Every day thousands of individuals need to make critical decisions about their health based on numerical information, yet recent surveys have found that over half the population of the USA is unable to complete basic math problems. How does this lack of numerical ability (also referred to as low numeracy, quantitative illiteracy, or statistical illiteracy) impact healthcare? What can be done to help people with low numeracy skills? *Numerical Reasoning in Judgments and Decision Making about Health* addresses these questions by examining and explaining the impact of quantitative illiteracy on healthcare and in specific healthcare contexts, and discussing what can be done to reduce these healthcare disparities. This book will be a useful resource for professionals in many health fields including academics, policy makers, physicians, and other healthcare providers.

Britta L. Anderson is a Research Associate at the American College of Obstetricians and Gynecologists.

Jay Schulkin is the Senior Director of Research in the Division of Practice at the American College of Obstetricians and Gynecologists. He is also a Research Professor of Neuroscience at Georgetown University and Research Professor in the Department of Obstetrics and Gynecology at the University of Washington.
Britta L. Anderson would like to dedicate this book to Bo Peery and to her grandparents.

Jay Schulkin would like to dedicate this book to Jonathan Baron and George Loewenstein.
Contents

List of figures	page ix
List of tables	xii
List of contributors	xiv
Acknowledgments	xvi

Introduction
BRITTA L. ANDERSON & JAY SCHULKIN
1 Measuring numeracy
EDWARD T. COKELY, SAIMA GHAZAL, & ROCIO GARCIA-RETAMERO
2 Collective statistical illiteracy in health
JAN MULTMEIER, WOLFGANG GAISSMAIER, & ODETTE WEGWARTH
3 Physicians’ understanding and use of numeric information
BRITTA L. ANDERSON & JAY SCHULKIN
4 Patient numeracy: what do patients need to recognize, think, or do with health numbers?
BRIAN J. ZIKMUND-FISHER, GILLIAN MAYMAN, & ANGELA FAGERLIN
5 Application of numeracy in diabetes mellitus chronic disease care
JILLIAN BERKMAN & KERRI L. CAVANAUGH
6 Numeracy and genetic screening
STEPHANIE DUKHOVNY & LOUISE WILKINS-HAUG
7 Using visual aids to help people with low numeracy make better decisions
ROCIO GARCIA-RETAMERO & EDWARD T. COKELY
viii Contents

8 Anticipating barriers to the communication of critical information 175
ELLEN PETERS

9 Rational healthcare 193
RONALD PAULUS & WALTER F. STEWART

10 A review of theories of numeracy: psychological mechanisms and implications for medical decision making 215
VALERIE F. REYNA & PRISCILA G. BRUST-RENGCK

11 Do the numbers help patients decide? Ethical and empirical challenges for evaluating the impact of quantitative information 252
PETER H. SCHWARTZ

Conclusion 281
BRITTA L. ANDERSON & JAY SCHULKIN

Name index 284
Subject index 287
Figures

Figure 1.1. The structure of the Computer Adaptive Berlin Test. page 23

Figure 1.2. Theoretical differences in distributions of the NUMi, abbreviated numeracy test, and the Berlin Numeracy Test. 34

Figure 1.3. Estimated difficulty ranges for various numeracy tests. 34

Figure 2.1. Arithmetic operations which need to be carried out with conditional probabilities (left) or natural frequencies (right) in order to determine the likelihood that a woman with a positive mammography screening result actually has breast cancer. 47

Figure 2.2. Lead-time bias. 49

Figure 2.3. Overdiagnosis bias. 50

Figure 3.1. Example of a Bayesian problem and an explanation of how to calculate the correct answer. 65

Figure 3.2. The way physicians draw information about their patient population (by thinking about future patients or past experiences) will impact their reasoning and their accuracy in their Bayesian inferences. 67

Figure 3.3. Patterns of numeric benefit and risk information in two scenarios. 68

Figure 3.4. Characteristics of statistics in selected volumes of Pediatrics, 1952–2005. 70

Figure 4.1. Percentage of women choosing chemotherapy in a hypothetical scenario regarding choice of adjuvant therapies following breast cancer surgery, by incremental benefit of chemotherapy (1% vs. 5%), by whether options were presented all-at-once versus sequentially, and by numeracy level. 88
List of figures

Figure 4.2. Predicted ability to interpret nutrition labels by literacy or numeracy status. 90
Figure 4.3. Anticoagulation control according to literacy grade level and numeracy level. 95
Figure 5.1. Examples of items from the Diabetes Numeracy Test. 110
Figure 5.2. Construct validity model for the Diabetes Numeracy Test. 111
Figure 5.3. Examples of pages from the Diabetes Literacy and Numeracy Education Toolkit (DLNET). 120
Figure 6.1. A comparison of ethnicity-based carrier screening guidelines between ACOG and ACMG. 133
Figure 7.1. Icon arrays presented in addition to numerical information about risk reduction when they represent affected individuals only (top) or the entire population at risk (bottom). 156
Figure 7.2. Percentage of participants with low and high graph literacy and numeracy who correctly inferred treatment risk reduction, by visual aids condition. 157
Figure 7.3. Icon arrays representing a treatment risk reduction of 50% with unequal samples of treated and non-treated patients (i.e., 100 and 800, respectively). 158
Figure 7.4. Percentage of participants with low (a) and high (b) numeracy whose estimates of risk reduction were either accurate or lower or higher than the exact value as a function of the sizes of the denominators and icon arrays. 160
Figure 7.5. (a) Icon array presented in Condition 1; (b) horizontal bar graph presented in Condition 2; (c) vertical bar graph presented in Condition 3; and (d) pie chart presented in Condition 4. 162
Figure 7.6. Percentage of participants who reported performing the promoted behavior (condom use or STD screening) when the health information brochure was framed as gains or losses as a function of message format (text only, text and numerical information, and text and graphical information). 164
Figure 8.1. Providing a framework increased understanding of related information that follows, but decreased
understanding of unrelated information among the
less numerate. 182

