Abel-Kader, K., 95–96
Anderson, B. L., 59–75, 281–283
Apter, A. J., 94–95
Baron, J., 51–52
Berkman, J., 6, 105–125, 202, 281
Berry, D. C., 224
Berwick, D. M., 200–201
Bhattacharya, J., 220–221
Booth, J. L., 216–217
Bramwell, R., 64–66
Brewer, N. T., 235–236
Carey, L. A., 235–236
Cavanaugh, K., 6, 92–93, 105–125, 211–212, 281
Cokely, E. T., 4–5, 6–7, 11–35, 107, 161, 281
on objective numeracy in physicians, 60–61
on visual aids for behavioral interventions, 163–165, 281–282, 282–283
Colditz, G., 221–223
Cosmides, L., 221–223
Cuite, C. L., 221–223
Cumming, J., 220–221
DeFrank, J. T., 235–236
Dehaene, S., 216–217
Del Missier, F. T., 16–17
Dhami, M. K., 154–156
Dieckmann, N., 184–185, 220–221
Dixon, A., 220–221
Downs, J. S., 178–179
Dukhtovny, S., 6, 71, 130–148, 211–212, 281
El-Jawahri, A., 52–53
Emmons, K. M., 175–177, 221–223
Epstein, S., 225–228
Estrada, C. A., 93–94
Evans, J. St. B. T., 225–226
Fagerlin, A., 5, 80–99
Feldman-Stewart, D., 232–233
Finucane, M. L., 183
Fischhoff, B., 178–179
Fraenkel, L., 188, 232–233
Freud, S., 225–226
Frosch, D. L., 52–53, 188–189
Gaissmaier, W., 5, 39–54, 236–237, 281
Galesic, M., 49–51, 84, 154–156
on bias reduction with visual aids, 157–163
cognition research by, 224
message-framing vulnerability, visual aids for reduction of, 161–163
Garcia-Retamero, R., 6–7, 11–35, 49–51, 84, 281
on bias reduction with visual aids, 157–163
cognition research by, 224
graph literacy research by, 223–224
on low-numeracy patient risk perception, 154–156, 281–282
message-framing vulnerability, visual aids for reduction of, 161–163
on visual aids for behavioral interventions, 163–165, 282–283
Ghazal, S., 11–35, 281
Gigerenzer, G., 3–4, 154–156, 221–223, 262–263
Giuliani, R., 47–48
Glick, J. T., 175–177

284
<table>
<thead>
<tr>
<th>Name index</th>
<th>285</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hackshaw, A. K., 178</td>
<td></td>
</tr>
<tr>
<td>Han, P., 230–232</td>
<td></td>
</tr>
<tr>
<td>Hanoch, Y., 61, 220–221</td>
<td></td>
</tr>
<tr>
<td>Hellems, M. A., 69–71</td>
<td></td>
</tr>
<tr>
<td>Hibbard, J. H., 183, 220–221</td>
<td></td>
</tr>
<tr>
<td>Huizinga, M. M., 92–93</td>
<td></td>
</tr>
<tr>
<td>Izard, V., 216–217</td>
<td></td>
</tr>
<tr>
<td>Jepson, C., 51–52</td>
<td></td>
</tr>
<tr>
<td>Kahneman, D., 3–4, 260–261</td>
<td></td>
</tr>
<tr>
<td>Kantor, S. L., 72–74</td>
<td></td>
</tr>
<tr>
<td>Keysar, B., 181</td>
<td></td>
</tr>
<tr>
<td>Kumar, D., 89–91</td>
<td></td>
</tr>
<tr>
<td>Kurzon, N., 82–83</td>
<td></td>
</tr>
<tr>
<td>Liberali, J. M., 11–13, 20–22</td>
<td></td>
</tr>
<tr>
<td>Lipkus, L. M.</td>
<td></td>
</tr>
<tr>
<td>abbreviated numeracy scale assessment, 20–22</td>
<td></td>
</tr>
<tr>
<td>Berlin Numeracy Test and, 22–23, bias reduction using numeracy scale, 158</td>
<td></td>
</tr>
<tr>
<td>cancer screening risk/benefit, patient numeracy concerning, 96–97</td>
<td></td>
</tr>
<tr>
<td>diabetic patient numeracy assessment and, 107–109</td>
<td></td>
</tr>
<tr>
<td>numeracy measurement tools and, 4–5, 14–17</td>
<td></td>
</tr>
<tr>
<td>numeracy scale of, 154–156</td>
<td></td>
</tr>
<tr>
<td>on numerical reasoning, 4</td>
<td></td>
</tr>
<tr>
<td>on patient numeracy skills, 87–88</td>
<td></td>
</tr>
<tr>
<td>patient numeracy studies and, 87</td>
<td></td>
</tr>
<tr>
<td>Liu, P., 220–221</td>
<td></td>
</tr>
<tr>
<td>Maldonado, A., 161</td>
<td></td>
</tr>
<tr>
<td>Marden, S., 92–93</td>
<td></td>
</tr>
<tr>
<td>Mayman, G., 80–99</td>
<td></td>
</tr>
<tr>
<td>McGlynn, E. A., 193</td>
<td></td>
</tr>
<tr>
<td>Mertz, C. K., 217–218, 220–221</td>
<td></td>
</tr>
<tr>
<td>Muilmeijer, J., 5, 59–54, 281, 282–283</td>
<td></td>
</tr>
<tr>
<td>Natter, H., 224</td>
<td></td>
</tr>
<tr>
<td>Nelson, W., 230–232</td>
<td></td>
</tr>
<tr>
<td>Okan, Y., 161</td>
<td></td>
</tr>
<tr>
<td>O’Neill, O., 263–265</td>
<td></td>
</tr>
<tr>
<td>Paul, E. A., 178</td>
<td></td>
</tr>
<tr>
<td>Paulos, J. A., 42–43</td>
<td></td>
</tr>
<tr>
<td>Peters, E., 6–7, 217–218, 220–221</td>
<td></td>
</tr>
<tr>
<td>dual-process theory and, 228</td>
<td></td>
</tr>
<tr>
<td>on framing effects, 226–228</td>
<td></td>
</tr>
<tr>
<td>irrational bias research and, 229–230</td>
<td></td>
</tr>
<tr>
<td>on visual aids for low-numeracy patients, 175–189, 281–282</td>
<td></td>
</tr>
<tr>
<td>Piager, J., 226–228</td>
<td></td>
</tr>
<tr>
<td>Pica, P., 216–217</td>
<td></td>
</tr>
<tr>
<td>Pignone, M. P., 230–232</td>
<td></td>
</tr>
<tr>
<td>Rao, G., 72–74</td>
<td></td>
</tr>
<tr>
<td>Rice, T., 220–221</td>
<td></td>
</tr>
<tr>
<td>Richman, A. R., 235–236</td>
<td></td>
</tr>
<tr>
<td>Rideout, V., 52–53</td>
<td></td>
</tr>
<tr>
<td>Robinson, P. A., 175–177</td>
<td></td>
</tr>
<tr>
<td>Romo, T., 39–40, 47–48, 51–52</td>
<td></td>
</tr>
<tr>
<td>Salton, E., 226–228</td>
<td></td>
</tr>
<tr>
<td>Schneider, C., 263–265</td>
<td></td>
</tr>
<tr>
<td>Schroy, P. C., 175–177</td>
<td></td>
</tr>
<tr>
<td>Schullkin, J., 59–75, 281–283</td>
<td></td>
</tr>
<tr>
<td>Schwartz, L. M.</td>
<td></td>
</tr>
<tr>
<td>Berlin Numeracy Test and, 22–23, bias reduction with numeracy scale, 154–156, 158</td>
<td></td>
</tr>
<tr>
<td>numeracy measurement research of, 4, 6–7, 11–13, 14, 93–94</td>
<td></td>
</tr>
<tr>
<td>numeracy scale, 4–5, 42–43, 54, 109</td>
<td></td>
</tr>
<tr>
<td>Schwarz, P. H., 292–275, 281–282</td>
<td></td>
</tr>
<tr>
<td>Sharabi, D., 226–228</td>
<td></td>
</tr>
<tr>
<td>Shewhart, W. A., 194–195</td>
<td></td>
</tr>
<tr>
<td>Shiloh, S., 226–228</td>
<td></td>
</tr>
<tr>
<td>Siegler, R. S., 216–217, 219</td>
<td></td>
</tr>
<tr>
<td>Simon, H., 3–4, 262–263</td>
<td></td>
</tr>
<tr>
<td>Slovic, P., 183, 217–218, 228</td>
<td></td>
</tr>
<tr>
<td>Spelke, E., 216–217</td>
<td></td>
</tr>
<tr>
<td>Stanovich, K. E., 225–226</td>
<td></td>
</tr>
<tr>
<td>Tusler, M., 183</td>
<td></td>
</tr>
<tr>
<td>Tversky, A., 3–4, 260–261</td>
<td></td>
</tr>
<tr>
<td>Ubel, B., 51–52</td>
<td></td>
</tr>
<tr>
<td>Västfjäll, D., 217–218</td>
<td></td>
</tr>
<tr>
<td>Volandes, A. E., 52–53</td>
<td></td>
</tr>
<tr>
<td>Waldrop-Valverde, D., 96</td>
<td></td>
</tr>
<tr>
<td>Waters, E. A., 221–223</td>
<td></td>
</tr>
<tr>
<td>Wegwarth, O., 5, 39–54, 63–64, 281</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Weinfurt, K. P.</td>
<td>82–83</td>
</tr>
<tr>
<td>Weinstein, N. D.</td>
<td>221–223</td>
</tr>
<tr>
<td>Welch, H. G.</td>
<td>54</td>
</tr>
<tr>
<td>Weller, J. A.</td>
<td>20–22</td>
</tr>
<tr>
<td>Wells, H. G.</td>
<td>on statistics, 54</td>
</tr>
<tr>
<td>Whitney, S.</td>
<td>263–265</td>
</tr>
<tr>
<td>Wilkins-Haug, L.</td>
<td>6, 71, 130–148, 211–212, 281</td>
</tr>
<tr>
<td>Woloshin, S.</td>
<td>54</td>
</tr>
<tr>
<td>Wood, S.</td>
<td>220–221</td>
</tr>
<tr>
<td>Zikmund-Fisher, B.</td>
<td>5, 80–99</td>
</tr>
</tbody>
</table>

