
Cambridge University Press & Assessment
978-1-107-04073-1 — Building High Integrity Applications with SPARK
John W. McCormick, Peter C. Chapin
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Building High Integrity Applications with Spark

Software is pervasive in our lives. We are accustomed to dealing with the failures of much

of that software – restarting an application is a very familiar solution. Such solutions

are unacceptable when the software controls our cars, airplanes, and medical devices

or manages our private information. These applications must run without error. Spark

provides a means, on the basis of mathematical proof, to guarantee that a program has

no errors. This book provides an introduction to Spark 2014 for students and developers

wishing to master the basic concepts for building systems with Spark.

Spark is a formally defined programming language and a set of verification tools

specifically designed to support the development of software used in high integrity

applications. Using Spark, developers can formally verify properties of their code

such as information flow, freedom from runtime errors, functional correctness, security

properties, and safety properties.

John W. McCormick is a professor of computer science at the University of Northern

Iowa. He began his career at the State University of New York in 1979. He has served

as secretary, treasurer, and chair of the Association for Computer Machinery Special

Interest Group on Ada. In 1993 John was awarded the Chancellor’s Award for Excellence

in Teaching. He received the Special Interest Group on Ada Distinguished Service Award

in 2002, as well as the Outstanding Ada Community Contributions Award in 2008. His

additional awards include the Special Interest Group on Ada Best Paper and Presentation

Award and the Ada Europe Best Presentation Award.

Peter C. Chapin is a professor of computer information systems at Vermont Technical

College (VTC). Peter started at VTC in 1986 as an instructor in the Department of

Electrical and Computer Engineering Technology teaching courses on microcontrollers

and C programming. Since 2009 Peter has been Software Director of VTC’s CubeSat

Laboratory where he has worked with students using Ada and Spark to program small-

scale nano-satellites. VTC successfully launched a working CubeSat satellite into low

Earth orbit on November 19, 2013. It is the first CubeSat programmed using Spark.

www.cambridge.org/9781107040731
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-04073-1 — Building High Integrity Applications with SPARK
John W. McCormick, Peter C. Chapin
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Building High Integrity Applications

with Spark

JOHN W. MCCORMICK

University of Northern Iowa

PETER C. CHAPIN

Vermont Technical College

www.cambridge.org/9781107040731
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-04073-1 — Building High Integrity Applications with SPARK
John W. McCormick, Peter C. Chapin
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

3143321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi 3 110025, India

103 Penang Road, #05306/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, 

a department of the University of Cambridge.

We share the University9s mission to contribute to society through the pursuit of 

education, learning and research at the highest international levels of excellence.

www.cambridge.org 

Information on this title: www.cambridge.org/9781107040731

© John W. McCormick and Peter C. Chapin 2015

This publication is in copyright. Subject to statutory exception and to the provisions 

of relevant collective licensing agreements, no reproduction of any part may take  

place without the written permission of Cambridge University Press & Assessment.

First published 2015

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data

McCormick, John W., 19483

Building high integrity applications with SPARK / John W. McCormick, University of

Northern Iowa, Peter C. Chapin, Vermont Technical College.

pages cm

Includes bibliographical references and index.

ISBN 978-1-107-04073-1 (alk. paper)

1. SPARK (Computer program language) 2. Fault-tolerant computing.

I. Chapin, Peter C. II. Title.

QA76.73.S59M38 2015

004.23dc23   2015014814

ISBN   978-1-107-04073-1   Hardback 

ISBN   978-1-107-65684-0   Paperback

Additional resources for this publication at www.cambridge.org/us/academic/subjects/

computer-science/programming-languages-and-applied-logic/

building-high-integrity-applications-spark.

Cambridge University Press & Assessment has no responsibility for the persistence 

or accuracy of URLs for external or third-party internet websites referred to in this  

publication and does not guarantee that any content on such websites is, or will  

remain, accurate or appropriate.

www.cambridge.org/9781107040731
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-04073-1 — Building High Integrity Applications with SPARK
John W. McCormick, Peter C. Chapin
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents

Preface page ix

1 Introduction and Overview 1

1.1 Obtaining Software Quality 2

1.2 What Is Spark? 8

1.3 Spark Tools 10

1.4 Spark Example 12

Summary 16

Exercises 16

2 The Basic Spark Language 18

2.1 Control Structures 21

2.2 Subprograms 27

2.3 Data Types 32

2.4 Subprograms, More Options 57

Summary 64

Exercises 65

3 Programming in the Large 68

3.1 Definition Packages 69

3.2 Utility Packages 71

3.3 Type Packages 73

3.4 Variable Packages 83

3.5 Child Packages 87

3.6 Elaboration 93

Summary 95

Exercises 96

v

www.cambridge.org/9781107040731
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-04073-1 — Building High Integrity Applications with SPARK
John W. McCormick, Peter C. Chapin
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