Figure 8.2. Hospital quality information is provided in an
evaluative categories format (top) or with numbers
only (bottom) in Study 1 of Peters et al. (2009). 185
Tables

Table I.1. Definitions for numeracy and related terms.
Table I.1. Descriptions and references for tests used to establish psychometric validity.
Table I.2. Psychometric properties of the scale: basic attributes, reliability, and discriminability.
Table I.3. Psychometric properties of tests: Convergent and discriminant validity.
Table I.4. Psychometric properties of the tests: Predictive validity.
Table I.5. Proportion of participants in each quartile from 14 countries.
Table I.6. Percentage of people in each quartile from three different samples estimated by the computer adaptive Berlin Numeracy Test algorithm.
Table I.7. Properties of validated numeracy research instruments.
Table 2.1. Basic numeracy in the USA and Germany based on nationally representative samples.
Table 2.2. Examples of non-transparent information from a variety of sources, and simple transparent solutions.
Table 3.1. Instructions for the three conditions in a study assessing physicians’ Bayesian estimates.
Table 4.1 Key functions of patient numeracy and examples of how these functions enable patients to act on health data.
Table 4.2. Examples of patient health outcomes related to patient numeracy.
Table 5.1. Diabetes tasks and related numeracy domains.
Table 5.2. Summary of numeracy assessments in patients with diabetes.
Table 5.3. Clear communication strategies.
Table 5.4 List of web resources.
Table 7.1. Number of treated and non-treated patients who died in the scenarios with different denominator sizes. 159

Table 8.1. Decision aids inform decisions about colorectal cancer screening. 176

Table 8.2. Types of barriers to effective communication of health information. 178

Table 8.3. Memory for precise numbers (Study 3) and accessibility of feelings versus thoughts (Study 4) in Peters et al. (2009). 186
Contributors

BRITTA L. ANDERSON, Department of Research, American College of Obstetricians and Gynecologists.

JILLIAN BERKMAN, Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center.

PRISCILA G. BRUST-RENCZ, Department of Human Development, Cornell University.

KERRI L. CAVANAUGH, Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center.

EDWARD T. COKELY, Department of Cognitive and Learning Sciences, Michigan Technological University; Center for Adaptive Behavior and Cognition, Max Planck Institute for Human Development.

STEPHANIE DUKHOVNY, Maternal Fetal Medicine, Brigham and Women’s Hospital.

ANGELA FAGERLIN, Center for Bioethics and Social Sciences in Medicine; Internal Medicine, University of Michigan; VA Ann Arbor Center for Clinical Management Research.

WOLFGANG GAISSMAIER, Department of Psychology, University of Konstanz.

ROCIO GARCIA-RETAMERO, Department of Experimental Psychology, University of Granada; Center for Adaptive Behavior and Cognition, Max Planck Institute for Human Development.

SAIMA GHAZAL, Department of Cognitive and Learning Sciences, Michigan Technological University, MI, USA.

GILLIAN MAYMAN, Center for Managing Chronic Disease, School of Public Health, University of Michigan.
List of contributors xv

JAN MULTMEIER, Harding Center for Risk Literacy and Center for Adaptive Behavior and Cognition, Max Planck Institute for Human Development.

RONALD PAULUS, Mission Health System.

ELLEN PETERS, Department of Psychology, The Ohio State University.

VALERIE F. REYNA, Department of Human Development and Psychology, Cornell University; Cornell University Magnetic Resonance Imaging Facility; Center for Behavioral Economics and Decision Research, Cornell University.

JAY SCHULKIN, Department of Research, American College of Obstetricians and Gynecologists; Department of Neuroscience, Georgetown University; Department of Obstetrics and Gynecology, University of Washington School of Medicine.

PETER H. SCHWARTZ, Indiana University Center for Bioethics; Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine; Philosophy Department, Indiana University – Purdue University, Indianapolis.

WALTER F. STEWART, Sutter Health.

ODETTE WEGWARTH, Harding Center for Risk Literacy and Center for Adaptive Behavior and Cognition, Max Planck Institute for Human Development.

LOUISE WILKINS-HAUG, Maternal Fetal Medicine and Reproductive Genetics, Brigham and Women’s Hospital; Harvard Medical School.

BRIAN J. ZIKMUND-FISHER, Health Behavior and Health Education, School of Public Health, University of Michigan; Internal Medicine, University of Michigan.
Acknowledgments

The life of the mind is a social event and we could not have done this without the help and support of our colleagues and friends.

Many of the issues that appear in this book were discussed in a small conference held at the Center for Advanced Study in the Behavioral Sciences at Stanford. We thank Stephen Kosslyn, Director of the Center, for his generous hospitality and to Hal Pashler, Ron Paulus, Ellen Peters, and Louise Wilkins-Haug who gave presentations.

Finally, we thank our granting agency, the US Department of Health and Human Services, Health Resources and Services Administration, Maternal and Child Health Research Program for their support for our research (UA6MC19010).