286 Name index
Subject index

a priori construct validity model, Diabetes Numeracy Test, 109–112
a priori risk reduction, genetic literacy and numeracy in, 138–139
abbreviated numeracy scale, 4–5
assessment of, 20–22, 34
Berlin Numeracy Test comparisons with, 23–29
absolute risk
absence of PSA-screening link to, 41
for breast cancer, 266–267
in fuzzy-trace theory, 233–234
harm of cancer therapy represented as, 43–45
low-numeracy patients bias concerning, 157–163
mismatched framing of statistical information on, 69–71
relative risk vs., 43–45
ACC (American College of Cardiology), CABG guidelines, 204–206
ACMG (American College for Medical Genetics), 132–134, 137–143
ACOG. See American College of Obstetricians and Gynecologists
action thresholds, in evidence-based medicine, 200–201
adaptive communication, models for, 179–183
adaptive testing
Berlin Numeracy Test, 4–5, 22–23
numeracy assessment using, 22–35
Adjuvant Online decision aid, patient numeracy and risk perception of cancer therapy, 87–88
adolescents, numeracy research involving, 237–239
Advance Progressive Matrices, numeracy assessment tests and, 16
advertising, barriers to communication in, 188–189
affect heuristic
comprehension of health information and, 184–185
memory for numbers and, 185–186
quantitative imperative concerning, 252–253
Affordable Care Act, diabetes management and, 204
African American patients
genetics testing literacy in, 145–147
HIV patients, numeracy skills and outcomes in, 96
sickle cell mutation, prenatal screening for, 132–134
after visit summary (AVS) and shared decision making, 209
age levels
comprehension of health information and, 183–188
diabetic patient numeracy assessment and, 107–109
Down syndrome probability and maternal age, 131–132
in fuzzy-trace theory, 230–232
genetics testing literacy and, 145–147
numeracy research involving, 237–239
patient numeracy skills concerning cancer screening and, 96–97
shared-decision making models and, 206–208
visual aids for risk perception and, 154–156, 166–168
AHA (American Heart Association), CABG guidelines, 204–206
Alaskan Natives, diabetes-related numeracy performance in, 113–115
alerts, health outcomes monitoring using, 209–212
ambiguity
barriers to communication and, 179
health outcomes monitoring by, 209–212
patients' numeracy and tolerance for, 85
ambulatory care, health outcomes monitoring, 209–212
American College for Medical Genetics (ACMG), 132–134, 137–143
American College of Cardiology (ACC), CABG guidelines, 204–206
American College of Obstetricians and Gynecologists (ACOG), 132–134
BRCA1/2 mutation testing, 136–137
American Diabetes Association diabetes numeracy research and, 122–125
Standards of Care, 203
American Heart Association (AHA), CABG guidelines, 204–206
American Indians, diabetes-related numeracy performance in, 113–115
American Society of Clinical Oncology, 136–137
amniocentesis
Down syndrome screening, 131–132
down-prior risk reduction and, 138–139
risks associated with, 134–135
analytical process
dual-process numeracy research and, 225–226
ratio bias effect and, 226–228
aneuploidy screening programs
a priori risk reduction, literacy skills in, 138–139
ACOG guidelines for, 143–145
Down syndrome screening, 131–132
invasive prenatal diagnosis and, 134–135
non-invasive prenatal genetic testing, 135–136
angioplasty, narrative vs. statistical evidence concerning, 51–52
ANQ (Asthma Numeracy Questionnaire), 94–95
anticoagulation control, patient numeracy and outcomes in, 93–94, 109
antidepressants, physicians' communication about benefits and side effects, 67–68
arithmetic testing
patient numeracy assessment and, 89–91
WRAT-A, 17–20
array technology, literacy and numeracy challenges of, 134–135
Ashkenazi Jewish population
BRCA1/2 mutations in, 136–137
large effect genetic determinants in, 142–143
Tay–Sachs mutation screening in, 132–134, 143–145
Asthma Numeracy Questionnaire (ANQ), 94–95, 109
asthma self-management, patient numeracy and outcomes in, 94–95
autonomy
mandatory autonomy, 263–265
quantitative imperative and, 253–254
autosomal dominant disease mutations and mendelian genetics, 140–142
autosomal recessive disease mutations healthcare providers' training for counseling in, 143–145
mendelian genetics and, 140–142
population-based carrier screening, 132–134
availability heuristic
quantitative imperative and, 260–261
reasonable person standard and, 272–273
AVS (after visit summary) and shared decision making, 209
bar charts, risk perception in low-numeracy patients using, 154–156, 162
barriers to communication
categories of, 178–186
communicators as barriers, 179–183
decision making impact of, 175–177
in diabetes care, 118–122
future research issues, 188–189
in low-numeracy patients, 6–7
motives of communicators and, 188
overview of, 177–188
from patient to consumer, 183–188
research on, 175–189, 281–282
shared decision-making models and, 206–208
systemic barriers, 178–179
base-rate neglect
class-inclusion confusion and, 236–237
computational numeracy research and, 221–223
Bayes Theorem
cancer screening statistics and, 45–46

Subject index

alerts, health outcomes monitoring using, 209–212
ambiguity
barriers to communication and, 179
health outcomes monitoring by, 211–212
patients' numeracy and tolerance for, 85
ambulatory care, health outcomes monitoring, 209–212
American College for Medical Genetics (ACMG), 132–134, 137–143
American College of Cardiology (ACC), CABG guidelines, 204–206
American College of Obstetricians and Gynecologists (ACOG), 132–134
BRCA1/2 mutation testing, 136–137
American Diabetes Association
diabetes numeracy research and, 122–125
Standards of Care, 203
American Heart Association (AHA), CABG guidelines, 204–206
American Indians, diabetes-related numeracy performance in, 113–115
American Society of Clinical Oncology, 136–137
amniocentesis
Down syndrome screening, 131–132
down-prior risk reduction and, 138–139
risks associated with, 134–135
analytical process
dual-process numeracy research and, 225–226
ratio bias effect and, 226–228
aneuploidy screening programs
a priori risk reduction, literacy skills in, 138–139
ACOG guidelines for, 143–145
Down syndrome screening, 131–132
invasive prenatal diagnosis and, 134–135
non-invasive prenatal genetic testing, 135–136
angioplasty, narrative vs. statistical evidence concerning, 51–52
ANQ (Asthma Numeracy Questionnaire), 94–95
anticoagulation control, patient numeracy and outcomes in, 93–94, 109
antidepressants, physicians' communication about benefits and side effects, 67–68
arithmetic testing
patient numeracy assessment and, 89–91
WRAT-A, 17–20
array technology, literacy and numeracy challenges of, 134–135
Ashkenazi Jewish population
BRCA1/2 mutations in, 136–137
large effect genetic determinants in, 142–143
Tay–Sachs mutation screening in, 132–134, 143–145
Asthma Numeracy Questionnaire (ANQ), 94–95, 109
asthma self-management, patient numeracy and outcomes in, 94–95
autonomy
mandatory autonomy, 263–265
quantitative imperative and, 253–254
autosomal dominant disease mutations and mendelian genetics, 140–142
autosomal recessive disease mutations healthcare providers' training for counseling in, 143–145
mendelian genetics and, 140–142
population-based carrier screening, 132–134
availability heuristic
quantitative imperative and, 260–261
reasonable person standard and, 272–273
AVS (after visit summary) and shared decision making, 209
bar charts, risk perception in low-numeracy patients using, 154–156, 162
barriers to communication
categories of, 178–186
communicators as barriers, 179–183
decision making impact of, 175–177
in diabetes care, 118–122
future research issues, 188–189
in low-numeracy patients, 6–7
motives of communicators and, 188
overview of, 177–188
from patient to consumer, 183–188
research on, 175–189, 281–282
shared decision-making models and, 206–208
systemic barriers, 178–179
base-rate neglect
class-inclusion confusion and, 236–237
computational numeracy research and, 221–223
Bayes Theorem
cancer screening statistics and, 45–46
Subject index

physicians’ statistical abilities and use of, 64–66
Bayesian reasoning
example of, 65
objective numeracy in physicians and, 60–61
physicians’ statistical abilities research and, 64–66, 68
behavioral economics and expected utility or preference matching evaluation, 268–269
benefits perceptions
affect heuristics in comprehension of, 186–187
communication of statistical information on, 67–68
mismatched framing of statistical information on, 69–71
relative risk representations and, 43–45, 186–187
vaccine risks and benefits, conflicting information concerning, 178–179
visual aids for perception of, 154
Berlin Numeracy Test
cross-cultural discriminability and, 30–31
limitations of, 31–32
overview of, 22–23
test construction and items in, 23–29
bet attractiveness estimation, abbreviated numeracy scale and, 20–22
beta thalassemia, screening for, 132–134, 143–145
bias
gist vs. verbatim processing and reduction of, 235–236
quantitative imperative and, 260–261
quantitative imperative concerning, 252–253
visual aids for reduction in low-numeracy patients, 154–156
biomarkers
a priori risk reduction and, 138–139
Down syndrome screening, 131–132
biostatistics curriculum, need in medical education for, 72–74
blood glucose monitoring
diabetic patient numeracy assessment concerning, 107–109
patient numeracy and outcomes in, 92–93
BMI (Body Mass Index), patient numeracy and interpretation of, 84–88
BMJ (British Medical Journal), mismatched framing in studies by, 43–45
Body Mass Index (BMI), patient numeracy and interpretation of, 84–88
bottom line meaning, visual aids for comprehension of, 165–166
bounded rationality
decision sciences and, 3–4
quantitative imperative and, 262–263
BRCA1/2 mutations
breast and ovarian cancer screening and, 136–137
large effect genetic determinants in, 142–143
breast cancer. See also mammography screening
absolute risk for, 266–267
barriers to information about therapy for, 184
conditional probability vs. natural frequencies in screening, 45–46
expected utility in risk/benefit evaluation of screening for, 267–268
genetic screening for, 136–137
large effect genetic determinants in, 142–143
numeracy skills and health behaviors concerning, 42–43, 88
overestimation of reduction with mammography, 43–45, 233–234
patient numeracy skills and screening results for, 84–85, 87–88
quantitative imperative in screening for, 254–255
recurrence risk perception, gist vs. verbatim processing and, 235–236
risk perception, and numeracy skills, 4, 14, 87–88, 266–267
utility elicitations in screening decisions, 256
breast self examination, systemic communication barriers concerning, 178
“bundled” care systems
CABG care optimization and, 204–206
diabetes management and, 202–204
bypass surgery, narrative vs. statistical evidence concerning, 51–52
CABG (coronary artery bypass graft), Geisinger Health System performance improvement in, 204–206
cancer screening. See also specific types of cancer and cancer screening
absolute vs. relative risk of harm and benefits of, 43–45
cancer screening (cont.)
conditional probability vs. natural frequencies in, 45–46
decision aids for, 175–177
environmental risks and, 179
lead-time bias and, 47–49
outcomes description and, 269–270
overdiagnosis bias and, 47–49
patient numeracy skills and risk/benefit assessment, 84–85, 96–97
uncertainty and predictability in, patients’ understanding of, 82–83
cancer therapy
absolute vs. relative risk perception for, 43–45
barriers to information about, 184–185
communication of statistical information on, 52–53
mismatched framing of statistics on, 69–71
patient numeracy and risk perception in, 87–88
capital-intensive health care, optimization of, 204–206
care delivery systems
chronic disease management, 202–204
impact of television and movies on preferences in, 52–53
Patient Centered Medical Home Model, 201–204
Care Gaps, diabetes management and, 202–203
carrier frequency
healthcare providers’ training for counseling in, 143–145
mendelian genetics literacy and, 140–142
population-based carrier screening recommendations and, 132–134
Cartesian dualism, dual-process numeracy research and, 225–226
categorical possibility
absolute vs. relative risk and, 233–234
in fuzzy-trace theory, 230–232
gist and verbatim number representation, 232–233
CDIS. See Clinical Decision Intelligence System
CFTR gene mutations, mendelian genetics and, 140–142
children’s medication doses, patient numeracy skills and, 89–91
chorionic villus sampling (CVS)
Down syndrome screening, 131–132
healthcare providers’ training for, 143–145
risks associated with, 134–135
chromosomal microarray testing
genetic variance and, 139–140
healthcare providers’ training for, 143–145
chromosome analysis
literacy and numeracy challenges of, 134–135
non-invasive prenatal genetic testing, 135–136
chronic disease management
care delivery systems for, 202–204
expected utility or preference matching evaluation and, 268–269
chronic kidney disease (CKD)
clinical management and patient numeracy in, 124
patient numeracy and outcomes in, 95–96
CKD. See chronic kidney disease
class-inclusion hypothesis
computational numeracy research and, 221–223
fuzzy-trace theory and, 236–237
classical testing theory, numeracy measurement and, 13–17
Clinical Decision Intelligence System (CDIS) (Geisinger)
diabetes management in, 202–204
experimental-grade performance improvement using, 197–199
clinical medicine
barriers to diabetes care and, 118–122
Bayesian reasoning abilities and, 64–66
best options identification in, 208–209
communication of clinical evidence in, 42–53
diabetes numeracy research impact on, 122–125
electronic health records and improvement of, 198–199
genomic health literacy and, 130, 147–148
health outcomes monitoring and, 200–212
numeracy and decision making in, 4
numeracy mechanisms in, 215–239
performance improvements in, 194–195
physicians’ numeracy skills and, 5
potential substitutions in, 200
reasonable person standard in, 272–273
tabular displays of evidence in, 54
clinical trials
predictability and uncertainty in, 82–83
visual aids for bias reduction in, 157–163
Subject index