vi Contents

4 Dependency Contracts 99

4.1 Data Dependency Contracts 100

4.2 Flow Dependency Contracts 104

4.3 Managing State 110

4.4 Default Initialization 124

4.5 Synthesis of Dependency Contracts 127

Summary 130

Exercises 132

5 Mathematical Background 135

5.1 Propositional Logic 135

5.2 Logical Equivalence 139

5.3 Arguments and Inference 141

5.4 Predicate Logic 144

Summary 150

Exercises 151

6 Proof 155

6.1 Runtime Errors 155

6.2 Contracts 162

6.3 Assert and Assume 189

6.4 Loop Invariants 201

6.5 Loop Variants 211

6.6 Discriminants 216

6.7 Generics 224

6.8 Suppression of Checks 235

Summary 240

Exercises 243

7 Interfacing with Spark 247

7.1 Spark and Ada 247

7.2 Spark and C 261

7.3 External Subsystems 269

Summary 282

Exercises 283

8 Software Engineering with Spark 286

8.1 Conversion of Spark 2005 286

8.2 Legacy Ada Software 291

8.3 Creating New Software 296

www.cambridge.org/9781107040731
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-04073-1 — Building High Integrity Applications with SPARK
John W. McCormick, Peter C. Chapin
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents vii

8.4 Proof and Testing 307

8.5 Case Study: Time Stamp Server 310

Summary 325

9 Advanced Techniques 326

9.1 Ghost Entities 326

9.2 Proof of Transitive Properties 330

9.3 Proof Debugging 336

9.4 Spark Internals 347

Notes 355

References 359

Index 363

www.cambridge.org/9781107040731
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-04073-1 — Building High Integrity Applications with SPARK
John W. McCormick, Peter C. Chapin
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface

Spark is a formally defined programming language and a set of verification

tools specifically designed to support the development of high integrity soft-

ware. Using Spark, developers can formally verify properties of their code

such as

� information flow,
� freedom from runtime errors,
� functional correctness,
� security policies, and
� safety policies.

Spark meets the requirements of all high integrity software safety stan-

dards, including DO-178B/C (and the Formal Methods supplement DO-333),

CENELEC 50128, IEC 61508, and DEFSTAN 00-56. Spark can be used

to support software assurance at the highest levels specified in the Common

Criteria Information Technology Security Evaluation standard.

It has been twenty years since the first proof of a nontrivial system was writ-

ten in Spark (Chapman and Schanda, 2014). The 27,000 lines of Spark code for

SHOLIS, a system that assists with the safe operation of helicopters at sea, gen-

erated nearly 9,000 verification conditions (VCs). Of these VCs, 75.5% were

proven automatically by the Spark tools. The remaining VCs were proven by

hand using an interactive proof assistance tool. Fast-forward to 2011 when the

NATS iFACTS enroute air traffic control system went online in the United King-

dom. The 529,000 lines of Spark code were proven to be “crash proof.” The

Spark tools had improved to the point where 98.76% of the 152,927 VCs were

proven automatically. Most of the remaining proofs were accomplished by the

addition of user-defined rules, leaving only 200 proofs to be done “by review.”

Although Spark and other proof tools have significant successes, their use is

still limited. Many software engineers presume that the intellectual challenges

ix

www.cambridge.org/9781107040731
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-04073-1 — Building High Integrity Applications with SPARK
John W. McCormick, Peter C. Chapin
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

x Preface

of proof are too high to consider using these technologies on their projects.

Therefore, an important goal in the design of the latest version of Spark, called

Spark 2014, was to provide a less demanding approach for working with proof

tools. The first step toward this goal was the arrival of Ada 2012 with its new

syntax for contracts. We no longer need to write Spark assertions as special

comments in the Ada code. The subset of Ada that is legal as Spark language

has grown to encompass a larger subset of Ada, giving developers a much richer

set of constructs from which to develop their code.

The real power of Spark 2014 is under the hood. The new set of Spark

tools is integrated with the front end of the GNAT compiler. This merger allows

the Spark tools to make direct use of the many code analyses performed by the

GNAT compiler. Also, the new tools use an entirely new proof system based

on the Why3 software verification system (Bobot et al., 2011). Why3 man-

ages a collection of modern satisfiability modulo theory (SMT) provers such

as Alt-Ergo (OCamlPro, 2014), CVC4 (New York University, 2014), YICES

(Dutertre, 2014), and Z3 (Bjørner, 2012) that complete the actual proving of the

contracts in our program. These underlying proof tools can handle far more sit-

uations than the original Spark prover. Do not be put off by this high-powered

mathematical foundation; you do not need knowledge of these low-level proof

tools to use Spark.

