:26Þ

Since conservation of mass gives G = constant, the equation can be integrated to give

h� h1ð Þ ¼
G2

2ρ1
2
�

G2

2ρ2
ð1:27Þ

where subscript 1 indicates inlet conditions. From (1.21),

h� h1ð Þ ¼ CPðT � T1Þ ð1:28Þ

If (1.19) and (1.24) are used in (1.28)

h� h1 ¼
R

M

γ

γ� 1

� �

T � T1ð Þ ¼
γ

γ� 1

� �

p

ρ
�
p1
ρ1

� �

ð1:29Þ

The following relation between p and ρ is obtained if (1.27) is substituted into (1.29):

p

p1
¼ �

ðγ� 1Þ

γ

G2

2p1ρ1

ρ1
ρ
þ

γ� 1ð Þ

γ

G2

2p1ρ1

ρ

ρ1
þ

ρ

ρ1
ð1:30Þ

Equation (1.30) is used to eliminate p from (1.25). The following relation for ρ is

obtained if f is assumed to be constant.

γþ 1ð Þ

γ

1

2
ln

ρ

ρ1
�

γ� 1ð Þ

γ

1

4

ρ2

ρ21
� 1

� �

�
p1ρ1

2G2

ρ2

ρ21
� 1

� �

�
2f z� z1ð Þ

dt
¼ 0 ð1:31Þ

If the density variation is calculated with (1.31), the pressure variation is obtained from

(1.30) and the velocity can be obtained from conservation of mass

u

u1
¼

ρ1
ρ

ð1:32Þ

The temperature is obtained from (1.19).

T

T1

¼
p

p1

ρ1
ρ

ð1:33Þ

From (1.16), (1.11), (1.19) the following equation is obtained for the entropy

ds ¼
R

Mp

G2

ρ2
dρ� dp

� �

ð1:34Þ

This can be integrated to obtain s − s1, using the equations for p and ρ developed above.

1.2 Single-phase flow 7
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If an isothermal ûow is assumed

p

p1
¼

ρ

ρ1
ð1:35Þ

This condition will hold for a high molecular weight gas for which CV is quite large and

γ ¼ CV þ Rð Þ=CV ≈ 1. If γ = 1 is substituted into (1.30), it is seen that (1.35) results.

However, in general, isothermal conditions can be maintained only if heat is exchanged

with the surroundings; that is, the ûow would not be adiabatic.

Equation (1.25) can be integrated directly if (1.35) is substituted for ρ

�
p1ρ1

2G2

p

p1

� �2

� 1

" #

þ ln
p

p1
�
2f ðz� z1Þ

dt
¼ 0 ð1:36Þ

For an isothermal ûow of an ideal gas, the enthalpy h is constant so the energy equation

gives

qWP

AG
z� z1ð Þ ¼

G2

2ρ2
�

G2

2ρ1
2

ð1:37Þ

The heat that is added to the ûow to maintain a constant temperature must increase with

increases in kinetic energy. Since dh = 0, equation (1.16), describing the change in

entropy, gives

ds ¼
1

T

dp

ρ
ð1:38Þ

This can be integrated, using (1.19), to yield

s� s1 ¼ �
R

M
ln

p

p1
ð1:39Þ

The entropy will increase as long as p decreases. It need not attain a maximum at the

value of p/p1 for choking to occur. This difference from the adiabatic case arises since the

system cannot be considered as isolated so that a reversible process need not correspond

to one for which the entropy is constant.