CNV (copy number variants) and chromosome microarray testing, 139–140
Cochrane Reviews, medical evidence analysis, 69–71
cognitive function in computational numeracy research, 224 in dual-process numeracy research, 225–226

conditional probability

a priori risk reduction and, 138–139
in cancer screenings, 45–46, 47
computational numeracy research and, 221–223
visual aids in patient–physician communications about, 164–165
condom use, visual aids for promotion of, 163–165

certainty. See statistical certainty

certainty. See statistical certainty

confirmation dimensionality, NUMi test assessment, 17–20
confirmatory factor analysis, abbreviated numeracy scale, 20–22
conflicting information, barriers to communication and, 178–179
congestive heart failure, patient numeracy and clinical management of, 124

conjoint analysis, expected utility or preference matching evaluation, 268–269
conjunction fallacy, computational numeracy research and, 221–223
consumers of healthcare. See also patient-centered care
barriers to communication from patient to, 183–188
comprehension of health insurance in, 181–183
critical health information, barriers to, 175–177
performance improvement in, 201–204
continuing medical education programs genetic counseling, 143–145
healthcare providers, genetics numeracy skills development, 137–143
statistical literacy curriculum in, 72–74
Continuous Quality Improvement and healthcare system reform, 194–195
convergent validity
Berlin Numeracy Test, 23–29
in numeracy assessment methods, 18–20
cooperative medicine, statistical information and, 71–72
copy number variants (CNV) and chromosome microarray testing, 139–140
coronary artery bypass graft (CABG), Geisinger Health System performance improvement in, 204–206
costs of healthcare barriers to communication and, 175–177
direct-to-consumer marketing genetics testing and, 145–147
healthcare system failures concerning, 193
optimization of high-cost, capital-intensive care, 204–206
counting systems, neurophysiological function and, 219
cross-cultural issues
Berlin Numeracy Test, 30–33
numeracy assessment tests and, 16
psychometric numeracy performance tests, 30–31

cultural factors
in diabetes numeracy, 124–125
genetics testing literacy and, 145–148
gist vs. verbatim processing and, 235–236
visual aids for risk perception and, 166–168
Curriculum Management and Information Tool (CurrMIT), statistics/biostatistics curriculum data in, 72–74
"curse of knowledge," barriers to communication and, 180
CVS. See chorionic villus sampling
cystic fibrosis
genetic screening for, 132–134, 143–145
mendelian genetics literacy and screening for, 140–142
D antigen negative patients, non-invasive prenatal genetic testing, 135–136
data quality
in Clinical Decision Intelligence System, 197–199
in performance improvement models, 195–197
shared decision-making models and, 208
decision aids, 176–178
assessment of, 270–271
health outcomes monitoring and, 211
International Patient Decision Aids Standards, 258–259
patient–physician collaboration using, 175–177
quantitative imperative concerning, 252–253, 263–265, 275
SDM process and use of, 206–208
utility elicitations, quantitative imperative and, 256
decision conflict scale, decision aid assessment, 270–271
decision making. See also shared decision-making (SDM) process
absolute vs. relative risk and, 233–234
barriers to critical information and, 175–189

292 Subject index
Subject index

distortion in numerical perception and, 217–218
in fuzzy-trace theory, 230–232
gist and verbatim number representation and, 232–233
information overload and working memory effects on, 220–221
informed decision-making model, 253–254
invasive prenatal diagnosis risk assessment and, 134–135
judgment and, 3–4
medical decision making, 220–221
numeracy skills assessment and, 14–17
objective numeracy in physicians and, 60–61
overcoming low reading abilities and, 51–53
patient education for informed decision making, 41–42
patient numeracy skills and, 80–99
physician numeracy and, 59
quantitative imperative and, 253–254
ratio bias and framing effects and, 226–228
rationality theories and, 262–263
visual aids for low-numeracy patients, 153–168
decision sciences, evolution of, 3–4
decision tree algorithm, Berlin Numeracy Test, 22–23
dementia, small effect genetic determinants, 142–143
denominator neglect bias framing effect and, 226–228
frequency effect and, 228
quantitative imperative and, 260–261
risk communication and, 49–51, 236–237
visual aids for reduction of, 49–51, 157–163
descriptive research, decision sciences and, 3–4
detection rates, population-based carrier screening recommendations and, 132–134
developmental research, numerical perception, 216–217
Diabetes Literacy and Numeracy Education Toolkit (DLNET), assessment of, 118–122
diabetes mellitus. See also American Diabetes Association; glycemic control; hemoglobin A1c levels; Latino diabetic patients barriers to care due to numeracy skills, 118–122
care delivery systems for, 202–204
clinical practice and numeracy research in, 122–125
communication strategies for, 119
epidemiology, 105–106
future research issues in patient numeracy and, 124–125, 282–283
general objective numeracy measures of patients, 107–109
health disparities and patient numeracy, 117
numeracy applications in, 6, 105–125, 281
numeracy assessment in patients with, 107–113
objective numeracy measures of patients, diabetes-specific, 109–112
outcomes and numeracy in patients with, 113–118
patient numeracy and self-management of, 92–93
performance assessment, diabetes-related numeracy, 113–115
self-efficacy and self-care behaviors in patients with diabetes knowledge, 116–117
small effect genetic determinants, 142–143
subjective numeracy assessment of patients with, 112
summary of patient numeracy assessments, 114–119
tasks and related numeracy domains, 106
web resources for, 122
Diabetes Numeracy Test (DNT), 92–93
clinical practice and impact of, 122–125
diabetes knowledge, self-efficacy, and self-care and performance on, 116–117
future research issues for, 124–125
health outcomes and, 115–118, 211–212
for Latino diabetic patients, 111
limitations of, 109–112
objective patient numeracy assessments and, 109–112
performance evaluations in, 113–115
Diabetes Numeracy Test (DNT15) for Latino diabetic patients
hemoglobin A1c management and, 115–118
introduction of, 111
performance assessment of, 113–115
Subject index

294 diagnostic inferences
objective numeracy in physicians and, 60–61
visual aids in patient–physician communications about, 164–165
dimensionality analysis, of NUMi test, 18–20
direct-to-consumer marketing (DTC)
barriers to communication in, 188–189
genetics testing, patient health literacy concerning, 145–147
discrete emotions, in fuzzy-trace theory, 230–232
disease management. See also specific diseases, e.g., diabetes
patient numeracy skills and, 92–99
disjunction fallacy, computational numeracy research and, 221–223
DLNET (Diabetes Literacy and Numeracy Education Toolkit), assessment of, 118–122
DNA array technology
genetic variance and, 139–140
literacy and numeracy challenges of, 134–135
patient health literacy concerning, 145–147
DNT. See Diabetes Numeracy Test
DNT15. See Diabetes Numeracy Test (DNT15) for Latino diabetic patients
doctors. See physicians
domain framing, numeracy skills assessment and, 14–17, 20–22
dosing instructions
diabetes self-management, patient numeracy and, 92–93
for low-numeracy patients, 153–154
patient numeracy and, 89–91
Down syndrome probability
genetic counselors’ numeracy concerning, 143–145
genetic screening for, 131–132
invasive prenatal diagnosis, 134–135
non-invasive prenatal genetic testing, 135–136
physicians’ Bayesian reasoning abilities concerning, 64–66
a priori risk reduction and, 138–139
drug facts boxes, format for, 54
DTC. See direct-to-consumer marketing
dual-choice experiments, expected utility or preference matching evaluation, 268–269
dual-process numeracy research, 225–230
frequency effect and percentages in, 228
future issues in, 237–239
irrational bias and mood in, 229–230
overview, 225–226
quantitative imperative and, 261–262
ratio bias and framing effects, 226–228
ecological validity
bias in, visual aids for reduction of, 157–163
graph literacy research and, 223–224
education levels
abbreviated numeracy scale assessment and, 20–22
barriers to diabetes care and, 118–122
Berlin Numeracy Test validity and, 23–29
Diabetes Numeracy Test correlation with, 109–112
diabetic patient numeracy assessment and, 107–109
in fuzzy-trace theory, 230–232
genetics testing literacy and, 145–147
gist vs. verbatim processing and, 235–236
of healthcare providers, genetics numeracy and, 137–143
information vs. persuasion and, 40–42
low reading abilities and, 51–53
numeracy education and, 259–260
numeracy skills assessment and, 11–13, 14
numerical perception, 216–217
NUMi test and impact of, 18
DTC. See Diabetes Numeracy Test
NUMi test validity and, 23–29
NUMi test and impact of, 18
with, 109
in shared decision-making models, 206–208
in statistical literacy, 72–74
visual aids comprehension and, 163–165
effect size
large effect genetic determinants, 142–143
small effect genetic determinants, 142–143
effectiveness of treatment
perception bias concerning, visual aids for reduction of, 157–163
quantitative imperative and, 254–255
EHR. See electronic health records
electronic health records (EHR)
CABG care optimization and, 204–206
clinical medical practices and, 211–212
data quality in, 208
in experimental-grade performance improvement models, 197–199
in performance improvement models, 195–197
shared decision-making models and, 206–208
Subject index