Another significant improvement in Spark 2014 is the integration of proof

and testing techniques. The Ada 2012 assertions in a Spark program can be

checked dynamically by running test cases. Alternatively, these assertions can

be proven correct by the Spark proof tools. Such a mixed verification approach

allows us to incrementally increase the level of formality in our programs.

Having the ability to combine testing and proof also allows us to more easily

verify programs written in a mixture of languages.

It is useful to distinguish between Spark as a programming language and

the Spark tools that perform the analysis and proof of program properties. The

removal of difficult-to-analyze features such as access types and exceptions

makes the Spark 2014 language a subset of Ada 2012. Yet, the Spark 2014

language also extends Ada 2012 with additional pragmas and aspects. The

Spark language is described in the Spark 2014 Reference Manual (Spark

Team, 2014a) and could potentially be implemented by many Ada compiler

vendors.

At the time of this writing, Altran/AdaCore’s implementation of Spark is

the only one that exists. Details of their implementation are described in the

Spark 2014 Toolset User’s Guide (Spark Team, 2014b). Because there is only

one implementation of Spark, it is easy to assume that Spark is really the union

www.cambridge.org/9781107040731
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-04073-1 — Building High Integrity Applications with SPARK
John W. McCormick, Peter C. Chapin
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface xi

of behaviors described in the reference manual and user’s guide. However, it is

possible that another implementation of Spark may arise that implements the

language in the reference manual while providing a different user experience.

As a convenience to the reader, in this book we have at times conflated

Spark the language and Spark as implemented by Altran/AdaCore. With only

one implementation of Spark available, this approach seems reasonable, and it

has the advantage of streamlining the presentation. For example, SPARK Mode,

described in Section 7.1.1, provides a way of identifying which parts of a pro-

gram are Spark. Technically, SPARK Mode is a feature of Altran/AdaCore’s

implementation and not part of the Spark language itself. Another implemen-

tation of Spark could conceivably use a different mechanism for identifying

Spark code.

It is also important to understand that while the Spark language is relatively

static, the tools are rapidly evolving. As the tools mature they are able to

automatically complete more proofs faster than before. You may find that

recent versions of the tools do not require as many hints and assertions as older

versions. In particular, some examples in this book may be provable by newer

tools with fewer assertions required than we use here.

The Spark language includes the Ada 2012 constructs necessary for object-

oriented programming: tagged types, type extensions, dispatching operations,

abstract types, and interface types. Contract notations are provided for ensuring

that any operations applied to a superclass instance are also valid for instances

of a subclass (the Liskov Substitution Principle). We have elected not to cover

the object-oriented aspects of Spark programming in this book.

Chapter Synopses

Chapter 1 provides an overview of high integrity software and some approaches

commonly used to create high-quality software. The Spark language and tool

set are described in the context of reducing defect rates.

Chapter 2 introduces the basic subset of Ada 2012 that constitutes the

Spark language. Spark’s decision and loop structures will be familiar to all

programmers. Subprograms come in two forms: functions and procedures. A

significant portion of this chapter is devoted to types. Ada allows us to define

our own simple and complex types. Using these types, we can create accurate

models of the real world and provide valuable information to the Spark tools

so we can identify errors before the program is executed.

Chapter 3 is about the package. Packages facilitate the construction of large

programs. We use packages to support separation of concerns, encapsulation,

www.cambridge.org/9781107040731
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-04073-1 — Building High Integrity Applications with SPARK
John W. McCormick, Peter C. Chapin
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xii Preface

information hiding, and more. A Spark program consists of a main subprogram

that uses services provided by packages.

Chapter 4 provides the first look at contracts – assertions about the program’s

behavior that must be implemented correctly by the developer. Dependency

contracts provide the means to verify data dependencies and information flow

dependencies in our programs. Incorrect implementation of data dependencies

or flow of information can lead to security violations. The Spark tools can

check that the implementation conforms to the requirements of these contracts.

This analysis offers two major services. First, it verifies that uninitialized data

is never used. Second, it verifies that all results computed by the program par-

ticipate in some way in the program’s eventual output – that is, all computations

are effective.

Chapter 5 provides a review of basic discrete mathematics useful in reading

and writing contracts. Propositional and predicate logic provide the funda-

mental notions needed for expressing the assertions in contracts that specify

functional behavior. The existential (there exists) and universal (for all) quan-

tifiers of predicate logic are crucial in stating assertions about collections.

Although not necessary to use the Spark tools, we give a basic introduction to

arguments and their validity. The verification conditions (VCs) generated by

the Spark proof tools are arguments that must be proven valid to ensure that

our implementation fulfills the contracts. We leave it to the Spark tools to do

the actual proofs.