1.2.6 Mechanical energy balance

The ûrst law of thermodynamics deûnes a change in internal energy as

di ¼
q_revP

GA
dz� pd

1

ρ

� �

ð1:40Þ

where q_rev is the heat needed for a reversible operation. If this is substituted into the

energy balance, equation (1.9),

dp

ρ
þ d

u2

2

� �

þ g cos θgdz ¼ qW � q_revð Þ
P

AG
dz ð1:41Þ

8 One-dimensional analysis
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Deûne F as the rate of mechanical energy loss per unit mass of ûuid, where

dF ¼ q_rev � qWð Þ ð1:42Þ

Thus (1.41) can be rewritten as

dp

ρ
þ d

u2

2

� �

þ g cos θgdz ¼ �dF ð1:43Þ

A comparison of (1.43) with the momentum balance equation gives

dF

dz
¼

τWP

ρA
¼

4

dt

τW

ρ
ð1:44Þ

1.3 The homogeneous model for gas–liquid or vapor–liquid flow

1.3.1 Basic equations

The simplest approach to ûows involving a gas and a liquid is to treat the mixture

the same as a single phase. This requires assuming (1) zero slip between the phases,

(2) uniform ûow and (3) equilibrium between the phases (one can use thermodynamic

tables when the vapor and liquid are in contact). Deûne the quality, x, as the mass fraction

of the ûowing mixture that is a gas or vapor and a void fraction, α, as the fraction of the

cross-section that is occupied by the gas. For ûows such as air–water, where phase

changes are not occurring, x does not vary along the pipeline. For ûows with a ûuid pair

such as steam–water, vaporization can occur, so x can change.

Deûne a mixture density as the ratio of the mass ûow to the volume ûow:

ρH ¼
GA

AxGvG þ 1� xð ÞGAvL
ð1:45Þ

where

vG ¼
1

ρG
vL ¼

1

ρL
ð1:46Þ

Thus

1

ρH
¼ xvG þ 1� xð ÞvL ¼

x

ρG
þ

1� xð Þ

ρL
ð1:47Þ

A mixture velocity is deûned as

uH ¼
G

ρH
ð1:48Þ

For the condition uG = uL

α ¼
QG

QG þ QL

¼
xGAvG

xGAvG þ 1� xð ÞGAvL
¼ x

vG

vH
¼ x

ρH
ρG

ð1:49Þ

1.3 The homogeneous model for gas–liquid or vapor–liquid flow 9
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Also

α

1� α
¼

x

ð1� xÞ

ρL
ρG

ð1:50Þ

The momentum balance, equation (1.8), is rewritten as

�
ρH

G2
dpþ

dρH
ρH

�
ρ2H

G2
g cos θgdz�

τWρHP

G2A
dz ¼ 0 ð1:51aÞ

or, alternatively, as

�
dp

dz
¼ G2 dρ

�1
H

dz
þ ρHg cos θg þ

τWP

A
ð1:51bÞ

The conservation of energy equation (1.11) is given as

dhH þ
1

2
G2d

1

ρ2H

� �

þ g cos θgdz ¼
qWP

AG
dz ð1:52Þ

where

hH ¼ xhG þ 1� xð ÞhL ð1:53Þ

The enthalpy of the gas, hG, and the enthalpy of the liquid, hL, are obtained from

thermodynamic correlations.

For two-component systems such as air and water, the quality, x, does not vary along

the pipeline and is ûxed by the inlet conditions. The enthalpies, hL and hG, are ûxed

for a given p and ρH (which relate to ρG and ρL through equation (1.47)). For a single-

component system, such as steam–water, the quality, x, and the densities, ρL and ρG, are

ûxed for a given pressure and enthalpy, if equilibrium is assumed between the phases.

Thus, (1.52) can be used to provide a relation between ρH and p. This can be used to

integrate (1.9). Equation (1.52) and thermodynamic data can be used to calculate the

variation of p, ρH, G, x with distance along the pipe.

1.3.2 Choking

The momentum balance for a homogeneous ûow can be rewritten as

�dp 1�
G2 dρH=dpð Þ

ρ2H

� �

�
ρ2H

G2
g cos θg dz�

τWP

A
dz ¼ 0 ð1:54Þ

Choking occurs when the term in the brackets changes sign

1

G2
C

¼ �
dvH

dp
ð1:55Þ

From (1.15), deûne

1

c2
¼

dρH
dp

¼
dv�1

H

dp
¼ �ρ2H

dvH

dp
ð1:56Þ
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