emergency contraception, television shows and information on, 52–53
Emergency Room (television show), health information on, 52–53
emotion effect, in fuzzy-trace theory, 230–232
encoding systems
numerical perception and, 219
visual aids for comprehension of, 165–166
end-of-life, informational videos on, 52–53
end stage renal disease (ESRD), patient numeracy and outcomes in, 95–96
“Enduring Materials” format, statistical literacy curriculum in, 72–74
environmental cancer risk, conflicting information concerning, 179
ESRD (end stage renal disease), patient numeracy and outcomes in, 95–96
ethics in numeracy
autonomy and, 253–254
dual-representation model and, 261–262
probabilities and expected utility theory and, 256–258
problems with quantitative imperative and, 259–260
quantitative imperative and, 252–253, 263–265
rationality theories and, 262–263
reasonable person standard and, 271–272
utilities principles in, 256
ethnic groups
BRCA1/2 mutation distribution, 136–137
diabetes-related numeracy performance in, 113–115
mendelian genetics literacy and screening in, 140–142
numerical perception in, 216–217
population-based carrier screening in, 132–134
evaluability of health information, patient numeracy and, 85–88
evidence-based medicine
action thresholds in, 200–201
chronic disease management and, 202–204
diabetes management in, 202–204
electronic health records and improvement of, 197–199
healthcare system failures concerning, 193
numeracy and decision making in, 4
physicians’ numeracy skills and, 5
physicians’ use of statistics in, 69–71
statistical literacy training curriculum for, 72–74
statistical literacy training development for, 74–75
excess treatment intensity, performance improvement models and, 200
executive function measurements
numeracy assessment tests and, 16–17
patient numeracy and HIV management and, 96
expected utility theory
outcomes description and, 269–270
preference matching evaluation, 268–269
quantitative imperative and, 256–258, 260–261
quantitative information evaluation and, 267–268
experiential processing
gist vs. verbatim processing as, 235–236
ratio bias effect and, 226–228
experimental-grade performance improvement, healthcare systems reform and, 197–199
experimentation improvement models, 194–195
eye-tracking studies
patient numeracy skills and graphics comprehension and, 83–85
visual aids for risk perception and, 166–168
Factor analyses, Diabetes Numeracy Test, 109–112
Faith in Intuition scale
dual-process numeracy research and, 225–226
framing effects and, 226–228
false-positive test results, physicians’ Bayesian reasoning abilities concerning, 64–66
fast cognitive system, numeracy skills and, 6–7
FDA. See Food and Drug Administration (FDA) regulation
fetal DNA, non-invasive prenatal genetic testing, 135–136
fetal sex determination, non-invasive prenatal genetic testing for, 135–136
five-year survival rate, cancer treatment assessment using, 63–64
Flexner report, 1
flow characteristics, performance improvement models and, 200
flu vaccine risks and benefits, conflicting information on, 179
fluid intelligence, numeracy assessment tests and, 16
296 Subject index

Subject index

graphic literacy 297
collective statistical illiteracy in, 39–54
bias reduction in patients and, 161
communicators’ barriers to, 179–183
in computational numeracy research, 223–224
decision aids for access to, 175–177
future research in, 166–168
comprehension of, 175–177
innumeracy and limits of, 154–156
patient numeracy skills and, 20, 83–85
diabetes management and literacy in, 154–156
preferences and intuitions concerning
risk perception and, 154–156
health information and, 186
scale for, 49–51
“evaluability” of, patient numeracy and, 85–88
framing effects in, 226–228
evaluation of, 266–274
health outcomes monitoring, 209–212
literacy, defined, 1
non-transparent information sources, 44
in movies and television, 52–53
literacy, defined, 1
GWAS (gene-wide association studies), 42–43
numerator and, 1
persuasion vs., 40–42
preference components, patient numeracy linked to, 89–91
in numerical perception and, 45
quantitative imperative concerning, 252–253
bias in, 252–253
reading comprehension test for, 17–20
comprehension of, 175
shift changes and exchange of, 181
tech, patient numeracy and, 96–97
single event probability vs. frequencies in, 46–47
technology innovations and diabetic numeracy, 124–125
transparency in, 53–54
visual aids for comprehension of, 165–166
visual displays of, 49–51
Health Information National Trends Survey
(HINTS) data
clinical practice in diabetes and, 122–125
diabetes health disparities and patients, 125
clinical practice in diabetes and, 122–125
cancer screening risk/benefit, patient numeracy concerning, 96–97
patient literacy in genetics testing, 145–147
cancer screening risk/benefit, patient numeracy assessment and, 89–91
health insurance plans
barriers to comprehension of, 181–183
information overload in decision process on, 220–221
health interventions, pros and cons of, 39–40
health literacy
a priori risk reduction, 138–139
barriers to diabetes care due to, 118–122
clinical practice in diabetes and, 122–125
cross-cultural comparisons, 30–31
defined, 1
diabetes health disparities and, 117
diabetes knowledge, self-efficacy and
care behaviors, 116–117
self-care, 116

Subject index

graph literacy
bias reduction in patients and, 161
in computational numeracy research, 223–224
future research in, 166–168
innumeracy and limits of, 154–156, 259–260
patient numeracy skills and, 20, 83–85
preferences and intuitions concerning
health information and, 186
risk perception and, 154–156
scale for, 49–51
Grey’s Anatomy (television show), health
promotion and encouragement of, 39
patient numeracy skills and decision
making on, 85–88
promotion and encouragement of, 39–40
visual aids for promotion of, 154, 163–165, 166–168
health campaigns
mismatched framing of statistical information in, 69–71
non-transparent and incomplete information in, 41
health data, patient numeracy implications for, 97–98
health informatics systems, patient
numeracy implications for, 97–98
health information
balance in, 39–40
barriers to critical information, 175–177
barriers to patients and consumers from, 183–188
health interventions, pros and cons of, 39–40
health literacy
health literacy (cont.)
Diabetes Numeracy Test correlation
with, 109–112, 115–118
diabetes-related numeracy, performance
comparisons, 113–115
fuzzy-trace theory and, 230–237
genetics screening skills and, 137–143, 147–148
in genomics, 130
health outcomes monitoring and, 209–212
healthcare providers, numeracy skills for
genetic interpretation and counseling,
137–143
ehemoglobin A1c levels management and,
115–118
invasive prenatal diagnosis risk
assessment and, 134–135
in mendelian genetics, 140–142
numerical reasoning skills and, 153–154
patient genetic health literacy, 145–147
performance improvements in,
194–195
shared decision-making models and,
206–208
subjective diabetic patient numeracy
assessment and, 112
health outcomes
CABG care optimization study and,
204–206
description and identification of, 269–270
in diabetes, 105–106
diabetes health disparities and patient
numeracy, 117
Diabetes Numeracy Test performance
and, 115–118
diabetes-related patient numeracy and,
113–118
examples of, 92
expected utility in measurement of,
267–268
Geisinger’s quality outcomes program, 202
healthcare system failures concerning, 193
monitoring of, 209–212
numeracy skills and, 5
patient engagement and improvement in,
206–208
patient numeracy skills linked to, 85–88, 92–99
in performance improvement models,
195–197
pragmatic rational theory and evaluation
of, 262–263
reasonable person standard in judgment
concerning, 272–273
uncertainty of, patients’ understanding
concerning, 82–83
utility elicitation, quantitative imperative
and, 256
health plan choice studies, barriers to
information in, 183–188
health policymaking
barriers to communication in, 175–177
patient numeracy implications for, 97–98
health risk calculators, patient numeracy
and use of, 89–91
healthcare providers. See also physicians
barriers to communication by, 179–183
barriers to critical information
concerning, 175–177
Berlin Numeracy Test assessment of, 31
communication skills development for,
166–168
genetic testing and counseling by,
143–145
genetic variance literacy and, 139–140
genomic health literacy in, 130
health outcomes monitoring by, 211–212
informed decision-making model and role
of, 253–254
mendelian genetics literacy in, 140–142
numeracy research and, 7–8, 282–283
numeracy skills for genetic interpretation
and counseling, 137–143
patient engagement with, in performance
improvement (PI) models, 206–208
patient numeracy implications for, 97–98
quantitative imperative and role of,
254–255
shift change exchange of health
information, 181
team variations, performance
improvement models and, 200
healthcare systems
improvement for low-numeracy patients
in, 6–7
missing elements in, 200
numeracy challenges and, 6
optimization of high-cost, capital-
intensive care in, 204–206
patient numeracy implications for,
97–98
PDSA improvement model for,
195–197
PI models for, 194–195
rational proposals for, 193–212, 281–282
visual aids development for, 166–168
hemoglobin A1c levels
Diabetes Numeracy Test association
with, 115–118
Subject index