Chapter 6 describes how to use the Spark tools to prove behavioral properties

of a program. The first step is the proof that our program is free of runtime

errors – that is, no exceptions can ever be raised. By including contracts such as

preconditions and postconditions with each subprogram, we state the desired

functionality. We can use the Spark tools to show that these contracts are

always honored, and thus, our code implements that functionality. In an ideal

world, the tools would need only our code to verify it is free of runtime errors

and meets all of its contracts. In reality, the tools are not yet smart enough

to accomplish that verification alone. When a proof fails in a situation where

we believe our code to be correct, we need to give the tool some additional

information it can use to complete its proof. This information comes in the

form of additional assertions.

Chapter 7 explores the issues around building programs that are not com-

pletely written in Spark. It is often infeasible or even undesirable to write

an entire program in Spark. Some portions of the program may need to be

in full Ada to take advantage of Ada features that are not available in Spark

such as access types and exceptions. It may be necessary for Spark programs

to call third-party libraries written in full Ada or in some other programming

www.cambridge.org/9781107040731
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-04073-1 — Building High Integrity Applications with SPARK
John W. McCormick, Peter C. Chapin
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface xiii

language such as C. Of course, Spark’s assurances of correctness cannot be

formally guaranteed when the execution of a program flows into the non-Spark

components.

Chapter 8 provides an overview of Spark in the context of a software

engineering process. We describe three common usages: conversion of Spark

2005 programs to Spark 2014, analysis or conversion of existing Ada programs,

and development of new Spark programs from scratch. We introduce the

INFORMED design method for Spark and discuss how testing and proof may

be used in combination. Finally, we present a case study of developing an

application using the INFORMED process.

In Chapter 9 we examine some advanced techniques for proving properties

of Spark programs including ghost entities and proof of transitive properties.

We discuss the approaches we found useful for debugging proofs and provide

a number of guidelines for completing difficult proofs. Finally, we give a brief

tour of the internal workings of Spark and suggestions for learning more.

Tools

Currently, the partnership of Altran and AdaCore provides the only imple-

mentation of Spark 2014. They provide two versions. Spark GPL with the

corresponding GNAT GPL Ada compiler is available for free to software devel-

opers and students at http://www.libre.adacore.com. Spark Pro with the

corresponding GNAT Pro Ada compiler is intended for industrial, military,

and commercial developers. Information on subscriptions to these professional

tools is available at http://www.adacore.com.

Web Resources

A Web site with the complete source code for all of the examples and some of

the exercises in the book may be found at http://www.cambridge.org/

us/academic/subjects/computer-science/programming-

languages-and-applied-logic/building-high-integrity-

applications-spark.

The Ada 2012 Language Reference Manual and the Rationale for Ada

2012 are available at http://www.ada-auth.org/standards/12rm/html/

RM-TTL.html and http://www.ada-auth.org/standards/12rat/html/

Rat12-TTL.html.

The GNAT Reference Manual and the GNAT User’s Guide are available

at http://docs.adacore.com/gnat_rm-docs/html/gnat_rm.html and

http://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn.html.

www.cambridge.org/9781107040731
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-04073-1 — Building High Integrity Applications with SPARK
John W. McCormick, Peter C. Chapin
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xiv Preface

The Spark 2014 Reference Manual and the Spark 2014 Toolset User’s

Guide are available at http://docs.adacore.com/spark2014-docs/html/

lrm and http://docs.adacore.com/spark2014-docs/html/ug.

Additional resources for Ada 2012 and Spark may be found

at http://university.adacore.com, https://www.linkedin.com/

groups/Ada-Programming-Language-114211/about, and https://www

.linkedin.com/groups/SPARK-User-Community-2082712/about

You can keep up with the latest Spark developments at http://www

.spark-2014.org.

Acknowledgments

We would like to thank the many Spark 2014 developers at AdaCore and Altran

who helped us with all of the nuances of the language and tools. We appreciate

their work in reading and commenting on several drafts of this book. This book

is much better as a result of their efforts. We also thank those individuals in

industry who use Spark on real projects for their feedback. Their comments,

corrections, and suggestions have enormously improved and enriched this book.

We are grateful to (in alphabetical order) Stefan Berghofer, Roderick Chapman,

Arnaud Charlet, Robert Dorn, Claire Dross, Pavlos Efstathopoulos, Johannes

Kanig, David Lesens, Stuart Matthews, Yannick Moy, Florian Schanda, and

Tucker Taft.

Anyone who has written a textbook can appreciate the amount of time and

effort involved and anyone related to a textbook author can tell you at whose

expense that time is spent. John thanks his wife Naomi for her support and

understanding. Peter thanks his wife Sharon for her patience and his students

for their interest in Spark.

John W. McCormick

University of Northern Iowa

mccormick@cs.uni.edu

Peter C. Chapin

Vermont Technical College

PChapin@vtc.vsc.edu

www.cambridge.org/9781107040731
www.cambridge.org