<p>| Mathematics skills and interpretation of, 105–106 |
| Patient numeracy and assessment of, 92–93 |
| Hemoglobin mutation, genetic screening for, 132–134 |
| Hemolytic disease, invasive prenatal genetic testing and, 135–136 |
| Heuristics, quantitative imperative and, 260–261 |
| High number bias, patient numeracy skills and, 87 |
| Hindsight bias, barriers to communication and, 180 |
| HINTS. See Health Information National Trends Survey (HINTS) data |
| HIT systems |
| Health outcomes monitoring, 209–212 |
| Shared decision-making models and, 207–208 |
| HIV |
| Maternal transmission of, information in television shows about, 52–53 |
| Patient numeracy skills and management of, 96 |
| in women physicians’ statistical estimations concerning, 62–63 |
| Homeland Security, risk information communication from, 187 |
| Hospital policymaking, numeracy research and, 7–8 |
| Hospital quality barriers to information about, 183–184, 185 |
| Mood effect bias in judgments on, 229–230 |
| Patient numeracy skills and assessment, 85–88 |
| House (television show), health information on, 52–53 |
| HPV (human papillomavirus), television shows and information on, 52–53 |
| Human chorionic gonadotropin (hCG), 131–132 |
| Human papillomavirus (HPV), television shows and information on, 52–53 |
| Hypertension, small effect genetic determinants, 142–143 |
| Icon array graphics bias reduction using, 157–163 |
| Class-inclusion confusion and, 236–237 |
| Computational numeracy research on, 223–224 |
| Patient numeracy skills and comprehension of, 83–85 |
| Risk perception in low-numeracy patients using, 154–156, 160–162 |
| Iconicity gist vs. verbatim processing and, 235–236 |
| Graph literacy research and, 223–224 |
| ICSI (Institute for Clinical Systems Improvement) guidelines, best options identification, 208–209 |
| Impotence, single event probability vs. frequencies in information about, 46–47 |
| Incidence rates, physicians’ statistical abilities concerning, 62–63 |
| Income levels Diabetes Numeracy Test correlation with, 109–112 |
| Diabetic patient numeracy assessment and, 107–109 |
| Patient numeracy skills and, 89–91 |
| Incremental risk graphical communication of, 49–51 |
| Visual aids for comprehension of, 154 |
| Individual differences and numeracy assessment tests, 16–17 |
| Individual numerical competencies and communication of clinical evidence, 42–43 |
| Information. See also health information; meaning of information; numeric information; nutrition information; quantitative information |
| Fuzzy-trace theory and meaning of, 230–237 |
| Gist vs. verbatim processing of, 235–236 |
| Overload, computational numeracy and, 220–221 |
| Information multipliers and transparent health information, 54 |
| Informed consent and quantitative imperative, 253–254 |
| Informed decision-making model and quantitative imperative, 253–254 |
| Inhibin A, Down syndrome screening, 131–132 |
| Innumeracy. See also low-numeracy patients communication of clinical evidence and, 42–47 |
| Quantitative imperative and, 259–260 |
| “Innumeracy: Mathematical Illiteracy and its Consequences” (Paulos), 42–43 |
| INR (international normalized ratio), anticoagulation control, patient numeracy and understanding of, 93–94 |</p>
<table>
<thead>
<tr>
<th>Subject Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institute for Clinical Systems Improvement (ICSI) guidelines, best options</td>
<td>208-209</td>
</tr>
<tr>
<td>insulin dose calculations, patient numeracy and outcomes in, 92-93</td>
<td></td>
</tr>
<tr>
<td>“integrated training” programs, for physicians’ statistical literacy</td>
<td></td>
</tr>
<tr>
<td>improvement, 74-75</td>
<td></td>
</tr>
<tr>
<td>integrating dimensions, gist vs. verbatim processing and, 235-236</td>
<td></td>
</tr>
<tr>
<td>intelligence assessments</td>
<td></td>
</tr>
<tr>
<td>numerical assessment tests and, 16</td>
<td></td>
</tr>
<tr>
<td>numerical temperament and, 13-17</td>
<td></td>
</tr>
<tr>
<td>Wonderlic, 17-20</td>
<td></td>
</tr>
<tr>
<td>internal medicine healthcare providers</td>
<td></td>
</tr>
<tr>
<td>genetic numeracy skills in, 137-143</td>
<td></td>
</tr>
<tr>
<td>statistical abilities in, 63</td>
<td></td>
</tr>
<tr>
<td>internal number representation, numerical perception, 216-217</td>
<td></td>
</tr>
<tr>
<td>international normalized ratio (INR), 93-94</td>
<td></td>
</tr>
<tr>
<td>International Patient Decision Aids Standards (IPDAS) and quantitative</td>
<td></td>
</tr>
<tr>
<td>imperative, 258-259</td>
<td></td>
</tr>
<tr>
<td>interpretive labeling of results, 184-185</td>
<td></td>
</tr>
<tr>
<td>interquartile range (IQR) scores, Diabetes Numeracy Test performance, 113-115</td>
<td></td>
</tr>
<tr>
<td>intraparietal sulcus, numerical perception and, 219</td>
<td></td>
</tr>
<tr>
<td>intuition</td>
<td></td>
</tr>
<tr>
<td>in dual-process numeracy research, 225-226</td>
<td></td>
</tr>
<tr>
<td>framing effects and, 226-228</td>
<td></td>
</tr>
<tr>
<td>gist vs. verbatim processing and, 235-236</td>
<td></td>
</tr>
<tr>
<td>quantitative imperative, 263-265</td>
<td></td>
</tr>
<tr>
<td>invasive prenatal diagnosis</td>
<td></td>
</tr>
<tr>
<td>a priori risk reduction and, 138-139</td>
<td></td>
</tr>
<tr>
<td>ACOG guidelines for, 143-145</td>
<td></td>
</tr>
<tr>
<td>genetic screening and, 134-135</td>
<td></td>
</tr>
<tr>
<td>IPDAS (International Patient Decision Aids Standards) and quantitative</td>
<td></td>
</tr>
<tr>
<td>imperative, 258-259</td>
<td></td>
</tr>
<tr>
<td>IRQ (interquartile range) scores, Diabetes Numeracy Test performance, 113-115</td>
<td></td>
</tr>
<tr>
<td>irrational bias, dual-process numeracy research on, 229-230</td>
<td></td>
</tr>
<tr>
<td>item response theory (IRT) abbreviated numeracy scale, 20-22</td>
<td></td>
</tr>
<tr>
<td>comparison of test formats, 34</td>
<td></td>
</tr>
<tr>
<td>numeracy skills assessment and, 15, 17</td>
<td></td>
</tr>
<tr>
<td>Numeracy Understanding in Medicine Instrument and, 17-20</td>
<td></td>
</tr>
<tr>
<td>JAMA (Journal of the American Medical Association), mismatched framing in</td>
<td></td>
</tr>
<tr>
<td>studies by, 43-45</td>
<td></td>
</tr>
<tr>
<td>“journal continuing medical education,” statistical literacy curriculum in,</td>
<td></td>
</tr>
<tr>
<td>72-74 judgment</td>
<td></td>
</tr>
<tr>
<td>affect heuristic and, 184-185</td>
<td></td>
</tr>
<tr>
<td>benefits perception and, 186-187</td>
<td></td>
</tr>
<tr>
<td>decision making and, 3-4</td>
<td></td>
</tr>
<tr>
<td>distortion in numerical perception and, 217-218</td>
<td></td>
</tr>
<tr>
<td>numeracy and health behaviors and, 42-43</td>
<td></td>
</tr>
<tr>
<td>numerical reasoning and, 4</td>
<td></td>
</tr>
<tr>
<td>objective numeracy in physicians and, 60-61</td>
<td></td>
</tr>
<tr>
<td>ratio bias and framing effects and, 226-228</td>
<td></td>
</tr>
<tr>
<td>simple vs. natural frequency perception and, 221-223</td>
<td></td>
</tr>
<tr>
<td>Kaiser Family Foundation, 52-53</td>
<td></td>
</tr>
<tr>
<td>kidney disease</td>
<td></td>
</tr>
<tr>
<td>chronic. See chronic kidney disease</td>
<td></td>
</tr>
<tr>
<td>ESRD, patient numeracy and outcomes in, 95-96</td>
<td></td>
</tr>
<tr>
<td>numeracy skills and outcomes in kidney transplant patients, 95-96</td>
<td></td>
</tr>
<tr>
<td>Kuder-Richardson score, Diabetes Numeracy Test correlation with, 109-112</td>
<td></td>
</tr>
<tr>
<td>Lancet, mismatched framing in studies by, 43-45</td>
<td></td>
</tr>
<tr>
<td>language-independent numerical estimation, neurophysiological function and,</td>
<td></td>
</tr>
<tr>
<td>219</td>
<td></td>
</tr>
<tr>
<td>large effect genetic determinants, genetic screening and, 142-143</td>
<td></td>
</tr>
<tr>
<td>Latino diabetic patients</td>
<td></td>
</tr>
<tr>
<td>acculturation and DNT test performance, 116-117</td>
<td></td>
</tr>
<tr>
<td>Diabetes Numeracy Test adaptation for, 111</td>
<td></td>
</tr>
<tr>
<td>Diabetes Numeracy Test performance in, 113-115</td>
<td></td>
</tr>
<tr>
<td>hemoglobin A1c levels management and DNT scores, 115-118</td>
<td></td>
</tr>
<tr>
<td>lead-time bias</td>
<td></td>
</tr>
<tr>
<td>illustration of, 49</td>
<td></td>
</tr>
<tr>
<td>mortality rates vs. survival rates and, 47-49</td>
<td></td>
</tr>
<tr>
<td>screening statistics and, 63-64</td>
<td></td>
</tr>
<tr>
<td>Lean model, healthcare system reform and, 194-195</td>
<td></td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press
Subject index

| Learned language-dependent numerical estimation, neurophysiological function and, 219 |
| "less is more" format, information communication and, 183–184 |
| Lifestyle interventions, patient literacy in genetics and, 145–147 |
| Likelihood estimation, frequency effect bias in, 228 |
| Reasonable person standard and, 272–273 |
| Line plots, risk perception in low-literacy patients using, 154–156 |
| Numerical perception, 216–217 |
| Linguistic encoding, numerical perception and, 219 |
| Verbatim number representation and, 232–233 |
| Listening, communication barriers and, 181 |
| Literacy and Numeracy Initial Assessments (UK Skills for Life Programme) |
| Glycemic control outcomes in diabetic patients and, 115–118 |
| Numeracy in diabetic patients, general assessment, 92–93 |
| "Living with Diabetes Guide" (ACPF), assessment of, 121–122 |
| Local independence, item response theory and, 17 |
| Logarithmic number representation, distortion in numerical perception, 217–218 |
| Neuroscience of, 219 |
| Numerical perception, 216–217 |
| Linguistic encoding, numerical perception and, 219 |
| Verbatim number representation and, 232–233 |
| Bias reduction in, visual aids for, 157–163 |
| Frequency effect and percentage bias in, 228 |
| Graphical risk communication for, 49–51 |
| Health outcomes in, 6 |
| Health outcomes monitoring in, 211–212 |
| Healthcare improvements for, 6–7 |
| Interdisciplinary research concerning visual aids in, 165–166 |
| Limits of quantitative imperative with, 259–260 |
| Numeracy Understanding in Medicine Instrument and, 17–20 |
| Overview of research on, 215–216 |
| Risk understanding, visual aids for improvement of, 154–156 |
| Vulnerability to framing effects, visual aids for reduction of, 161–163 |
| Magnitude distortion, absolute vs. relative risk and, 233–234 |
| Numerical perception, 216–217 |
| Risk communication and class-inclusion confusion, 236–237 |
| Malignant glioma, informational videos on end-of-life care for, 52–53 |
| Mammography screening. See also breast cancer |
| Absolute vs. relative risk and, 233–234, 266–267 |
| Conditional probability vs. natural frequencies in, 45–46, 47 |
| Decision aids on benefits of, 263–265 |
| Expected utility in risk/benefit evaluation, 267–268 |
| Expected utility or preference matching in evaluation of, 268–269 |
| Overestimation of mortality reduction from, 43–45 |
| Quantitative imperative in decisions on, 254–255 |
| Mandatory autonomy and quantitative imperative, 263–265 |
| Maternal age, a priori risk reduction and, 138–139 |
| Down syndrome risk assessment and, 131–132 |
| Maternal Rh alloimmunization, non-invasive prenatal genetic testing, 135–136 |
| Maternal serum alpha-fetoprotein (MSAFP), Down syndrome screening, 131–132 |
| Maternal serum free beta hCG, Down syndrome screening, 131–132 |
Subject index

mathematics
barriers to diabetes care and lack of skill in, 118–122
cognition in, visual aids for, 166–168
cross-cultural discriminability and literacy in, 30–31
diabetes management and literacy in, 105–106
in Diabetes Numeracy Test, 109–112
education for statistical literacy and, 72–74
theory and definitions of, 11–13

Meaning of information
barriers to comprehension of, 184–185 in fuzzy-trace theory, 230–232
gist vs. verbatim processing and, 235–236
numeracy assessment tests and, 16–17
numeracy skills assessment and, 15–16
measurement of numeracy
classical testing theory, 13–17
limitations and benefits of, 11–13
tools for, 11–35
medical innovations
numeracy challenges and, 6
performance improvement models and, 200
medical journals, mismatched framing of risk in, 43–45
medical schools, statistics/biostatistics curriculum data for, 72–74
medical testing, visual aids for interpretation of, 164–165
Medicare Part D plan
objective numeracy in physicians and recommendations concerning, 60–61
patient numeracy skills and assessment of, 85–88
medication labeling
drug facts boxes, 54
fuzzy-trace theory concerning, 233–234
medications management
in chronic kidney disease, 124
diabetic patient numeracy assessment concerning, 107–109
patient numeracy and success in, 89–91

Medicine
autonomy and bioethics in, 253–254
decision making in, statistical information and, 71–72
physicians’ use of statistics in, 69–72
statistical reasoning in, 1–3

Mediterranean population
beta thalassemia in, 143–145
hemoglobin mutation screening in, 132–134
memory load, cognitive performance improvement and, 220–221
mendelian genetics
healthcare provider literacy and numeracy concerning, 140–142
prenatal screening and, 132–134
metacognition, in computational numeracy research, 224
Michigan Technological University, Berlin Numeracy Test assessment by, 23–29
microsystems model, healthcare system reform and, 194–195
miscarriage risk
a priori risk reduction and, 138–139
invasive prenatal diagnosis and, 134–135
mismatched framing. See also framing effects
low-numeracy patients’ vulnerability to, 153–154
by pharmaceutical companies and health campaigns, 69–71
physician training in recognition and interpretation of, 72–74
for relative and absolute risk, 43–45
visual aids for reduction in vulnerability, 161–163
modern society, importance of statistics in, 11
molecular diagnostic techniques
large vs. small effect genetic determinants, 142–143
literacy and numeracy challenges of, 134–135

mood effects bias
dual-process numeracy research on, 229–230
in fuzzy-trace theory, 230–232
mortality rates
absence of reduction in PSA-screening, 40–42
framing effects in perception of, 226–228
graphical presentation of, 49–51
low-numeracy patients bias concerning, 157–163
overestimation of reduction with mammography, 43–45
physicians’ screening statistics abilities concerning, 63–64
survival rates and, 39–40, 47–49
movies
health information in, 52–53
transparent health information in, 54

MD (television show), health information on, 52–53
meaning of information
barriers to comprehension of, 184–185
in fuzzy-trace theory, 230–232
mismatched framing. See also framing effects
low-numeracy patients’ vulnerability to, 153–154
by pharmaceutical companies and health campaigns, 69–71
physician training in recognition and interpretation of, 72–74
for relative and absolute risk, 43–45
visual aids for reduction in vulnerability, 161–163
modern society, importance of statistics in, 11
molecular diagnostic techniques
large vs. small effect genetic determinants, 142–143
literacy and numeracy challenges of, 134–135

mood effects bias
dual-process numeracy research on, 229–230
in fuzzy-trace theory, 230–232
mortality rates
absence of reduction in PSA-screening, 40–42
framing effects in perception of, 226–228
graphical presentation of, 49–51
low-numeracy patients bias concerning, 157–163
overestimation of reduction with mammography, 43–45
physicians’ screening statistics abilities concerning, 63–64
survival rates and, 39–40, 47–49
movies
health information in, 52–53
transparent health information in, 54
Subject index

MSAFP (maternal serum alpha-fetoprotein), Down syndrome screening, 131–132
multivariate linear regression, numeracy skills and understanding of, 84–85

NAAL. See National Assessment of Adult Literacy, 11–13, 14
NALS. See National Adult Literacy Survey

narrative evidence
graphical risk communication and reduction of, 49–51
misleading information in, 39–40
statistical evidence vs., 51–52
visual aids for error reduction in, 154
National Action Plan to Improve Health Literacy, 118–122
National Adult Literacy Survey (NALS)
lack of numeracy skills found in, 1
low reading abilities data in, 51–53
National Assessment of Adult Literacy (NAAL), 11–13, 14
National Society of Genetics Counselors, 136–145
Native Americans, diabetes-related numeracy performance in, 113–115
natural experiments, performance improvement models and incorporation of, 198
natural frequency format
a priori risk reduction and, 138–139
Bayesian reasoning abilities and, 64–66
in cancer screenings, 45–46, 47
in computational numeracy research, 221–223
visual aids in patient–physician collaboration, 164–165
Need for Cognition scale
dual-process numeracy research and, 225–226
framing effects and, 226–228
negative consequences, reasonable person standard and disclosure of, 272–273
negative skewness
benefits perception and, 186–187
Berlin Numeracy Test, 23–29
numeracy skills assessment and, 15–16
neurophysiological function
numeracy skills and, 6–7
numerical perception and, 219
neutrality, in fuzzy-trace theory, 233–234
New England Journal of Medicine, statistical information in, 69–71
Newest Vital Sign (NVS) test, diabetic patient numeracy assessment, 107–109

Newsweek magazine, 82–83
next generation sequencing techniques, non-invasive prenatal genetic testing, 135–136
NNT (number needed to treat)
calculations, physicians’ statistical abilities concerning, 62–63
non-invasive prenatal genetic testing
genetic counselors’ numeracy concerning, 143–145
risks and procedures for, 135–136
non-native speakers, overcoming low reading abilities in, 252–251–53
non-normalized joint frequencies, computational numeracy research and, 221–223
non-progressive cancers, overdiagnosis bias and, 47–49
non-transparent health information sources, 44
normalized probabilities, computational numeracy research and, 221–223

numeracy.
See also patient numeracy; specific numeracy research methods, e.g., psychophysical numeracy research
a priori risk reduction and, 138–139
Down syndrome screening, 131–132
number needed to invite to screen (NNI), physicians’ statistical abilities concerning, 62–63
number needed to treat (NNT)
calculations, physicians’ statistical abilities concerning, 62–63
number perception and distortion, numeracy skills and, 6–7
numeracy. See also patient numeracy; specific numeracy research methods, e.g., psychophysical numeracy research
a priori risk reduction and, 138–139
abbreviated numeracy scale for assessment of, 20–22
applied contexts for, 6
decision making and, 4
deﬁned, 1, 2, 59
diabetes mellitus care and applications of, 105–125, 281
empirical issues in, 252–275
ethical issues in, 252–275
future research issues in, 237–239, 282–283
fuzzy-trace theory and, 230–237
genetic screening and, 130–148, 281
in genetic variance, 139–140
Subject index

numeracy (cont.)

Graph literacy research and, 223–224
Health outcomes monitoring and, 209–212
History of research on, 11–13, 281
Interdisciplinary research on, 237–239
Invasive prenatal diagnosis risk assessment and, 134–135
Lack of skills in, 1
Mathematics and, 11–13
Measurement tools for, 4–5, 11–35
In mendelian genetics, 140–142
National comparisons, USA and Germany, 43
Physician numeracy, research on, 59–61
Predictability and uncertainty, understanding based on, 82–83
Psychological mechanisms in, 215–239
Psychophysical research on, 216–220
Societal level impact of, 5
Statistics and, 1–3
Theoretical review of, 215–239
Numeracy scales
Assessment of, 4–5, 11–35, 281
Bias reduction using, 157–163
Risk perception in low-numeracy patients using, 154–156
Numeracy Understanding in Medicine Instrument (NUMi), 4–5
Berlin Numeracy Test comparisons with, 23–29
Comparison with other tests, 34
Diabetic patient numeracy assessment and, 107–109
Limitations of, 18–20
Numeracy assessment and, 16, 17–20
Numerators
class-inclusion confusion and, 236–237
Ratio bias and focus on, 226–228
Numeric information
Limitations and benefits of, 6–7
Physicians’ understanding and use of, 59–75
Numerical perception
Distortion in, 217–218
Neuroscience of, 219
Psychophysical numeracy research, 216–217
Numerical reasoning, judgment and decision making and, 4
NUMi. See Numeracy Understanding in Medicine Instrument
Nutrition information
For low-numeracy patients, 153–154
Patient numeracy concerning, 89–91
NVS (Newest Vital Sign) test, diabetic patient numeracy assessment, 107–109
Objective numeracy measurements
Clinical practice in diabetes and, 122–125
diabetes-specific measures, 109–112
general objective numeracy measures, 107–109
Mood effect bias in, 229–230
Numeracy assessment in diabetic patients, 107–113
Numeracy research and, 11–13
In physicians, 60–61
Obstetricians and gynecologists (ob-gyns)
Bayesian reasoning abilities in, 64–66
Breast and ovarian cancer screening, 136–137
Communication of statistical information by, 67–68
Down syndrome screening by, 131–132
Genetic counseling partnerships with, 143–145
Genetic testing examples in, 130–137
Genomic health literacy in, 130, 148
Invasive prenatal diagnosis by, 134–135
Mendelian genetics literacy in, 140–142
Population-based carrier screening by, 132–134
Range of statistical abilities in, 62–63
Statistical literacy of, 62–69
Training programs in statistical literacy for, 72–74
Older patients, visual aids for risk perception research in, 154–156
Online health information
Adjuvant Online decision aid, 87–88
Barriers to diabetes care and, 118–122
Berlin Numeracy Test, 31–32
Diabetes web sources, 122
Gist vs. verbatim processing of, 235–236
Patient numeracy and, 89–91
Visual aids development using, 166–168
Optimism bias
Quantitative imperative and, 260–261
Risk underestimation and, 157–163
Ordinal representations
Absolute vs. relative risk and, 233–234
Gist and verbatim number representation and, 232–233
Organizational structure, performance improvement models and, 199
Ovarian cancer
Genetic screening for, 136–137
Large effect genetic determinants in, 142–143
Subject index

overdiagnosis bias
illustration of, 50
mortality rates vs. survival rates and, 47–49
screening statistics and, 63–64
overestimation of literacy skills barriers to communication and, 179–183
genetics testing literacy and, 145–147
health outcomes monitoring and, 209–212
numeracy research and, 11–13
in physicians, 64–66, 74–75

pan-ethnic universal carrier testing
genetic screening using, 132–134
mendelian genetics and, 140–142
training and education for, 143–145

PAPP-A (pregnancy associated plasma protein A), Down syndrome screening, 131–132

parallel processing
of information, 235–236
Parental Health Literacy Activities Test (PHLAT), patient numeracy skills and, 89–91
part-to-whole relations, visual aids for comprehension of, 165–166
past events, physicians’ Bayesian reasoning abilities concerning, 64–66
patient brochures, mismatched framing of statistical information in, 69–71
patient-centered care. See also consumers of healthcare performance improvement in, 201–204
quantitative imperative and role of, 254–255
shortcomings in, 193
statistical information and collaborative decision making, 71–72
statistical literacy training development for, 74–75

Patient Centered Medical Home model, components of, 201–204
patient numeracy
anticoagulation control outcomes and, 93–94
assessment in diabetic patients, 107–113
asthma self-management and, 94–95
barriers to critical health information and, 175–177
barriers to diabetes care due to, 118–122
cancer screening risks/benefits assessment and, 96–97
chronic kidney disease management and, 95–96
communication to consumer, barriers to, 183–188
diabetes self-management and, 92–93
education in, 41–42
future research issues in, 124–125
genetic health literacy and, 145–147
health outcomes linked to, 85–88, 92–99
health uncertainty and predictability, comprehension of, 82–83
HIV self-management and, 96
invasive prenatal diagnosis risk assessment and, 134–135
key functions in, 81
low numeracy skills and health outcomes and, 6
number task completion and, 89–91
objective numeracy in physicians compared with, 60–61
performance improvements in, 194–195
policy and healthcare implications of, 97–98
risk perception and, 83–85, 87–88
shared decision-making models and, 206–208
skills assessment, 5, 80–99, 281
smoking cessation outcomes and, 97
statistical evidence vs. testimonials and, 51–52
patient-physician collaboration. See also shared decision-making (SDM) process after visit summary and, 209
health management, 105–106
health outcomes monitoring and, 209–212
informed decision-making model and role of, 253–254
invasive prenatal diagnosis risk assessment and, 134–135
medical decision making and, 71–72
morbidity reduction and participation in, 175–177
in performance improvement (PI) models, 206–208
quantitative imperative and role of, 254–255, 263–265
rational choice and, 263–265
reasonable person standard and, 271–272
shared decision-making process and, 209
visual aids for, 164–165
PCEC (Prostate Conditions Education Council), 39–40
PDSA model. See Plan-Do-Study-Act (PDSA) model Pearson correlation coefficients, NUMi test assessment, 17–20
Subject index

pediatrics
 chromosome microarray testing in, 139–140
 healthcare failures in, 193
Pediatrics journal, inferential statistical procedures in, 69–71
pedigree analysis, BRCA1/2 mutations, 136–137
percentages
 Bayesian reasoning and, 64
 in computational numeracy research, 221–223
diabetic patient numeracy assessment and understanding of, 107–109
dual-process numeracy research, 228–229
performance evaluation
 diabetes-related numeracy performance, 113–115
 mood effect bias in, 229–230
 numeracy research and, 11–13
 of physician–patient interactions, 67–68
 rational healthcare reform and, 194–195
performance improvement (PI) models
 areas selected for, 199–201
 consumer focus in, 201–204
 experimental-grade performance improvement, 197–199
 healthcare system reform and, 194–195
 limitations of, 195–197
 patient engagement in, 206–208
 personalized risk assessment tools, decision making using, 175–177
persuasion
 communication of statistical information and, 67–68
 information vs., 40–42
pharmaceutical companies, mismatched framing of statistical information from, 69–71
physicians. See also healthcare providers; obstetricians and gynecologists; patient–physician collaboration
 a priori risk reduction, literacy skills in, 138–139
 barriers to communication from, 179–183
 Bayesian reasoning abilities in, 64–66
 communication of statistical information by, 67–68
 conditional probability vs. natural frequencies in cancer screening and, 45–46
 education for statistical literacy, 72–74
evidence-based medical practice, statistical abilities in, 69–71
 genetic testing and counseling skills in, 63–64, 143–145, 147–148
 genetic variance literacy in, 139–140
 genomic health literacy in, 130
 hindsight bias in, 180
 informed decision-making model and role of, 253–254
 large and small effect genetic determinants, knowledge of, 142–143
 mendelian genetics literacy in, 140–142
 numeracy skills concerning, 43–45
 overestimation of communication skills by, 181
 relative vs. absolute risks of cancer screening, numeracy skills concerning, 43–45
 statistical literacy assessment of, 62–69, 74–75, 281
 subjective numeracy in, 61
PI. See performance improvement (PI) models
pie charts, risk perception in low-numeracy patients using, 154–156, 162
PISA (Programme for International Student Assessment), 11–13
Plan-Do-Study-Act (PDSA) model healthcare systems improvement and, 195
point-of-care solutions, health outcomes monitoring and, 209–212
population-based carrier screening, 132–134
 mendelian genetics literacy and, 140–142
 population management, care delivery models and, 201–202
 positive predictive value
 patient numeracy skills and calculation of, 84–85
 physicians’ statistical abilities involving, 64–66
 posterior probability estimation, physicians’ Bayesian reasoning abilities and, 64–66
 practice-based models
 best options identification and, 208–209
 shared decision-making and, 206–208
 pragmatic rational theory
 evaluation of quantitative information and, 266–267
 quantitative imperative and, 262–263
 preconception planning, pan-ethnic universal carrier testing and, 132–134

© in this web service Cambridge University Press www.cambridge.org
Subject index

predictive validity
Berlin Numeracy Test, 23–29
of health information, patients’ understanding of, 82–83
psychometric numeracy performance tests, 29

preference-sensitive decisions
distortion in numerical perception and, 217–218
expected utility and, 267–268
preference matching evaluation, 268–269

pregnancy associated plasma protein A (PAPP-A), Down syndrome screening, 131–132

prenatal testing
a priori risk reduction, literacy skills in, 138–139
Down syndrome screening, 132–134
invasive prenatal diagnosis, 134–135
non-invasive genetic testing, 135–136
population-based carrier screening, 132–134

prescriptive research
decision sciences and, 3–4
fuzzy-trace theory, 233–234
prevalence rates
physicians’ Bayesian reasoning abilities concerning, 64–66
physicians’ statistical abilities concerning, 62–63
prevention decisions, distortion in numerical perception and, 217–218
primary care practices
best options identification in, 208–209
diabetes management and, 109–112
genetic screening skills and, 142–143
Latino diabetic patients and, 113–115
numercy skills requirements in, 80
patient-centered healthcare systems, 201–204
patient numeracy and, 89–91
probability
Bayes Theorem and, 64–66
in computational numeracy research, 221–223
diabetic patient numeracy assessment and understanding of, 107–109
in fuzzy-trace theory, 230–232
gist and verbatim number representation, 232–233
numercy skills assessment and, 15–16
NUMi testing of, 18–20
outcomes description and assignment, 269–270
over- and underestimation, visual aids effect on, 166
patient numeracy and comprehension of, 85
quantitative imperative and, 256–258
rationality theories and, 262–263
professional practice standard, bioethics and, 271–272
Programme for International Student Assessment (PISA), 11–13
proof-of-concept experiments, barriers to communication and, 188
proportional analysis
distortion in numerical perception and, 217–218
low-numercy patients bias concerning, 157–163
prospect theory, numerical perception and, 219
prospective natural frequency, physicians’ Bayesian reasoning abilities concerning, 64–66
prostate cancer
numeracy and informed judgment concerning, 42–43
overdiagnosis bias and lead-time bias in screening for, 47–49
physicians’ screening statistics abilities concerning, 63–64
quantitative imperative and intervention in, 254–255
relative vs. absolute risk of, 43–45
screening not linked to mortality from, 40–42
unnecessary and risky treatment for, 40–42
Prostate Conditions Education Council (PCEC), 39–40
prostate specific antigen (PSA)-screening
impact of video information about, 52–53
overdiagnosis and lead-time biases in, 47–49
overestimation of benefits of, 43–45
pros and cons of, 40–42
recommendations against, 41
ProvenCareSM elements (Geisinger Health Systems) and CABG care optimization, 204–206
ProvenHealth NavigatorSM, 201–204
diabetes management and, 203
optimization of high-cost, capital-intensive healthcare and, 204–206
Subject index

PSA-screening. See prostate specific antigen (PSA)-screening
pseudo-disease-screening-detected abnormalities, overdiagnosis bias and, 47–49
psychodynamic distinction, dual-process numeracy research and, 225–226
psychometric numeracy performance tests convergent and discriminant validity properties, 27–28
decision conflict scale, 270–271
descriptions and references for validity in, 24
limitations of, 16
numerosity research and, 11–13
NUMi test assessment, 17–20
predictive validity, 29
scale properties, 26
validated research instruments, 33
psychophysical numeracy research distortions in numerical perception, 217–218
future issues in, 237–239
neuroscience of number sense, 216–217
overview of, 216–220
QALY (quality adjusted life year) and quantitative imperative, 256
quadruple screening procedure, Down syndrome screening, 131–132
quality adjusted life year (QALY) and quantitative imperative, 256
quality improvement initiatives Geisinger’s quality outcomes program, 202
health outcomes monitoring and, 209–212
healthcare system reform and, 194–195
quantitative imperative alternatives to, 275
autonomy and informed decision making and, 253–254
bias and, 260–261
ethical views of, 263–265
ethics in numeracy and, 252–275
gist and, 260–261
heuristics and, 260–261
impact measurement and, 273–274
numeracy and limits of, 259–260
International Patient Decision Aids Standards, 258–259
probabilities and expected utility theory, 256–258
problems with, 259–265
provider and patient roles in, 254–255
rationality theories and, 262–263
reasonable person standard and, 271–272
utilities in, 256
quantitative information on cancer screening risks, 43–45
evaluation of, 266–274
expected utility relevance in, 267–268
health outcomes monitoring and, 209–212
limits of quantitative imperative and, 259–265
measurement of, 266–274
outcomes description and, 269–270
patient numeracy skills and decision making and, 85–88
verbal information vs., 271
quantitative skills tests
Diabetes Numeracy Test correlation with, 109–112
diabetic patient numeracy assessment and, 107–109
numeracy measurement and, 13–17
question format, Berlin Numeracy Test, 23–29
race
diabetes health disparities and patient numeracy and, 117
genetics testing literacy and, 145–147
randomness, patients’ numeracy and understanding of, 82–83, 85
rapid learning paradigm
health outcomes monitoring and, 211
performance improvement models and, 199
Rasch approach, abbreviated numeracy scale, 20–22
ratio bias
abbreviated numeracy scale and, 20–22
class-inclusion confusion and, 236–237
dual-process numeracy research on, 226–228
NUMi testing of, 18–20
ratio-dependent logarithmic discrimination distortion in numerical perception and, 217–218
psychophysical numeracy research and, 220
rational choice, quantitative imperative and, 263–265
Rational-Experiential Inventory (REI)
dual-process numeracy research and, 225–226
ratio bias and framing effects and, 226–228
Subject index

rational healthcare
probabilities and expected utility theory and, 256–258
proposals for, 193–212
rationality theories, quantitative imperative and, 262–263
Raven’s Standard test, 16
real time data and PI models, 199
reasonable person standard
clinical applications of, 272–273
impact measurement and, 273–274
quantitative imperative and, 271–272
re-engineering model
CABG care optimization and, 204–206
healthcare system reform and, 194–195
reference class
physicians’ Bayesian reasoning abilities concerning, 64–66
single event probability vs. frequencies and, 46–47
Regularly Scheduled Series (RSS)
continuing medical education, statistical literacy curriculum in, 72–74
REI. See Rational-Experiential Inventory
relationship questions, physicians’ statistical abilities in, 62–63
relative risk
absolute risk vs., 43–45
benefits of cancer screening represented as, 43–45
in fuzzy-trace theory, 233–234
graphic literacy and perception of, 259–260
mismatched framing of statistical information on, 69–71
reliability in testing
abbreviated numeracy scale, 20–22
Diabetes Numeracy Test, 109–112
numerator measurement and, 13–17
reminders, 209–212
residency training, statistics/biostatistics curriculum data for, 72–74
retrospective natural frequency, physicians’ Bayesian reasoning abilities and, 64–66
return on investment (ROI)
care category selection for, 200
in performance improvement models, 195–197, 198
Rh determination, non-invasive prenatal genetic testing model, 135–136
risk ladders, patient numeracy skills and comprehension of, 83–85
risk perception. See also absolute risk; benefits perceptions; relative risk
a priori risk reduction and, 138–139
abbreviated numeracy scale and, 20–22
affect heuristics in comprehension of, 186–187
Berlin Numeracy Test and, 22–23
bias in, visual aids for reduction of, 157–163
in breast cancer patients, 136–137, 266–267
cross-cultural discriminability and, 30–31
diabetic patient numeracy assessment and, 107–109
Down syndrome screening, 131–132
dual-representation model for, 261–262
in fuzzy-trace theory, 230–232, 233–234
gist and verbatim number representation, 232–233
graph literacy research on, 223–224
graphical information and improvement of, 49–51
health risk calculators, patient numeracy and use of, 89–91
invasive prenatal diagnosis, 134–135
numerator skills and, 14
numeric benefit patterns and, 68
ovarian cancer screening, 136–137
over- and underestimation, visual aids and increase in, 166
patients’ numeracy skills and understanding of, 83–85, 87–88
population-based carrier screening, 132–134
randomness and, patients’ understanding of, 82–83
ratio bias in, 226–228
reasonable person standard in judgments on, 272–273
relative vs. absolute risk, 43–45
risk communication, fuzzy-trace theory, 236–237
vaccine risks and benefits, conflicting information concerning, 178–179
visual aids for comprehension of, 154–156, 157, 165–166
risky decision making
gist and verbatim number representation and, 232–233
irrational bias and, 229–230
numerator skills assessment and, 14–17
visual aids for comprehension of, 165–166
ROI. See return on investment
RSS (Regularly Scheduled Series)
continuing medical education, statistical literacy curriculum in, 72–74
salmon, nutritional benefits of, conflicting information concerning, 178–179
sampling techniques, objective numeracy research in physicians and, 60–61
satisfying, health outcomes and principle of, 262–263
Schwartz numeracy scale, anticoagulation therapy, 109
science literacy, cross-cultural comparisons, 30–31
scoring protocols, Berlin Numeracy Test, 23–29
screening statistics
expected utility or preference matching evaluation and, 268–269
physicians’ statistical abilities concerning, 63–64
screening tests. See also specific types of screening, e.g., mammography screening
objective numeracy in physicians and inferences about, 60–61
physicians’ statistical abilities for interpretation of, 63–64
Scrubs (television show), health information on, 52–53
SDM. See shared decision-making (SDM) process
self-care behaviors
chronic kidney disease and, 124
diabetic patient numeracy assessment concerning, 107–109
in heart disease patients, 124
numeracy research involving, 237–239
patient numeracy and success in, 89–91
self-efficacy, diabetes knowledge and self-efficacy and, 116–117
sensitivity of testing, physicians’ Bayesian reasoning abilities concerning, 64–66
serum markers
a priori risk reduction and, 138–139
Down syndrome screening, 131–132
sex chromosome aneuploidies
mendelian genetics and, 140–142
non-invasive prenatal genetic testing for, 135–136
sexual problems, single event probability vs. frequencies in information about, 46–47
sexually transmitted diseases (STDs), visual aids for behavioral interventions in, 163–165, 282–283
shared decision-making (SDM) process after visit summary in, 209
health outcomes monitoring and, 209–212
performance improvement and integration of, 206–208
quantitative imperative and, 253–254
rational choice and, 263–265
visual displays in, 209
side effects
communication of statistical information about, 67–68
patient education concerning, 41–42
patient numeracy skills and risk information concerning, 84–85
sigmoidoscopy, absolute vs. relative risk statistics for, 43–45
significance, reasonable person standard and principle of, 272–273
single event probability frequentist information vs., 46–47
physicians’ Bayesian reasoning abilities and, 64–66
single gene disorders, non-invasive prenatal genetic testing for, 135–136
single nucleotide polymorphisms (SNPs), small effect genetic determinants, 142–143
Six Sigma initiatives, healthcare system reform and, 194–195
slow cognitive system, numeracy skills and, 6–7
SMA (spinal muscular atrophy), carrier screening for, 132–134
SNPs (single nucleotide polymorphisms), small effect genetic determinants, 142–143
SNS. See Subjective Numeracy Scale
Society for Thoracic Surgery, CABG guidelines, 204–206
society, numeracy in, 5, 281
spinal muscular atrophy (SMA), carrier screening for, 132–134
stakeholders, healthcare systems improvement and, 194–195
standard gamble measurement, expected utility or preference matching, 268–269
standard of care, professional practice standard and, 271–272
Subject index

Standard Picture concept
probabilities and expected utility theory and, 256–258
rationality theories and, 262–263

statistical confidence
mood effects, 220–230
patient numeracy and, 83–85, 145–147
physicians’ Bayesian reasoning ability and, 64–66
proposals for improvement in physicians of, 74–75

statistical illiteracy
graphical communication and improvement of, 49–51
health care decision making based on, 40–42
statistical information
collective statistical illiteracy in health, 39–54
communication by physicians of, 67–68 in evidence-based medicine, physicians’ use of, 69–71
importance in modern society of, 11
medical decision making and, 71–72
in medical research publications, increased coverage of, 69–71
on medical television shows, 52–53
misleading statistics, communication of, 39–40
narrative evidence vs., 51–52
numeracy in medicine and, 1–3
physicians’ literacy in, 5, 62–69, 74–75, 281

statistical literacy
defined, 59
education for, 72–74
future research on physicians and, 74–75
in physicians, 62–69
range of physician abilities in, 62–63
STDs (sexually transmitted diseases), visual aids for behavioral interventions in, 163–165, 282–283
subjective numeracy measurements
clinical practice in diabetes and, 122–125
numeracy assessment in diabetic patients, 112
numeracy research and, 11–13
in physicians, 61
risk information, patient numeracy skills and, 83–85

Subjective Numeracy Scale (SNS)
clinical practice in diabetes and, 122–125
diabetic patient numeracy assessment, 112
patient numeracy assessment, 84–85, 89–91

physicians’ subjective numeracy assessment and, 61
supply chain inefficiencies, performance improvement models and, 200
survival rates in fuzzy-trace theory, 230–232
mortality rates and, 39–40, 47–49
ratio bias in perception of, 226–228
systemic communication barriers, 178–179

Tabular health data
clinical medicine and displays of, 54
patient numeracy skills and assessment of, 85–88

Tay–Sachs mutation, screening for, 132–134, 143–145
technological innovation, in performance improvement models, 198

television
health information in, 52–53
transparent health information on, 54
temporal discounting, distortion in numerical perception and, 217–218

Terra Nova Test of mathematics achievement, numerical perception, 216–217

Test of Functional Health Literacy in Adults (TOFHLA)
diabetes-related numeracy, performance comparisons, 113–115
diabetic patient numeracy assessment, 107–109
testimonials, statistical evidence vs., 51–52
testing formats
Berlin Numeracy Test, 23–29
comparison of, 34
estimated difficulty ranges for, 34
thermometer reading, patient numeracy skills and, 89–91
time tradeoff measurement, expected utility or preference matching, 268–269

TOFHLA. See Test of Functional Health Literacy in Adults

Total Quality Management (TQM) and healthcare system reform, 194–195
transforming ratios, numeracy testing emphasis on, 228
transparent representations
a priori risk reduction, 138–139
communication of statistical information and, 67–68
in computational numeracy research, 221–223
relative vs. absolute risk in, 43–45
transparent representations (cont.) of statistical evidence, 53–54
visual aids for low numeracy patients, 154
transplacental hemorrhage, invasive prenatal genetic testing and, 135–136
treatment for cancer, benefits as relative risk reduction, 43–45
trisomy 13 aneuploidies, non-invasive prenatal genetic testing for, 135–136
trisomy 18 aneuploidies, non-invasive prenatal genetic testing for, 135–136
trisomy 21. See Down syndrome probability
UK Skills for Life Programme
glycemic control outcomes in diabetic patients and, 115–118
numeracy in diabetic patients, general assessment, 92–93
ultrasound techniques
Down syndrome screening, 131–132
invasive prenatal diagnosis following, 134–135
uncertainty in health information barriers to communication and, 179
 genetic variance and, 139–140
genetics screening and, 134–135
patients’ understanding of, 82–83
pragmatic rationality and, 262–263
rational choice and, 263–265
unconjugated estriol, Down syndrome screening, 131–132
underestimation of risk
low-numeracy patients bias concerning, 157–163
optimism bias and, 260–261
unidimensional traits, item response theory and, 17
United Kingdom
diabetic patient numeracy assessment in, 107–109, 115–118
patient numeracy and health outcomes in, 92–93
United States Preventive Services Task Force (USPSTF), 41, 43–45, 136–137, 254–255
utility elicitations
expected utility or preference matching evaluation, 268–269
outcomes description and, 269–270
quantitative imperative and, 256, 263–265
reasonable person standard and, 272–273
vaccine risks and benefits, conflicting information concerning, 178–179
value-based care systems, performance improvement and, 202
value-based reimbursement model, Geisinger’s system for, 202
value concordance, expected utility and, 267–268
variance, numeracy measurement and elimination of, 13–17
verbal information, vs. quantitative information, 271
verbatim representation
future issues in, 237–239
in fuzzy-trace theory, 230–232
gist vs. verbatim processing, 235–236 of numbers, 232–233
verbatim memory and, 236–237
Vioxx, systemic communication barriers concerning, 178
visual aids
bias reduction in low-numeracy patients using, 154–156
class-inclusion confusion with, 236–237
computational numeracy research on, 223–224
framing effects vulnerability, reduction using, 161–163
future research on, 166–168
gist vs. verbatim processing and, 235–236
graph literacy scale for assessment of, 163–165
for health behavior interventions, 263–265
innumeracy and limits of, 166
for low-numeracy populations, 153–168
interdisciplinary research concerning, 165–166
limits of, 166
for low-numeracy populations, 153–168
objective numeracy in physicians and use of, 60–61
risk communication using, 49–51, 236–237
shared decision-making process and, 209
vulnerable populations
diabetes-related numeracy performance in, 113–115
visual aids for risk perception in, 154–156
warfarin regimens, patient numeracy and outcomes in, 93–94
web-based information
Berlin Numeracy Test assessment and, 31
gist vs. verbatim processing of, 235–236
Subject index

Wide Range Achievement Test-3 (WRAT-3)
 Diabetes Numeracy Test correlation with, 109–112
diabetes-related numeracy, performance comparisons, 113–115
diabetic patient numeracy assessment and, 107–109
 patient numeracy assessment, 84–85, 89–91
Wide Range Achievement Test-A (WRAT-A) arithmetic test, numeracy assessment, 89
women patients
 barriers to information about breast cancer therapy for, 184
 collaborative health care and morbidity in, 175–177
 health behavior and numeracy in, 42–43, 88
 HIV management, numeracy skills and, 96
numeracy skills in, 4
 perception of breast cancer risk in, 14, 43–45, 84–85, 87–88, 96–97, 221–223, 266–267
Wonderlic intelligence assessment, 17–20
Woodcock Johnson Test of Cognitive Abilities
 Applied Problems Subtest, 96
working memory, in computational numeracy research, 220–221
workflow analysis
 optimization of CABG procedures and, 204–206
 shared decision-making models and, 207–208
WRAT-3. See Wide Range Achievement Test-3
WRAT-A (Wide Range Achievement Test-A) arithmetic test, numeracy assessment, 89